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Enhancement of the physicochemical properties of
[Pt(dien)(nucleobase)]?** for HIVNCp7 targeting+

S.D. Tsotsoros,® P. B. Lutz,°° A. G. Daniel,? E. J. Peterson,®® R. E. F. de Paiva,® E. Rivera,?
Y. Qu,? C. A. Bayse*© and N. P. Farrell*®®

Physicochemical properties of coordination compounds can be exploited for molecular recognition of
biomolecules. The inherent 7t— stacking properties of [Pt(chelate)(N-donor]?* ([PtN4]) complexes were
modulated by systematic variation of the chelate (diethylenetriamine and substituted derivatives) and
N-donor (nucleobase or nucleoside) in the formally substitution-inert PtN, coordination sphere.
Approaches to target the HIV nucleocapsid protein HIVNCp7 are summarized building on (i) assessment
of stacking interactions with simple tryptophan or tryptophan derivatives to (ii) the tryptophan-containing
C-terminal zinc finger and (iii) to the full two-zinc finger peptide and its interactions with RNA and DNA.
The xanthosine nucleoside was identified as having significantly enhanced stacking capability over
guanosine. Correlation of the LUMO energies of the modified nucleobases with the DFT m-stacking
energies shows that frontier orbital energies of the individual monomers can be used as a first estimate

of the m-stacking strength to Trp. Cellular accumulation studies showed no significant correlation with
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Accepted 6th October 2016 lipophilicity of the compounds, but all compounds had very low cytotoxicity suggesting the potential for
antiviral selectivity. The conceptual similarities between nucleobase alkylation and platination validates

DOI: 10.1039/c65c03445d the design of formally substitution-inert coordination complexes as weak Lewis acid electrophiles for

www.rsc.org/chemicalscience selective peptide targeting.

Introduction

Design of defined coordination compounds in medicine uses
the inherent physical and chemical properties of the coordi-
nation compound, or metal ion, to achieve specific effects.
Properties such as paramagnetism and/or radioactive emission
of Gd and Tec, respectively, coupled with appropriate chemical
structure produce useful imaging agents whose biological
properties can be further modified by suitable chemical design.*
Development of platinum-based anticancer agents has been
predicated on the necessity for Pt—-DNA bond formation where
the conformational distortion subsequently produced by
binding of the square planar coordination sphere eventually
disrupts nucleic acid function. In the latter case, challenges to
the orthodoxy of the necessity for Pt-DNA bond formation
has come from the recent demonstrations that formally
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substitution-inert polynuclear platinum complexes can display
significant in vitro and in vivo anti-tumor activity equivalent to
cisplatin itself.> Metallohelicates are a further example of use of
“non-covalent” recognition of discrete DNA sequences with
consequences for protein recognition.? Use of formally substi-
tution-inert compounds is attractive as it may allow greater
control of the biologically relevant reactions as well as
improving pharmacokinetics through elimination of wasteful
non-specific biomolecule covalent bond formation.

A further example of formally substitution-inert compounds
for biological applications is in the use of PtN, nucleobase
compounds to act as Lewis acid electrophiles targeting zinc
fingers (ZF), and especially the HIV NCp7 nucleocapsid protein
(NCp7).** NCp7 is a small basic zinc finger protein containing
two Cys,HisCys zinc coordination motifs and is involved in
nearly all stages of the viral life cycle.*” NCp?7 is of considerable
interest as a drug target because it is highly conserved among
retroviruses and is intolerant to mutation.*® A critical feature of
NCp7-DNA/RNA recognition is the stacking of aromatic resi-
dues (Trp, Phe) with purine and pyrimidine bases (guanine,
cytosine) of the oligonucleotide.*** Nucleobase metallation,
analogous to protonation or alkylation, enhances their -7
stacking to aromatic amino acids.""* Metallation of 9-EtGua in
[M(dien)(9-EtGua)]*" (M = Pt, Pd n = 2; M = Au, n = 3) produces
a 2-5-fold increase in the association constant with N-acetyl-
tryptophan (N-AcTrp) compared to the free nucleobase.*>** The
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general enhancement also extends to pyrimidines such as
1-mecytosine and even heterocyclic aromatic ligands based on
pyridine and thiazole."**'® The application in this manner of
an intrinsic biophysical property of a complex such as
[Pt(dien)(9-EtGua)]*" - the m-m stacking of the platinated
nucleobase with a tryptophan moiety - is therefore a recogni-
tion motif for binding to an appropriate peptide such as NCp7
capable of modulation to inhibit the “intrinsic” nucleic acid
interaction. Measured association constants to the C-terminal
NCp7 for [Pt(dien)(9-EtGua)]*" and [Pt(dien)(5'-GMP)] (7.5 and
12.4 x 10°> M ' respectively) compared to that observed for
a representative hexanucleotide d(TACGCC) where K, = 60.03 X
103 M_1.4’17

