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refinement using a quantum
mechanics-based chemical shielding predictor†

Lars A. Bratholm* and Jan H. Jensen*

The accurate prediction of protein chemical shifts using a quantum mechanics (QM)-based method has

been the subject of intense research for more than 20 years but so far empirical methods for chemical

shift prediction have proven more accurate. In this paper we show that a QM-based predictor of

a protein backbone and CB chemical shifts (ProCS15, PeerJ, 2016, 3, e1344) is of comparable accuracy

to empirical chemical shift predictors after chemical shift-based structural refinement that removes small

structural errors. We present a method by which quantum chemistry based predictions of isotropic

chemical shielding values (ProCS15) can be used to refine protein structures using Markov Chain Monte

Carlo (MCMC) simulations, relating the chemical shielding values to the experimental chemical shifts

probabilistically. Two kinds of MCMC structural refinement simulations were performed using force field

geometry optimized X-ray structures as starting points: simulated annealing of the starting structure and

constant temperature MCMC simulation followed by simulated annealing of a representative ensemble

structure. Annealing of the CHARMM structure changes the CA-RMSD by an average of 0.4 Å but lowers

the chemical shift RMSD by 1.0 and 0.7 ppm for CA and N. Conformational averaging has a relatively

small effect (0.1–0.2 ppm) on the overall agreement with carbon chemical shifts but lowers the error for

nitrogen chemical shifts by 0.4 ppm. If an amino acid specific offset is included the ProCS15 predicted

chemical shifts have RMSD values relative to experiments that are comparable to popular empirical

chemical shift predictors. The annealed representative ensemble structures differ in CA-RMSD relative to

the initial structures by an average of 2.0 Å, with >2.0 Å difference for six proteins. In four of the cases,

the largest structural differences arise in structurally flexible regions of the protein as determined by

NMR, and in the remaining two cases, the large structural change may be due to force field deficiencies.

The overall accuracy of the empirical methods are slightly improved by annealing the CHARMM structure

with ProCS15, which may suggest that the minor structural changes introduced by ProCS15-based

annealing improves the accuracy of the protein structures. Having established that QM-based chemical

shift prediction can deliver the same accuracy as empirical shift predictors we hope this can help

increase the accuracy of related approaches such as QM/MM or linear scaling approaches or interpreting

protein structural dynamics from QM-derived chemical shift.
Introduction

Chemical shis are very sensitive to the molecular structure
and computational methods that can accurately predict chem-
ical shis from structure (and vice versa) are valuable tools
for protein structure determination and validation. These
methods, e.g. CamShi,1 PPM_One,2 Sparta+,3 shAIC,4 and
ShiX2,5 are typically based on approximate physical models
with adjustable parameters that are optimized by minimizing
the discrepancy between experimental and predicted chemical
shis computed using protein structures derived from X-ray
enhagen, Copenhagen, Denmark. E-mail:

.ku.dk; Web: http://www.twitter.com/

tion (ESI) available. See DOI:

hemistry 2017
crystallography. Alternatively, protein chemical shis can be
predicted using computational quantum mechanics (QM),
either indirectly using QM-derived models such as SHIFTS,6,7

CheShi,8,9 and ProCS,10,11 or directly using QM/MM or linear
scaling approaches.12–15

In principle the QM-based methods offer several advantages
over the empirical methods. As case16 notes: “Quantum models
allow the study of unusual conformations, including brils,
partially disordered systems, or other unusual congurations
that might not be represented in the existing databases of
shis. They can take account of the effects of ligands or cofac-
tors, and can be applied to carbohydrates, nucleic acids, and
other biochemical entities”. Furthermore, they should be more
appropriate for validating structural ensembles “since we know
exactly what structures (or structural ensemble) are involved,
avoiding the ‘structural noise’ that arises in the empirical
Chem. Sci., 2017, 8, 2061–2072 | 2061
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models from the fact that the structural ensemble leading to the
observed shis is not known”. However, QM-based methods
tend to yield chemical shis that, on average, are less accurate
than the empirical methods.

Twomain reasons for the lower accuracy have been advanced:
1) the QM-based predictors are more sensitive to small structural
errors than empirical predictors and 2) lack of dynamical aver-
aging which is implicitly included in the empirical methods. For
example, Vila et al.8 showed that CA chemical shis predicted
by CheShi were able to better discriminate between decoy
structures from native conformations than SHIFTS and SHIFTX
(although SPARTA performed equally well) andHe et al.17 showed
that the ensemble average of proton chemical shis predicted by
their linear scaling AF-QMmethod improves the correlation with
experimental results (although SHIFTS and SHIFTX predictions
remain more accurate).

Despite >20 years of work18 no study so far has demonstrated
that QM-based protein chemical shi predictions can deliver
accuracies similar to empirical methods for a variety of protein
structures and atom types, an important and necessary rst step
if their advantages (rigor, generality, etc.) are to be realized and
embraced. In this paper we perform chemical shi-based
structural renement of 17 proteins to demonstrate that the
primary source of error for QM-based chemical predictions are
small structural errors and that a QM-based method can predict
a protein backbone and CB chemical shis with accuracies very
similar to empirical methods once these errors are removed.

Theory
Overview

Markov Chain Monte Carlo (MCMC) simulations are performed
with a hybrid energy function based on a standard force eld
energy (EFF) augmented by an energy term (ECS) that reects the
agreement between predicted and experimental chemical shis

Ehybrid ¼ EFF + wECS (1)

The optimum weight (w) of the chemical shi data is
determined probabilistically as part of the simulation as
described below. If one assumes that the predicted chemical
shis follows a normal distribution (pCS) around the experi-
mental values,19 eqn (1) can be rewritten as

Ehybrid ¼ EFF � kBT lnðpCSÞ

¼ EFF þ kBT
Pn
j

 �
Nj þ 1

�
ln
�
sj
�þ cj

2

2sj2

!
(2)

here kB is Boltzmann's constant, T is the temperature of the
simulation, n is the number of different atom types (Ca, Cb, Ha,
etc.) for which chemical shis are available, Nj is the number of
chemical shis of nuclei type j, and sj is the standard deviation
in the prediction of chemical shi-type j. Finally, cj

2 is dened
as

cj
2 ¼

XNj

i

�
dij � dpred;ij

�2
(3)
2062 | Chem. Sci., 2017, 8, 2061–2072
where dij is the experimental chemical shi for nucleus i of type j
and dpred,ij is the corresponding predicted value. From this it is
seen that the standard deviations are effectively describing the
weight w of the experimental data.

In this study we use ProCS15 (ref. 11) to predict the corre-
sponding isotropic chemical shielding value si, which we relate
to dij by

dpred,ij ¼ ajsij + bj (4)

The slope, aj, and offset, bj, are determined by the agreement
between the predicted and experimental chemical shis for
each atom type (see next subsection).

Details

Following the inferential structure determination approach by
Rieping, Habeck and Nilges,20 the hybrid energy corresponds to
the joint posterior density for all unknown parameters

p(X,q|{d}) f p({d}|X,q)p(X)p(q) (5)

Ehybrid ¼ �kBT ln(p(X,q|{d})) (6)

ECS ¼ �kBT ln(p({d}|X,q)p(q)) (7)

where boldface is used to represent vectors over different atom
types, {$} is used to represent the set of all residues, {d} is the
experimental data, X the given structure and q unknown model
parameters (a,b,s).

Here a Bayesian linear regression model is used to describe
the agreement between the prediction of isotropic chemical
shieldings by ProCS15, {s}, and the chemical shis found
experimentally, {d}, such that di ¼ a$si + b + 3 for residue i, with
3 being a zero centered normal error with a diagonal covariance
matrix S ¼ sT$I$s, with I being the identity matrix. Thus

pðfdg|a; b; fsg; sÞf
YN
i¼1

jsj�1

� exp

�
� 1

2
ðdi � a$si � bÞTS�1ðdi � a$si � bÞ

�
(8)

pðfdg|a; b; fsg; sÞ ¼
Yn
j¼1

YNj

i¼1

sj
�1 exp

 
�
�
dij � aj$sij � bj

�2
2sj2

!
(9)

Non-informative priors are used for the model
parameters:21–23

pðs; a; bÞ ¼ pðsÞpða; bÞ ¼
Yn
j

sj
�1$
�
1þ aj

2
��3=2

(10)

The parameters a and b are marginalized out using Laplace's
method:

pðfdg|fsg; sÞ ¼
Yn
j

ðN
�N

ðN
�N

p
��

dj
	
|aj ; bj ;

�
sj

	
; sj
�
p
�
aj ; bj

�
dajdbj

(11)
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pðfdg|fsg; sÞf
Yn
j¼1

�
exp

�
� Nj

2sj2

�D
dj

2
E
� 
dj�2 � âj

�

sjdj
�� 
sj

�

dj
����

sj�
1þ âj

2
�3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi


sj
2
�� 
sj

�2q (12)

with âj being

âj ¼


sjdj
�� 
sj

�

dj
�



sj

2
�� 
sj

�2 (13)

and h$i denoting the mean.
Computational methodology

Seventeen protein X-ray structures are used in this study which are
listed in Table S1.† In several cases the sequences of the proteins
for which X-ray structures and chemical shis are available differ
slightly from those for which chemical shis were measured and
the corresponding residues were changed in the X-ray structure
using FoldX 4.24 Additionally some side chain coordinates in the
PDB les are missing and were added in a similar fashion. The
structures were energy minimized with the CHARMM22/CMAP
force eld25 and the GB/SA solvation model26 implemented in
TINKER27 with a convergence criterion of 0.01 kcal mol�1 Å�1.

The CHARMM/CMAP energy minimized structures were
used as starting points for two different kinds of Markov Chain
Monte Carlo (MCMC) simulations, carried out using PHAIS-
TOS28 with the Metropolis–Hastings acceptance criterion29

using the hybrid energy function described above: simulated
annealing, and constant temperature simulations. The physical
force eld CHARMM36, with the EEF1-SB solvent model, were
used in the simulations.30 The simulated annealing protocol
consisted of simply lowering the temperature from tstart ¼ 300 K
to tend ¼ 3 K over Nsteps ¼ 10 M steps, with the temperature at

step i being tstart �
�
tend
tstart

� i
Nsteps

. In the constant temperature

(300 K) MCMC simulations, the resulting set of structures do
not represent a thermodynamic ensemble because a hybrid
energy function is used. For the simulated annealing simula-
tions, four independent Metropolis–Hastings simulations were
performed for each protein, for 10 million (M) MC steps (40 M
in total). For the ensembles, eight threads are performed for
each protein for 50 M steps (400 M in total). The conformational
degrees of freedom explored in the simulations were restricted
to the backbone and side-chain dihedral angles (f, j, c) as well
as the backbone bond angles. The physical move set was
comprised of 20% uniform and 30% local single side chain
moves, 40% CRISP local backbone dihedral angle moves31 and
10% CRA backbone bond angle moves.32 An additional 5%
moves were added to sample the standard deviation in the
chemical shi energy term.19 The ClusCo program was used to
extract a representative structure from the ensemble using
hierarchical agglomerative clustering.

CheShi-2 (ref. 8 and 9) calculations were performed with
the CheShi-2 PyMOL-plugin33 found at http://github.com/
This journal is © The Royal Society of Chemistry 2017
aloctavodia/cheshi. CamShi,1 PPM One,2 Sparta+,3 shAIC,4

and ShiX2 (ref. 5) calculations are performed using the stand-
alone predictors. Scripts to automate these predictions can be
found at http://github.com/larsbratholm/cs_prediction.

Much of the variation in some of the chemical shis comes
from the nature of the side-chain itself and the neighboring side
chains which can lead to inated r-values. To separate the
contributions of the sequence and the structure we subtract
the measured sequence corrected random coil values34 from all
predicted and experimental values. Note that this does not
affect the computed RMSD values.

Outliers in the predicted chemical shis are identied using
the generalized extreme studentized deviate test35 and removed
before computing RMSD, r values, and slopes.
Results and discussion
Chemical shi prediction using CHARMM minimized X-ray
structures

The rst row of Table 1 lists average RMSD and r values relative to
experiments for chemical shi values computed using ProCS15
for 17 protein structures minimized using the CHARMM/CMAP
force eld. The RMSD values are generally very similar to those
computed previously for ubiquitin and protein GB3,11 with the
exception of N, where the average RMSD is 0.5 to 0.8 ppm lower.
The r values for CA and CB are also quite similar to those ob-
tained previously, but are signicantly lower for the remaining
nuclei.