A second advantage of formally substitution-inert complexes
is to infer selectivity toward eventual Pt-bond forming reactions
upon target recognition. An inherent problem for any applica-
tion of zinc finger targeting is the variety of relevant structural
motifs and functions.® Analysis of the protein packing and
electrostatic screening in a wide range of zinc fingers led to
the attractive postulate that weak organic electrophiles were
capable/likely candidates for selective attack on the highly
nucleophilic zine-cysteinates of NCp7."*** The concept has been
applied for targeting both the HIVNCp7 and also the DNA
binding domain of the estrogen receptor (ERDBD).>**' For
coordination compounds the PtN, chemotype (in this case
{PtN;(nucleobase)}) is the Lewis acid equivalent of a weak
“organic” electrophile, significantly less reactive than the cor-
responding MCIN; unit with a substitution-labile M—Cl bond.
In agreement, substitution of the nucleobase in [Pt(dien)(9-
EtGua)]** by the sulfur nucleophile N-AcCys is significantly
slower than for the [PtCl(dien)]" species.?? Incorporation of
a Trp into a short 4-amino acid sequence (GAWG versus GAMC)
increases the rate of reaction, and perhaps specificity, with
[Pt(dien)(9-EtGua)]**.®> Theoretical calculations on the
[Pt(dien)(9-EtGua)]*'~GWMG/GAMG interactions show that the
formation of the GWMG species is roughly 5 kcal mol~" more
stable than for the GAMG species (—9.3 and —3.9 kcal mol™"),
due to the additional stacking interaction.

The [Pt(dien)(nucleobase)]"" coordination sphere is a useful
template for systematic studies as it allows for modification on
both the dien ligand and nucleobase to enhance stacking
interactions and reactivity as well as the properties of cellular
accumulation and cytotoxicity. In this contribution we examine
the modulation of non-covalent interactions on the C-terminal
zinc finger (ZF2) and the ‘full” 2-finger peptide (NCp7) and show
that ZF2 studies are a good prognosticator for the reactivity of
the full peptide with significant enhancement of stacking
interactions using xanthosine over guanosine as nucleoside.
The complexes are weak inhibitors of the NCp7-DNA/RNA
interaction and the inhibition correlates with the observed
stacking interaction. We examine the origins of the enhanced
effects of xanthosine over guanosine complexes and show that
computational approaches are useful in analysis of the strength
of the r-stacking interaction as a quick estimation of the ability
to inhibit NCp7 and can be used to identify secondary interac-
tions in the binding site to aid in design of effective inhibitors.
The studies confirm the potential for modulation of the
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physicochemical properties of platinum-based compounds to
enhance inhibition of a fundamental biological property - the
NCp7-RNA(DNA) annealing.