As we observed previously11 the RMSD values for ProCS15
are signicantly higher (0.5–1.4 ppm for carbon and N atoms)
than those for commonly used empirical chemical shi
predictors and very similar to CheShi values, while the cor-
responding ProCS15 r values are lower than for the empirical
methods and similar to CheShi. We now show that the
agreement with experiment can be signicantly improved for
ProCS15 by making relative small changes to the protein
structure.
Chemical shi based structural renement using ProCS15

The second row of Table 2 (labeled “Annealed CHARMM”) lists
the average RMSD and r values computed using the lowest
energy structures obtained by minimizing the hybrid energy
function described in the Theory section, starting from the
CHARMM/CMAP minimized structures using simulated
annealing as described in the Computational methodology
section. The data indicate that such an annealing lowers the
RMSD values relative to using CHARMM/CMAP structures
(labeled “CHARMM”) by between 0.2–0.8 ppm for carbon and
nitrogen and by 0.12 and 0.16 ppm for HA and H. The
improvements in RMSD are largest for CA and N, and more
modest for CB and C. While the RMSD-lowering is relatively
small for HA and H, the r values are increased by 0.21 and 0.25,
respectively. The r values for the remaining atoms are also
increased, by between 0.11 and 0.20.

In order to explore a larger region of phase space and the
effect of conformational averaging we perform a constant
Chem. Sci., 2017, 8, 2061–2072 | 2063
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Table 1 Average RMSD (in ppm) and r values relative to experiments of chemical shifts computed using 17 CHARMM minimized protein
structures and several chemical shift predictors

CA CB C HA H N

ProCS15 1.6 (0.71) 1.9 (0.44) 1.7 (0.36) 0.30 (0.76) 0.55 (0.51) 3.4 (0.58)
CheShi-2 1.5 (0.65) 1.7 (0.48)
CamShi 1.1 (0.80) 1.2 (0.72) 1.2 (0.73) 0.27 (0.81) 0.49 (0.69) 3.0 (0.63)
PPM_One 0.8 (0.90) 1.0 (0.83) 1.0 (0.78) 0.21 (0.90) 0.41 (0.78) 2.2 (0.80)
Sparta+ 0.8 (0.91) 1.0 (0.83) 0.9 (0.82) 0.23 (0.87) 0.41 (0.77) 2.2 (0.81)
shAIC 0.8 (0.90) 1.0 (0.83) 0.9 (0.83) 0.21 (0.89) 0.42 (0.75) 2.2 (0.81)
ShiX2 0.6 (0.92) 0.7 (0.88) 0.7 (0.88) 0.16 (0.92) 0.31 (0.85) 1.8 (0.84)
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temperature Monte Carlo simulation for each protein using
the hybrid energy function. The resulting structures are used
to compute an average chemical shielding value for each
nucleus, which is then related to the chemical shi by linear
regression against the experimental values for each protein.
The RMSD from the experimental values and corresponding r
values for all 17 protein are then averaged and presented in the
row labeled “Ensemble average” in Table 2. This approach
decreases the RMSD further compared to using simulated
annealing for all but HA (where there is no change) and H
(where the RMSD is increased by 0.03 ppm). The effect is
largest for N where the RMSD drops by 0.5 ppm and ranges
between 0.1 and 0.2 ppm for CA, CB, and C. The r values
increase by 0.04 to 0.08 for carbon and nitrogen, while no
change is observed for HA and a 0.02 decrease is observed for
H. To separate the effect of phase space exploration from
averaging we use a clustering algorithm to locate the most
probable structure in the ensemble, perform a simulated
annealing energy minimization starting from this structure,
and use the energy minimized structure to compute chemical
shis for each protein. The resulting average RMSD and r
values are labeled “Annealed ensemble” in Table 2 and
suggests that conformational averaging is responsible for most
of the 0.4 ppm RMSD reduction observed for N.

In summary, the average RMSD values drop considerably
upon minimizing the hybrid energy function using simulated
annealing. The largest changes are seen for CA and N, where
the RMSD drops by 1.0 and 0.7 ppm on going from the
CHARMM structure to the annealed ensemble structure.
The drop in RMSD value is also signicant for CB (0.4 ppm)
and more modest for C (0.3 ppm). For HA and H the drop is
also very similar at 0.15 and 0.14 ppm. The difference
between the RMSD computed using the annealed CHARMM
and ensemble structure is at most 0.2 ppm for carbon and
nitrogen.
Table 2 Average RMSD (in ppm) and r value relative experiments of chem
structural refinement techniques (explained in the text)

CA CB C

CHARMM 1.6 (0.71) 1.9 (0.44) 1
Annealed CHARMM 0.8 (0.91) 1.5 (0.59) 1
Ensemble average 0.6 (0.94) 1.4 (0.64) 1
Annealed ensemble 0.6 (0.95) 1.5 (0.60) 1

2064 | Chem. Sci., 2017, 8, 2061–2072
Structural changes upon renement

Table 3 lists the CA-RMSD values of the annealed CHARMM
structures (second column) and annealed ensemble structures
obtained using ProCS15, CamShi, and force eld only relative
to the CHARMM minimized structure. The CA-RMSD values
of the ProCS15 annealed ensemble structure relative to the
ensemble structures are given in parentheses.

Annealing of the CHARMM structure using ProCS15 changes
the CA-RMSD by at most 0.5 Å for all but the SMN tudor domain,
where the CA-RMSD is 1.0 Å. The increase in the accuracy of
predicted chemical shis due to annealing the CHARMM
structure observed for all the nuclei (cf. Table 2) is thus due to
very modest changes in the overall structure.

The ensemble calculation followed by simulated annealing
results in somewhat larger changes in the overall structure for
some of the proteins. For most11 of the proteins the overall
structural change remains quite modest, with CA-RMSD values
#2.0 Å relative to the CHARMM minimized structure. For the
remaining six proteins (MBP, msrB, Lin0431 protein, ubiquitin,
upCtR107, and LFAB) the CA-RMSD range from 2.5 to 3.9 Å. The
structural changes are due mostly to the ensemble calculation
as the subsequent annealing changes the CA-RMSD by 0.5 Å on
average. For ve of these six proteins (MBP, msrB, Lin0431
protein, ubiquitin, upCtR107, and LFAB) the structures
annealed using only the force eld deviate signicantly more
from the minimized CHARMM structures. So one possible
explanation for the relatively large structural changes observed
for these proteins is that the force eld favors signicantly
distorted structures and that the inclusion of chemical shis
only partially corrects for these deciencies in the force eld.
For comparison, the corresponding annealed ensemble struc-
tures using CamShi for msrB and LFAB lead to signicantly
larger CA-RMSD values (5.7 and 6.5 Å) compared to ProCS, while
for MBP the CA-RMSD for CamShi is smaller (2.6 Å). However,
for the rest of the proteins the difference in CA-RMSD is
ical shifts computed using ProCS15 for 17 different proteins and various

HA H N

.7 (0.36) 0.30 (0.76) 0.55 (0.51) 3.4 (0.58)

.5 (0.46) 0.19 (0.91) 0.39 (0.78) 2.8 (0.72)

.4 (0.55) 0.19 (0.92) 0.42 (0.76) 2.3 (0.80)

.5 (0.53) 0.17 (0.92) 0.40 (0.78) 2.6 (0.75)

This journal is © The Royal Society of Chemistry 2017

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6sc04344e


Table 3 CA RMSD values (in Å) relative to minimized CHARMM structures for annealed CHARMM and annealed ensemble structure obtained
using ProCS15, Camshift, and force field only simulations. The values in parenthesis are the CA RMSD deviations of the ProCS15 annealed
ensemble structure relative to the ensemble cluster centroid that served as a starting point for the annealing

Protein

Annealed
CHARMM
ProCS15

Annealed
ensemble
ProCS15

Annealed
ensemble
Camshi

Annealed
ensemble
CHARMM

Maltose-binding periplasmic protein (MPB) (P0AEX9) 0.3 3.9 (0.4) 2.5 6.7
Lin0431 protein (Q92EM7) 0.3 2.9 (0.5) 2.5 7.6
Ubiquitin (P0CG48) 0.5 2.6 (0.7) 2.1 2.6
eh 1 domain from human intersectin-1 (Q15811) 0.3 0.7 (0.4) 1.0 12.3
YbbR family protein (B8FX10) 0.4 1.7 (0.4) 2.2 4.2
Uncharacterized protein from Chlorobium tepidum (upCtR107)
(Q8KFZ1)

0.3 2.6 (0.5) 2.8 6.8

Methionine sulfoxide reductase (msrB) (P54155) 0.3 3.7 (0.4) 5.7 6.5
26S protease regulatory subunit 8 (P62195) 0.3 1.5 (0.4) 1.2 2.4
drbm 2 domain of interleukin enhancer-b factor 3 (Q12906) 0.5 2.0 (0.7) 3.0 10.5
SMN tudor domain (Q16637) 1.0 1.5 (0.5) 1.4 2.6
Protein G (Q54181) 0.4 1.0 (0.3) 1.0 4.0
Thiamine biosynthesis protein (Q39VC5) 0.4 1.3 (0.5) 0.9 9.1
Lamin-B1 (P20700) 0.5 1.6 (0.4) 1.6 1.9
Target protein XcR50 (Q8P6W3) 0.3 0.6 (0.4) 0.8 2.9
OB-fold domain of replication protein A (Q6LYF9) 0.5 1.5 (0.5) 1.7 2.1
TM1442 protein (Q9X1F5) 0.3 1.5 (0.4) 1.8 1.8
Liver fatty acid-binding protein (LFAB) (P02692) 0.3 2.5 (0.4) 6.5 6.2
Average 0.4 2.0 (0.5) 2.3 5.3

Fig. 1 (a) Overlay of CHARMM (green), annealed CHARMM (blue), and
annealed ensemble structures (magenta) of the HMN tudor domain.
((b) and (c)) Structure of CHARMM (b), annealed CHARMM (c), and
annealed ensemble structures (d) structure colored by 3 where light
green and dark red corresponds to 3 ¼ 0.0 and 3 $ 2.0, respectively.
The structural alignment is made using PyMol.
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generally #0.5 Å, except for MBP and the drbm 2 domain of
interleukin enhancer-b factor 3 where the difference is 1.4 and
1.0 Å. Next we discuss the six proteins with the largest structural
changes in more detail.

SMN tudor domain. The annealed CHARMM structure of the
SMN tudor domain exhibits the largest CA-RMSD (1.0 Å) from
the starting structure (Fig. 1a and Table 3). From Fig. 1a it
is evident that most of the structural differences are found at
the termini and if the rst three and last two residues are
neglected the CA-RMSD falls to 0.6 Å. Despite the relatively
small structural changes the chemical shis are improved
signicantly. For example, the average RMSD values for CA
and N chemical shis decrease from 1.4 to 0.7 ppm and from
3.5 to 2.6 ppm, respectively, when the CHARMM structure is
annealed. The changes are quite representative of the corre-
sponding average RMSD values computed for all the proteins
(Table 2). Fig. 1b–d shows the CHARMM, annealed CHARMM,
and annealed ensemble structures with their colours deter-
mined by the chemical shi error (3) computed for each residue

3i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
j

�
dij � dpred;ij

�2
sj2

vuut (14)

where dij and dpred,ij is the experimental and predicted chemical
shis for atom type j in residue i, n is the number of atom types,
and the standard deviations (s) are taken as the RMSD values
computed using the annealed CHARMM structures (Table 2).
Note that 3 is unit-less.