Results and discussion

Characterization and chemical properties of Pt-purine
compounds

The target compounds were designed to firstly examine the
effect of the planar ligand on the stacking interaction using
modified purines and nucleosides. Secondly, steric effects and
lipophilicity were incorporated into the “carrier” portion of the
molecule by varying the nature of the dien ligand. The struc-
tures are shown in Fig. 1. Platination at the purine N7 in all
cases is confirmed by the typical downfield shifts of the H(8)
protons (see ESIT). Xanthine itself exists in tautomeric equilib-
rium between the keto and enol forms with consequently
a potential array of possible binding sites. The xanthine deriv-
ative itself gave multiple H(8) peaks indicative of linkage
isomers and was not considered further. The addition of methyl
groups to the dien ligand induces considerable steric hindrance
about the platinum-nucleobase bond, as observed in the
"H NMR spectra of 1c and 1d. In both cases the H8 signal of the
9-EtGua splits into a doublet due to restricted rotation.
Temperature dependence studies of the H8 signal reveal
a significant difference between the N,N’-Me,dien compound
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Fig. 1 General structure for [Pt(dien)L]>* compounds, where the dien

can be methylated N-Me, N,N’'-dimethyl or N,N'-N,N'-tetramethyl
and L is a nucleobase or nucleoside, as shown. Structure of the
HIVNCp7 nucleocapsid protein showing the two zinc fingers (A). The
red dashed line shows the C-terminal finger used in our studies. On
right is the SL2RNA sequence used (B).
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and the N,N'-Me,dien compound (Fig. 2). For the N,N'-Me,dien
ligand the doublet coalesces to a broad peak at 35 °C and then
begins to sharpen into a new doublet, with significantly less
separation between the peaks. In contrast, little change is observed
for the N,N'-Me,dien ligand, even up to 70 °C - implying little
interconversion.

The '°Pt NMR spectra of both the N,N'-Me,dien and
N,N'-Me,dien compounds also show broad signals in agreement
with the "H NMR spectra, Fig. S2.1 These peaks show some
coalescence but further broaden with increased temperature.
The "H NMR spectra of the xanthosine derivatives also confirm
the steric hindrance - in this case the N,N'-Me,dien compound
is a broad singlet whereas the more sterically demanding
N,N'-Me,dien compound shows two clear singlets at 8.97 and
9.00 ppm. Their corresponding '*’Pt NMR spectra again showed
broad signals consistent with the presence of rotamers.

The energies of the rotation barrier, Ey,ier, were calculated
following literature methods.>® There is a >2 kcal mol " differ-
ence between Epaier for the two compounds, 15.90 and
17.92 kcal mol™' for N,N'-Me,dien and N,N'-Me,dien respec-
tively. The energy difference highlights the significant steric
hindrance created by the methyl groups. In the case of the
N,N'-Me,dien ligand, DFT calculations gave two limiting struc-
tures (Scheme 1). In structure I, the 9-EtGua forms a close
contact within hydrogen-bonding distances between H(8) and
the N,N'-Me,dien ligand (3.06 A). The C(6)=0 atom then has
a similar close contact (2.64 A) to the same NMe, group of the
chelate. The alternative geometry, essentially resulting from
rotation of the purine around the platinum square plane,
results in the same contacts. Based on the model, structure 1
corresponds to the upfield peak and structure 2 corresponds to
the downfield peak of the [Pt(N,N'-Me,dien)(9-EtGua)]*".

Biological properties

The modular nature of the zinc finger template lends itself to
a systematic targeting approach through studying firstly the
fundamental stacking interactions with the simple tryptophan
or N-AcTrp followed by extension to the C-terminal finger
(containing the critical Trp ligand) and then the full zinc finger
protein itself where the stacking interaction is incorporated
into the protein and steric effects can be examined. Finally, the
effect of the complexes on the NCp7-nucleic acid interaction
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Fig. 2 Temperature dependence of the 'H NMR splitting of the H8
signal for [PtN,N'-Me,dien)(9-EtGua)l** (A) and [Pt(N,N'-Me,dien)(9-
EtGua)l®* (B). The small peak in (B) at high T may be due to formation of
a minor new species with increasing T.
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Structure 2

Structure 1

Scheme 1

can be assayed. Cellular properties and selectivity may also be
examined to obtain insight into possible selectivity as it is
important to understand the biological properties of the
platinum-nucleobases with respect to cellular accumulation
and cytotoxicity.

Binding affinity to tryptophan and zinc fingers. The
calculated K, values are reported for the association of platinum-
nucleobase complexes with N-AcTrp and the C-terminal ZF2 of
HIV1 NCp7 (Table 1). Two trends are apparent. The addition of
the sugar moiety on guanosine (Guo) and xanthosine (Xan)
enhances the interaction with tryptophan slightly over the
“parent” 9-EtGua compound. The most notable trend, clearly, is
that for Xan the binding to the free NAc-Trp and the C-terminal
finger is significantly increased in comparison to the Guo analog.
The inosine compound has the weakest interactions of all
compounds studied and is also the only example where binding to
the C-terminal finger is slightly less effective than for the simple
amino acid itself.

Interactions with the “full” NCp7 peptide. The fluorescence
spectra of the full NCp7 peptide in presence of increasing
concentrations of [Pt(dien)(9-EtGua)]** is shown in Fig. 3A. The
calculated association constant is K, = 2.0 x 10* M~*. The CD
spectrum and especially the maintenance of the positive band
centered at 210-220 nm shows that there is no major disruption
of the peptide in the presence of the compound and the zinc
finger tertiary structure is maintained (Fig. 3B).>*** Values for
the Xan and Guo derivatives are 4.7 and 1.4 x 10* M~ respec-
tively, again showing the enhancement of association with
xanthosine. These values are not significantly different from
those of the C-terminal finger reflecting the fact that the Trp
residue resides on the C-terminal finger but do at one level
confirm that studies on the C-terminal finger alone, easier to
prepare and by definition somewhat cheaper, are a good
approximation to that for the full Zn finger in this context.

Modelling and docking studies. The advantage and
increased association constant of a nucleoside (guanosine) over
a purine (9-EtGua) in going from the simple amino acid trypto-
phan to the C-terminal peptide may be due to additional H-bond
contributions from the sugar. The carbohydrate-aromatic ring is
a recognized important molecular recognition motif.*® This
interaction has been observed in the NMR solution structure of

Chem. Sci,, 2017, 8, 1269-1281 | 1271
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Table 1 Experimental association constants for [Pt(R-dien)L]2* (PtN.) complexes with N-AcTrp (black) and the C-terminal ZF2 of HIVINCp7
(parentheses). Figures for the full NCp7 peptide are in (bold parentheses)

K, (x10°)M !

L [Pt(dien)L]* [Pt(N-Medien)L]** [Pt(N,N'-Me,dien)L]** [Pt(N,N'-Me,dien)L]**

7-MeGua 9.01 + 0.09 — — —
(10.42 £+ 0.29) — — —

Ino 5.63 £ 0.3 — — —
(3.20 & 0.29) — — —

9-EtGua 6.88 + 0.36 13.52 + 0.48 7.40 + 0.93 11.78 £ 1.02
(13.10 £ 0.94) (14.70 + 1.60) (12.02 + 0.37) (18.30 £ 0.34)
(20 + 0.08)

Guo 13.10 £ 1.29 12.78 £ 0.22 6.84 £ 0.67 15.19 £ 1.21
(15.80 + 2.83) (12.11 + 1.13) (11.37 £ 2.01) (9.16 + 1.46)
(14 £ 0.05)

Xan 16.13 £ 1.10 11.56 £ 0.33 11.74 £ 0.53 (11.30 + 0.36)

(46.64 + 0.28)

(60.22 + 2.18)

(35.80 + 0.76)

(48.67 + 0.29)

(46.91 £ 0.06) —

900 NCp7
A 10 Molar Eq.
800 20 Molar Eq.
2700 30 Molar Eq.
2 40 Molar Eq.
- 50 Molar Eq.
8 500 60 Molar Eq.
g 400 70 Molar Eq.
b4 80 Molar Eq.
5 300 90 Molar Eq.
2 200 100 Molar Eq.
100
0
300 350 400 450
Wavelength (nm)
‘B

220 240

Ellipticity (m0)

= *NCp7

—[Pt(dien}9E1G)]2+ 15 minutes

Wavelength (nm)

Fig. 3 (A) Fluorescence quenching of NCp7 in presence of increasing
amounts of [Pt(dien)(9-EtGua)l®* (B) circular dichroism spectrum of
“full” NCp7 zinc finger peptide in presence of [Pt(dien)(9-EtGua)l**.