The largest overall decrease in error is observed for Glu135,
which is primarily due to the fact that the CA and HA error
drops from 2.4 to 0.4 ppm and from 0.89 to 0.22 ppm, respec-
tively. Analysis of the chemical shi contributions considered
This journal is © The Royal Society of Chemistry 2017 Chem. Sci., 2017, 8, 2061–2072 | 2065
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by ProCS15 shows that the chemical shi change is due to
changes in the f/c and side-chain dihedral angles (sBB cf.
ref. 11). Comparison of the CHARMM, annealed CHARMM, and
annealed ensemble structure, where the CA and HA errors are
0.6 and 0.16 ppm, indicates that the most likely cause is a 22�

change in the f angle that alters the interaction with the
backbone carbonyl group of Glu136 (Fig. 2a).

The second largest overall error decrease is observed for
Glu121 where the error decrease is primarily due to the error for
the HA atom decreasing from 1.11 to 0.18 ppm upon annealing.
Here the most likely explanation for the decrease in error is
a relatively short distance (2.68 Å) between HA and one of the
side chain carboxyl atoms in the CHARMM structure, which is
increased considerably upon annealing (Fig. 2b). This interac-
tion is also present in the X-ray structure (1HMN, Sprangers
et al.36) that served as a starting point for the CHARMM mini-
mization, but only in one of the 20 deposited structures deter-
mined by NMR (1G5V, Tripsianes et al.37).

The largest structural changes upon annealing the CHARMM
structure (not counting the termini) is the movement of resi-
dues of loop I (Fig. 1a). This loop movement is most likely made
to decrease the chemical shi error for Leu138 from 2.0 to 1.2.
This error decrease is primarily due to the N chemical shi error
changing from 7.3 to 0.9 ppm upon annealing. Analysis of the
chemical shi contributions suggest that the cause is the
introduction of a NH–O hydrogen bond to the carbonyl oxygen
of Glu121. Interestingly, the NH–O is also present in the X-ray
structure, i.e. the CHARMM/CMAP optimization initiated from
the X-ray structure breaks the hydrogen bond, while minimizing
the hybrid energy re-forms the hydrogen bond. As a result the
loop position in the annealed CHARMM structure is closer to
the X-ray structure than to the CHARMM minimized structure.

The largest structural differences between the annealed
CHARMM and annealed ensemble structure (not counting the
termini) is the movement of residues of loop II (Fig. 1a). This
loop contains Glu104, which exhibits the largest decrease in
error on going from the annealed CHARMM to annealed
ensemble structure. This error decrease is primarily due to the
H chemical shi error decreasing from 2.04 to 1.16 ppm.
Analysis of the chemical shi contributions suggest that the
cause is the increase of ring current effect due the Trp102 side
Fig. 2 (a) Overlay of CHARMM (green), annealed CHARMM (blue), and
annealed ensemble structures (magenta) of the SMN tudor domain in
the region around Glu135 (a) and Glu121 (b). The overlay generated in
PyMol by minimizing the difference in the position of the C, CA, and N
atoms of Glu135 and Glu121, respectively.

2066 | Chem. Sci., 2017, 8, 2061–2072
chain adopting a different side chain conformation (Fig. 3a).
This new side chain conformation leads to the breaking of
a hydrogen bond between the Asp105 and Tyr109 side chains
which causes the loop movement (Fig. 3b). The Asp105–Tyr109
hydrogen bond is also observed in the X-ray structure but only
in one of the 10 NMR ensemble structures. Furthermore, the
experimental H chemical shis of Glu104 and Asp105 are
5.46 and 6.58 ppm, respectively, which makes them the most
shielded amide proton chemical shis observed for this protein
– consistent with ring current effects.

To summarize, annealing the CHARMM minimized struc-
ture increases the accuracy of the predicted chemical shis by
up to 0.7 and 0.9 ppm for carbon and nitrogen atoms, respec-
tively. The increased accuracy is due to very subtle changes in
the protein structure, such as small (22�) changes in a f angle,
changing side chain conformations, and hydrogen bond
formation. A more extensive search of the conformational space
lead to slightly more extensive structural changes within a loop
involving changes in several side chain conformations and the
breaking of a hydrogen bond, that increased ring current
effects.

Maltose-binding periplasmic protein (MBP). The largest
change in structure upon renement is observed for MBP with
a 3.9 Å CA-RMSD relative to the CHARMM minimized structure
(Table 3). For comparison, Lange et al.38 used chemical shis
and sparse distance restraints to obtain a structure with an
average CA-RMSD of 3.1 Å relative to an X-ray structure (1EZ9,39).
However, the authors note that the MPB “is a two-domain
protein that dynamically samples open and closed conforma-
tions in the absence of ligand” and therefore also present
average CA-RMSD values of each domain (3.0 and 1.9 Å, for the
N-terminal (NTD) and C-terminal domains (CTD)). These values
compare reasonably well with corresponding domain RMSD
values of 2.0 and 3.1 Å for the annealed ensemble structure
relative to the CHARMM minimized structure. This suggests
that roughly the same accuracy in domain-structure can be
obtained for renement with and without sparse distance
constraints.

Fig. 4a and c show the overlay of the annealed CHARMM and
annealed ensemble structure of the NTD and CTD respectively,
as dened by Lange et al.38 From Fig. 4a it is evident that the
largest structural change in the NTD occurs in the helix-turn-
Fig. 3 Overlay of annealed CHARMM (blue) and annealed ensemble
structures (magenta) of SMN tudor domain in the region around
Glu104. The overlay generated in PyMol by minimizing the difference
in position of the C, CA, and N atoms of Glu104.

This journal is © The Royal Society of Chemistry 2017
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helix motif (HTH-I) at the end of the NTD (residues 306–327).
The latter helix is in close contact with the CTD, which moves
considerably relative to the NTD. In fact, the positions of helices
I are much closer to each other when the CTD structures are
aligned (Fig. 4a) indicating that, at least in this case, helix I
should be included in the CTD domain. The NTD CA-RMSD
computed without this helix (residues 311–327) is 1.5 Å, while
the corresponding CTD CA-RMSD with this helix included is
3.0 Å. Thus, the comparatively large structural change observed
for the HTH-I sub-domain may be driven by inter-domain
movement rather than the chemical shis in the HTH itself.
Similarly, Fig. 4c shows that the largest structural change in the
CTD occurs in the helix-turn-helix motif (HTH-II) at the end of
the CTD (residues 335–370), without which the CA-RMSD drops
to 2.3 Å. Fig. 4b and d compare the annealed structures to the
NMR ensemble structures (2MV0) obtained by Lange et al.38 and
indicate that the HTH-II region is quite mobile. In some of the
some NMR ensemble structures the position of the loop agrees
quite well with the annealed ensemble structures, while others
more closely resemble the annealed CHARMM structure.

We note that these large inter-domain and inter-subdomain
motions change the chemical shi RMSD values by no more
than 0.2 ppm compared to the annealed CHARMM structure so
inclusion of the chemical shis are unlikely to be responsible
for these structural changes. Using the Lange et al.38 domain
denitions the domain CA-RMSD values for the annealed
ensemble structure obtained using CamShi are 2.6 and 2.1
for the NTD and CTD respectively and are more similar to
the corresponding ProCS15 values than the overall CA-RMSD
values listed in Table 3. We note that performing the ensemble
Fig. 4 Overlay of annealed CHARMM (blue) and annealed ensemble
structures (magenta) of the NTD (a, residues 1–111 and 260–327) and
CTD (c, residues 113–258 and 335–370) of MBP. In (c) helix I from (a) is
also displayed but not included in the alignment. (b) and (d) include an
NMR-derived structural ensemble (2MV0) aligned to the annealed
CHARMM structure using PyMol.

This journal is © The Royal Society of Chemistry 2017
calculation without the chemical shis leads to total and
domain CA-RMSD values of 6.8, 4.9 (NTD), and 5.4 Å (CTD),
respectively, so chemical shis are crucial for accurate
structures.

Methionine sulfoxide reductase (msrB) (P54155). The
second largest change in structure upon ensemble renement
is observed for msrB with a 3.7 Å CA-RMSD relative to the
CHARMMminimized structure (Table 3). If only the structurally
ordered parts of the protein, dened by Lange et al.,38 are used
the CA-RMSD drops to 3.2 Å. For comparison, Lange et al.38 used
chemical shis, H–N RDCs and sparse distance restraints to
obtain a structure with an average CA-RMSD of 1.5 Å relative to
an X-ray structure (3E0O, Kim et al.40) and conventional NMR
leads to a structural ensemble (2KZN, Zheng et al.41) with an
average RMSD from the X-ray structure of 2.9 Å. Fig. 5 shows the
overlay of the annealed CHARMM and annealed ensemble
structure and Fig. 5b shows the NMR ensemble structures
added as well. From Fig. 5a it is evident that the largest struc-
tural change occurs for loop I and helix I and II while Fig. 5b
shows that the annealed CHARMM structure and the NMR
ensemble structure differ signicantly in this region as well.
The positions of loop 1 and the top of helix II in the annealed
ensemble structure are arguably in better agreement with the
NMR ensemble structures than the annealed CHARMM struc-
ture despite the fact that the NMR ensemble is aligned to the
annealed CHARMM structure in the gure. However, the
structural variability of loop I makes it difficult to quantify this
agreement via CA-RMSD.

The ensemble structure annealed using CamShi has
a CA-RMSD that is 2.1 Å higher than the ensemble structure
annealed using ProCS15 (Table 3). However, much of the
structural discrepancy occurs around loop I and helix I and II
making it difficult to argue that the annealed CamShi
ensemble structure is necessarily of worse quality.

Lin0431 protein (Q92EM7). The third largest change in
structure upon ensemble renement is observed for msrB with
a 2.9 Å CA-RMSD relative to the CHARMM minimized structure
(Table 3). Fig. 6a shows the overlay of the annealed CHARMM
Fig. 5 (a) Overlay of annealed CHARMM (blue) and annealed
ensemble structures (magenta) of msrB where residues 13–25,
36–105, and 111–141 are used in the alignment. (b) Includes an
NMR-derived structural ensemble (3E0O) aligned to the annealed
CHARMM structure using PyMol.

Chem. Sci., 2017, 8, 2061–2072 | 2067
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Fig. 7 (a) Overlay of annealed CHARMM (blue) and annealed
ensemble structures (magenta) of upCtR107. (b) Includes the
NMR-derived structural ensemble 2KCU aligned to the annealed
CHARMM structure using PyMol.

Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
D

ec
em

be
r 

20
16

. D
ow

nl
oa

de
d 

on
 1

/1
2/

20
26

 8
:4

6:
09

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
and annealed ensemble structure and reveals that the change in
structure is an interdomain movement between domains con-
sisting of four beta sheets (domain I) and three beta sheets plus
a short alpha helix (domain II). The interdomain movement is
very similar for corresponding simulations with CamShi
(Fig. 6b) but signicantly more pronounced when no chemical
shis is used in the renement. The most likely explanation for
the large domain movement is therefore deciencies in the
underlying force eld that the inclusion of the chemical shis is
not able to counteract completely.

Ubiquitin (P0CG48). The fourth largest change in structure
(tied with the following two proteins) upon ensemble rene-
ment is observed for ubiquitin with a 2.6 Å CA-RMSD relative to
the CHARMM minimized structure (Table 3). Inspection of the
structure shows that the change in structure is primarily in the
C-terminal tail and if the last ve residues are excluded the
CA-RMSD drops to 0.9 Å.

Uncharacterized protein from Chlorobium tepidum CtR107
(upCtR107) (Q8KFZ1). A similarly large change in structure
upon ensemble renement is observed for upCtR107 with
a 2.6 Å CA-RMSD relative to the CHARMM minimized structure
(Table 3). Fig. 7a shows the overlay of the annealed CHARMM
and annealed ensemble structure and reveals that the change in
structure is primarily in a random coil loop (RC loop in gure)
connecting two beta strands while Fig. 7b shows that the
annealed CHARMM structure and the NMR ensemble structure
(2KCU) differ signicantly in this region as well. Unlike msrB
the annealed ensemble structure cannot be said to be in better
agreement in the NMR ensemble but the disorder in this region
of NMR ensemble is so large that a statement regarding the
quality of the structure in this region is not really meaningful.
If the loop region (residues 131–143) is excluded from the
CA-RMSD calculation then the CA-RMSD drops to 1.8 Å.