d(5'-TACGCC-3') adducted to the C-terminal sequence used
here.”” Further, investigation of cTAR DNA-NC(11-55) protein
contacts indicates a significant role for hydrophobic interactions
involving nucleobases and deoxyribose sugars with C1’ and C2’
of the sugar moieties in contact with the aromatic side chains of
Phe16 and Trp37.”” Docking calculations for the free nucleo-
bases (guanine and xanthine) in comparison with the corre-
spondent nucleosides confirms this trend of higher affinity
between the C-terminal finger and purine nucleosides with

1272 | Chem. Sci., 2017, 8, 1269-1281

sugar-containing species and supports the potential for
hydrogen bond network enhancement on the association
constant (Fig. S1 and Table S17). The hydrogen-bonding network
between the nucleosides and the target protein is pretty much
the same for both Gua and Xan. There is an important interac-
tion between the sugar CH,OH and Gly35's amide group. The
endocyclic oxygen of furanose ring and the NH of the indole ring
are also involved in a hydrogen bond. A minor interaction can be
observed between Glu42 and one of the OH groups found in the
sugar structure.

Computational studies. Computational and docking studies
have been used as predictive tools for small molecule design to
inhibit NCp7.**** A combination of electrostatic, hydrophobic,
solvation, charge-transfer, induction, and dispersion interactions
accounts for the three-dimensional arrangements observed in
biochemical recognition processes mediated through m-stacking
interactions, such as the interaction of purine and pyrimidine
rings with aromatic amino-acid residues such as tryptophan.**?
We have previously used the relative energy difference between
the frontier orbitals of isolated molecules as a predictive tool for
the strength of the m-stacking interaction of the nucleobase/
tryptophan pair.*”® The analysis correlated well with experimental
association constants, measured by fluorescence spectroscopy, of
metallated (Pt, Pd) and methylated nucleobases with tryptophan
in comparison to free nucleobases.™

To analyze the trends in association constants from
Table 1, we performed DFT calculations with empirical
dispersion corrections to investigate the enhancement of the
Gua(Xan)-Trp interaction using “small models” of metalated
MeGua and Xan m-stacked with methylindole (Melnd) as
a model for Trp. The w-stacking energy, LUMO energies, and
charge transfer were examined in order to determine whether
the modified Gua with the lowest LUMO energies have the
largest charge transfer and the strongest m-stacking interac-
tions. Secondly, we examined a “large model” using the hybrid
ONIOM method to determine the effects of 7-stacking and
hydrogen-bonding within a larger fragment of the C-terminal
zinc finger of NCp7.

This journal is © The Royal Society of Chemistry 2017
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Small -7 stacked structures

Small models of the m-stacking interaction between MeGua and N-
methylindole (MelInd), as a model for Trp, were optimized in the
same orientation (A) as found in the NMR solution structure of the
NCp7 nucleocapsid complexed with the DNA primer binding site
(PDB 2EXF).* The interaction energies for 7-stacking of the dimers
MelInd-[Pt(NH;);(9Me-Gua)**, MeInd-[Pt(NH;);(7-Me-Gua)]*" and
MelInd-[Pt(NH;);(Xan)]*" were compared to experimental equilib-
rium constants for interaction of Trp with the analogous
[Pt(dien)(nucleobase)** complexes (Table 1).>** The DFT/B97-D
optimized geometries of the individual square-planar [Pt(NH3)s
(MeGua)** (where MeGua refers to 7/9-MeGua) complexes and
their LUMO energies were comparable to previous studies
(Table 2).** The numbering scheme and optimized structures for
the [Pt(NH;);(purine)]* (purine = 9-EtGua, 7-MeGua and
xanthine) are given in Fig. S3.1

In the optimized w-stacked structures, Gua/Xan are not
directly eclipsed over Melnd, consistent with general trends in
m-stacking interactions (Fig. 4).** The inter-ring distances for
Melnd-9-MeGua (3.2-3.3 A) were slightly smaller than those
found in the crystal structures of Ind-Gua stacked pairs
(3.4-3.5 A).*® Metalation resulted in m-stacking interactions in
which the C2 end of the purine is closer to MeInd than the N7 end
(ie., 3.2 and 3.5 A, respectively, for MeInd-[Pt(NH,);(9-MeGua)]*").
The tilt angles are similar to that found by Rutledge et al. for an
adenine-histidine dimer (10°) and increase as MeInd-MeGua <
MelInd-[Pt(NH;);(9-MeGua)** < Melnd{Pt(NH;);Xan]*"*’ An
electrostatic interaction between the MeInd 7 cloud and
a hydrogen causes one ammine ligand of the metalated base to
extend down into the space between the m-stack, but this inter-
action is likely to compete with hydrogen bonding with the
aqueous solvent. Metalation enhanced the m-stacking energy by
13-18 keal mol ' relative to uncomplexed 9-MeGua, consistent
with the enhancement of the donor-acceptor interaction through
stabilization of the metal-complexed nucleobase LUMO (Fig. 5).
Charge decomposition analysis shows that the net electron
donation from Melnd to Gua increases by 0.1e upon metallation,
comparable to that found for a w-stacked dimer of benzene within
a trinuclear Cu(i) triiodide cluster (0.14e).%®

Larger models

Although the analysis of the donor-acceptor HOMO-LUMO gap
is useful when one deals with the simple m-stacked structures,
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factors such as hydrogen bonding and steric effects also
contribute to binding to the recognition site. For example,
molecular dynamics studies of NCp7 bound to DNA and RNA
show hydrogen bonding interactions involving Gua and resi-
dues G35, W37 and M46.>® The effect of the surrounding
residues on the Trp-Gua interaction was explored using the
ONIOM(B97-D:PM6) hybrid quantum-mechanical-semiempirical
method on a “large model” of the C-terminal NCp7 zinc finger
truncated to residues 32 to 40 and 44 to 49 of the NMR structure
of HIV-1 NCp7 complexed with DNA(—) primer binding site
(PDB 2EXF), (Fig. 6).* Lysines 34 and 38 were further truncated to
Ala and the side chain of K47 was replaced by an ethyl group. The
DFT region, indicated in Fig. 6 with a ball-and-stick representa-
tion, was allowed to optimize freely. The remainder of the model
was treated with the PM6 semiempirical method and constrained
to the NMR structure.

Interactions between the protein and DNA phosphate back-
bone limit Gua to the native conformation A observed in the
NMR structure (Fig. 6). Without the phosphate backbone, Gua
derivatives could theoretically m-stack with Trp in different
orientations. Geometry optimizations of the “large model” were
performed with Gua in the native A and three additional
conformations (B-D in Fig. S2t). The orientation of MeGua
affects both the nature of the m-stacking interaction and the
number and type of hydrogen bonding interactions with the
protein. In A, m-stacking is supplemented by hydrogen bonding
between the Gua carbonyl oxygen and the W37 NH on the
backbone as expected from the NMR structure. In the ONIOM
model, the Q45 and R32 side chains interact with Gua instead of
the absent phosphate backbone. The relative energies of A-D are
related to the number and strength of their H-bonding interac-
tions (Fig. S4, Table S2%). Structure B was the most stable
conformation followed by the native structure A (+6.2 kcal mol ),
D (11.7 keal mol™*) and C (+15.7 kcal mol™"). The higher relative
energies for C and D can be attributed in part to a smaller
number of hydrogen-bonding interactions to the protein frag-
ment. To quantify the effect of the hydrogen bonding, natural
bond orbital donor-acceptor energies (AE4_.,) were calculated
for key hydrogen bonding interactions in A-D (Table S27). A small
model of MeInd-[Pt(NH3);(9-MeGua)]** in orientation B was more
stable that A, suggesting that B is preferred due to the more
favorable electrostatics of the hydrogen bonding interactions in
that orientation.