Liver fatty acid-binding protein (LFABP) (P02692). The nal
protein in Table 3 to exhibit a >2.0 Å change in structure upon
ensemble renement (2.6 Å CA-RMSD) is LFABP. Fig. 8a
shows the overlay of the annealed CHARMM and annealed
ensemble structure and reveals that the change in structure
is primarily in the two alpha helices and a beta-hairpin.
Fig. 6 (a) Overlay of annealed CHARMM (blue) and annealed
ensemble structures (magenta) of Lin0431. (b) Includes the annealed
CamShift (beige) and CHARMM (grey) ensemble structures.

2068 | Chem. Sci., 2017, 8, 2061–2072
Intriguingly, it is also these two regions that move during
ligand binding (Fig. S1†) when the protein goes from an open
to a closed form, so these are known to be exible regions of
the protein. The X-ray structure used as the starting point for
the simulations is of the closed ligand-bound form while the
chemical shis are those measured in the absence of the
ligand, which could explain why the annealed CHARMM
structure is more open. However, performing the same
simulation with chemical shis measured for the ligand
bound form resulted in an annealed ensemble structure that
was virtually identical to the one shown in Fig. 8a (with an
CA-RMSD of only 0.3 Å).

The movements of the beta hairpin and alpha helices are
very similar for corresponding simulations with CamShi and
CHARMM-only (Fig. 8b) but, in the case of the beta hairpin,
signicantly more pronounced when no chemical shis are
used in the renement. The most likely explanation for the high
CA-RMSD for the annealed ensemble structure is therefore
deciencies in the underlying force eld that the inclusion of
the chemical shis is not able to counteract completely. LFABP
is thus the only instance where ProCS15 seems to provide
a structure that is signicantly closer to the experimental
structure than CamShi.

In summary, there are six proteins for which the CA-RMSD of
the annealed ensemble structures differ by >2 Å from the
Fig. 8 (a) Overlay of annealed CHARMM (blue) and annealed
ensemble structures (magenta) of Lin0431. (b) Includes the annealed
CamShift (beige) and CHARMM (grey) ensemble structures.

This journal is © The Royal Society of Chemistry 2017
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starting CHARMM structure. For four of the proteins the large
structural change is either due to domain or sub-domain
motion (MPB) or loop/tail movement in regions of the protein
that are disordered in the corresponding NMR ensembles
(msrB, ubiquitin, and upCtR107) and CA-RMSD values
computed for domains or excluding disordered regions range
from 0.9 to 2.3 Å. For the remaining two proteins (Lin0431 and
LFABP) the most likely explanation for the large structural
change is deciencies in the force eld that inclusion of the
chemical shis only partly ameliorate. Despite the large struc-
tural changes, the predicted chemical shi RMSD values change
by, on average, 0.1 ppm and 0.01 ppm for carbon/nitrogen and
hydrogen, respectively.

Accuracy of chemical shi predictors using rened structures

Before we compare the accuracy of ProCS15 predictions
computed using the annealed structures with the empirical
methods we note that the results can be improved further for
some nuclei by introducing a separate chemical shi offset for
each type of amino acid. The offset for a given residue is the
average deviation from experiments for the specic amino acid
type averaged for each of the 17 proteins, with the values given
in Table S3.† A similar correction is also done in CheShi-2
(ref. 9) and SHIFTS.6 Furthermore, the empirical methods all
compute chemical shis as structure-dependent corrections to
random coil values for each amino acid type, so this correction
is also implicitly included in these methods.

Table 4 lists the average RMSD and r values computed for
all 17 proteins using the CHARMM, annealed CHARMM,
ensemble, and annealed ensemble structures. Comparison to
the corresponding values in Table 2 shows that the amino acid
type specic correction lowers the average RMSD by 0.0 to
0.3 ppm for carbon and nitrogen while it has a negligible effect
on the hydrogen chemical shis. The effect tends to be largest
(0.2–0.3 ppm) for CB and smallest for (0.0–0.1 ppm) for CA.

Table 5 lists the average RMSD and r values computed using
annealed CHARMM structures using ProCS15 with amino acid
type specic corrections, CheShi-2, and ve popular empirical
chemical shi predictors. We choose to use annealed CHARMM
structures rather than annealed ensemble structures because
the former more closely match the X-ray structures and many of
the empirical predictors are parameterized using X-ray struc-
tures. The ProCS15 error is now lower than for CamShi for all
atom types except CB and C. For CA, H, and HA atoms the
average RMSD and r values are now comparable to PPM_One,
Sparta+, and shAIC, while the average RMSD values predicted by
ShiX2 for CA and H are still 0.3 and 0.11 ppm lower than for
Table 4 Average RMSD (in ppm) and r values relative to experiment o
corrections for 17 different proteins and various structural optimization

CA CB C

CHARMM 1.5 (0.73) 1.6 (0.62) 1
Annealed CHARMM 0.8 (0.91) 1.3 (0.76) 1
Ensemble average 0.6 (0.95) 1.1 (0.83) 1
Annealed ensemble 0.6 (0.95) 1.3 (0.76) 1

This journal is © The Royal Society of Chemistry 2017
ProCS15. In the case of C, the average RMSD is still 0.2–0.7 ppm
higher than for the empirical methods, which may be due to the
double zeta basis set (OPBE/6-31G(d,p)) used to parameterize
ProCS15.42 In the case of CB and N, the average RMSD values are
0.1–0.4 ppm and 0.4–0.5 ppm higher than for PPM_One,
Sparta+, and shAIC, and 0.6 and 1.0 ppm higher than is ShiX2.
However, the average RMSD values for these nuclei can be
decreased by 0.2 and 0.4 ppm, respectively, by averaging over
many structures (Table 4), which makes the average RMSD
values quite comparable to the empirical methods, with the
exception of ShiX2.