Table 2 DFT optimized results for small -stacked dimers. The LUMO and LUMO+1 energies in eV for all Gua analogues. The m-interaction
energy was calculated as the difference of the dimer and monomer DFT energy. Electron donation from donor to acceptor d and back donation
b (e). The experimental K, values are for 9-EtGua, (Pt(dien)L)?" L = 7-MeGua, 9-EtGua, Xan with NAc-Trp (this paper).1>* For all computational

studies Xan was N7-bound xanthine

LUMO Gua LUMO+1

AE K,

a
Small structures (eV) Gua (eV) (keal mol ) d(e) b(e) d-b(e) (x10*) M !
Melnd-MeGua —-0.87 —0.82 —13.69 0.048 0.052 —0.004 3.50
Melnd-(NH;);Pt(9-MeGua)** ~9.36 —8.25 ~26.70 0.124 0.027 0.097 6.88
Melnd-(NH,);Pt(7-MeGua)** —9.52 ~8.12 —31.34 9.01
Melnd-(NH;);Pt(Xan)?" ~9.92 -8.97 —30.83 0.147 0.027 0.121 16.13
Struct. B MeInd-(NH;);Pt(9-MeGua)>* -9.36 —-8.25 —27.57 0.140 0.023 0.117

This journal is © The Royal Society of Chemistry 2017

Chem. Sci,, 2017, 8, 1269-1281 | 1273


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6sc03445d

Open Access Article. Published on 06 October 2016. Downloaded on 1/31/2026 9:16:48 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

[{ec

View Article Online

Chemical Science Edge Article

Melnd-9MeGua Melnd-(NH3)sPt(9MeGua)?* Melnd-(NH3);Pt(7MeGua)?*

Melnd-(NHz)sPt(Xan)** Melnd-(NH3),Pt(9MeGua)?*
Structure B

Fig. 4 DFT B97-D optimized 7t-stacked structures of the small models of Melnd with Gua derivatives and Xan. The distances are labeled in A.
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Fig. 5 Correlation of the m-stacking interaction with the nucleobase
LUMO energy (eV).

Platinated Gua and Xan were modeled in orientations A and
B to determine the effect of hydrogen-bonding and LUMO
stabilization on the ability of the Pt(NH;); fragment to fit into

K41 E42
G43

K3389°\ /H‘“ Q45
7n M46
W37

\ 9 045(47

C4

(a) G40
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the binding site in a different conformation (Fig. 7 and Table 3).
C and D were omitted because they could not accept the
Pt(NH;); fragment due to steric constraints. The interaction
energy of the metalated Gua/Xan with the NCp7 models was
calculated relative to the MeGua bound model by eqn (1):

NCp7-MeGua + M(NH;);MeGua/Xan>* —
NCp7-M(NH3);sMeGua/Xan** + MeGua (1)

[Pt(NH3);(9-MeGua)[** complexed to the large model in
orientation A was more strongly interacting than free 9-MeGua
by 35.2 kcal mol . The m-stacking interactions shift slightly
to accommodate steric and hydrogen-bonding interactions
resulting from platination but, similar to the small models, the
purine and indole rings have a 9.5° tilt angle Pt(NHj;); fragment.
In both structures, hydrogen bonding between the ammine
ligands and the Gua C=O0 influences the interactions with the
protein. In A, the interaction of the latter with the peptide
backbone at W37 is weakened, but in B, the amide side chain of
GIn45 flips so that its C=0 can interact with the Pt ammine

(b)

b \C;LL»

|| Gin 45

’

H’ 1.88

HN—Arg 32

Fig. 6 ONIOM(B97-D:PM6)-optimized structure of the truncated model of NCp7 bound with 9-MeGua in the native conformation A. (a) The
truncated NCP7 finger 2 used in calculations, blue residues were used without truncation, the red residues were truncated to Ala, K47 was
truncated to a modified Ala with ethyl group and black residues were eliminated. (b) Structure A. The truncated optimized model of NCp7
complexed with 9-MeGua with the 7t interaction shown only. 9-MeGua is shown in yellow. (c) ONIOM optimized native structure. Ball and stick
representations correspond to the QM region, stick representation correspond to the SE region. (d) The hydrogen bonding interactions structure