Comparison of the average RMSD values in Tables 4 and 1
show that the accuracy of CheShi-2 and the empirical methods
are slightly improved by annealing the CHARMM structure with
ProCS15 for some methods and some nuclei. The improve-
ments, if any, are usually 0.1 ppm for carbon and nitrogen
atoms and up to <0.05 ppm for hydrogen atoms. Though
modest, the overall RMSD lowering may suggest that the minor
structural changes introduced by ProCS15-based annealing
improves the accuracy of the protein structures.
Summary and outlook

We present a method by which quantum chemistry-based
predictions of isotropic chemical shielding values (ProCS15)
can be used to rene protein structures using Markov Chain
Monte Carlo (MCMC) simulations and a hybrid energy function
based in a standard force eld (CHARMM/CMAP) weighted by
the agreement energy between computed chemical shielding
values and measured chemical shis. The slope and intercept
relating the chemical shielding values to the experimental
chemical shis are included probabilistically, together with the
weights as previously reported.19 Two kinds of MCMC structural
renement simulations were performed using CHARMM/CMAP
geometry optimized X-ray structures as starting points: simu-
lated annealing of the starting structure or constant tempera-
ture MCMC simulation followed by simulated annealing of
a representative ensemble structure.

As we observed previously (Larsen et al., 2015) the chemical
shi RMSDs from experiment for ProCS15 are signicantly
higher (0.5–1.4 ppm for carbon and N atoms) than those for
commonly used empirical chemical shi predictors and very
similar to CheShi values, while the corresponding ProCS15 r
values are lower than for the empirical methods and similar to
CheShi-2. However, we show that the average RMSD values
drop considerably upon minimizing the hybrid energy function
using simulated annealing. The largest changes are seen for CA
f chemical shifts computed using ProCS15 with amino acid specific
techniques

HA H N

.5 (0.50) 0.30 (0.78) 0.54 (0.52) 3.2 (0.65)

.4 (0.58) 0.18 (0.92) 0.39 (0.79) 2.6 (0.76)

.3 (0.64) 0.17 (0.93) 0.43 (0.76) 2.2 (0.83)

.4 (0.62) 0.17 (0.93) 0.40 (0.78) 2.4 (0.79)
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Table 5 Computed using annealed CHARMM structures. ProCS15 results use amino acid type specific correction

CA CB C HA H N

ProCS15 0.8 (0.91) 1.3 (0.76) 1.4 (0.58) 0.18 (0.92) 0.39 (0.79) 2.6 (0.76)
CheShi-2 1.3 (0.76) 1.6 (0.54)
CamShi 1.0 (0.83) 1.2 (0.74) 1.2 (0.73) 0.24 (0.86) 0.47 (0.72) 2.9 (0.65)
PPM_One 0.7 (0.93) 0.9 (0.86) 1.0 (0.81) 0.19 (0.92) 0.36 (0.83) 2.1 (0.82)
Sparta+ 0.7 (0.92) 0.9 (0.86) 0.9 (0.83) 0.21 (0.90) 0.37 (0.82) 2.1 (0.83)
shAIC 0.7 (0.91) 0.9 (0.84) 0.9 (0.85) 0.20 (0.90) 0.41 (0.78) 2.2 (0.82)
ShiX2 0.5 (0.94) 0.7 (0.90) 0.7 (0.90) 0.13 (0.94) 0.28 (0.88) 1.6 (0.87)
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and N, where the RMSD drops by 1.0 and 0.7 ppm on going from
the CHARMM structure to the annealed ensemble structure.
The drop in RMSD value is also signicant for CB (0.4 ppm) and
more modest for C (0.3 ppm). For HA and H the drop is also very
similar at 0.15 and 0.14 ppm. Annealing of the CHARMM
structure using ProCS15 changes the CA-RMSD by at most 0.5 Å
for all but SMN tudor domain, where the CA-RMSD is 1.0 Å. The
increase in the accuracy of the predicted chemical shis due to
annealing the CHARMM structure observed for all the nuclei is
thus due to very modest changes in the overall structure.

In order to explore an even larger region of phase space and
the effect of conformational averaging we perform a constant
temperature Monte Carlo simulation for each protein using
a hybrid energy function. There are six proteins for which the
CA-RMSD of the annealed ensemble structures differ by >2 Å
from the starting CHARMM structure. For four of the proteins
the large structural change is either due to domain or sub-
domain motion (MPB) or loop/tail movement in regions of the
protein that are disordered in the corresponding NMR ensem-
bles (msrB, ubiquitin, and upCtR107) and CA-RMSD values
computed for domains or excluding disordered regions range
from 0.9 to 2.3 Å. For the remaining two proteins (Lin0431 and
LFABP) the most likely explanation for the large structural
change is deciencies in the force eld that inclusion of the
chemical shis only partly ameliorate. Despite the large struc-
tural changes the predicted chemical shi RMSD values change
by, on average, 0.1 ppm and 0.01 ppm for carbon/nitrogen and
hydrogen, respectively. Annealed ensemble structures obtained
using CamShi have CA-RMSD values that are within 0.5 Å of
the corresponding ProCS15 values for all but three structures,
where the ProCS15CA-RMSD values are lower by 0.8, 2.0, and 4.0 Å.

The accuracy of the ProCS15 chemical shis can be
improved by introducing an chemical shi offset for each
amino acid type, which lowers the average RMSD by 0.0 to
0.3 ppm for carbon and nitrogen while it has a negligible effect
on the hydrogen chemical shis. For CA, H, and HA atoms the
average RMSD and r values computed using a single structure
are now comparable to the empirical predictors. This is also the
case for CB and N, if dynamical averaging is included, while for
C the RMSD values remain 0.1–0.6 ppm higher –most likely due
to basis set effects. The overall accuracy of CheShi-2 and the
empirical methods are slightly improved by annealing the
CHARMM structure with ProCS15, which may suggest that the
minor structural changes introduced by ProCS15-based
annealing improves the accuracy of the protein structures.
2070 | Chem. Sci., 2017, 8, 2061–2072
Having established that QM-based chemical shi prediction
can deliver the same accuracy as empirical shi predictors we
hope this can help increase the accuracy of related approaches
such as QM/MM or linear scaling approaches12–15 or interpreting
protein structural dynamics from QM-derived chemical shis.43

For example, in former case it will be interesting to see if the
use of ProCS15 annealed structures lead to better predictions
and/or whether ProCS15 can be used to identify suitable MD
snapshots.44 In addition further work on ProCS15 is needed to
increase the accuracy of the underlying DFT calculations
(especially for C) and the methods used to interpolate between
grid points in the DFT database, as well as extending the
approach to the prediction chemical shis of additional atoms
in the side chains. Work in these areas is currently underway.
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