A. Bond lengths are given in A.

This journal is © The Royal Society of Chemistry 2017

Chem. Sci,, 2017, 8, 1269-1281 | 1275


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6sc03445d

Open Access Article. Published on 06 October 2016. Downloaded on 1/31/2026 9:16:48 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Chemical Science

View Article Online

Edge Article

’ l'!IS 44
4 Gly 35
(b) M /ﬁ
- Tp37 2/ 5
L ’O
‘)Gln 45 Fd f’;\lN 2-39\H1:f3, 193 G5
% “NH
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Ny Lys 34 S.‘\2;21 2.20 O N_/ N\H"1 o
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8 HN S
? . H3N—Pt———N\\\__/)u
4 -
2 bk, \___N\
_ Arg 32 CH;,
' r Trp37-[Pt(NH,)3(SMeGua))** A
Gly 35
c—% Lys 34 2 Gly
(d)
HoN /% Gin 45
/190 O 1_8_2_H,N
/1.84 %NH -
Arg 32
Met 46 \_W. N =Pt=p,
H3 H3

Trp37-[Pt(NHa):(9MeGua)]** B

Trp37-[Pt(NHa3)s(Xan)]**

Fig. 7 (a) ONIOM(B97-D/PM86)-optimized structure of the large NCp7 model with [Pt(NHz)5(9MeGua)l** in native conformation A. Hydrogen
bonding interactions and m-stacking conformations for complexes of the large model with [Pt(NH3)3(9-MeGua)l?* (A (b) and B (c)) and

[Pt(NH3)3(Xan)I>* (d).

ligands. The lower stability of B (+4.3 kecal mol™') can be
attributed to the electrostatic interactions between the Pt(NH3)3
fragment and the Arg32 side chain. In A, Pt(NHj;); forms a close
interaction with the divalent sulfur of M46 (2.26 10\; AEq_,, =
13.6 kecal mol '), which agrees with the NMR structure of the
C-terminal NCp7 peptide complexed with the {Pt(dien)-
d(TACGCC)} in which the Pt(dien) fragment is in close proximity
to the methionine sulfur."” This result both confirms the validity
of the large model and emphasizes the importance of the non-
zinc-bonded residues in dictating the overall reaction.

The large models of NCp7-[Pt(NH;);(Xan)]** binding assumed
an orientation similar to A to allow for the ammine-Met46
interaction and the more favorable electrostatic interaction
between Arg32 and the C2 carbonyl. As a result, the interaction of
metallated Xan was ~10 kcal mol ' more favorable that of
[Pt(NH;);(9-MeGua)]**. Hydrogen-bonding interactions were
similar to the 9-MeGua analogue, except for a shift in stacking to

1276 | Chem. Sci., 2017, 8, 1269-1281

allow for the C6 carbonyl to interact with backbone amides of
W37 and M46 (Fig. 7).

Summary and correlation. The correlation of the LUMO
energies of the modified nucleobases in our small model study
with the K. values and the DFT m-stacking energies shows that
frontier orbital energies of the individual monomers can be used
as a first estimate of the m-stacking strength to Trp. Metalation was
found to enhance the m-stacking interaction as predicted by the
lowering of the LUMO energy to strengthen a donor-acceptor
interaction. The large model ONIOM(B97-D:PM6) interaction
energies correlate with the available experimental K, values, sup-
porting the use of DFT modeling for initial screening of potential
targets to predict favorable 7-stacking interactions through the
nucleobase LUMO energy and capable of giving a quick estimation
of tt-stacking energy and the ability to inhibit NCp7 (Fig. 8). Large
models further show the hydrogen bonding interactions with the
binding site which can be targeted through molecular design.

This journal is © The Royal Society of Chemistry 2017
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Table 3 ONIOM(B97-D:PM6) results for platinated MeGua and Xan bound to NCp7 model. NPA charges of hydrogen bond donors (gp) and

acceptors (gp), distances and WBI values for the hydrogen bonded pairs

Donor go (e) Acceptor qa (e) d, A AE4_., (keal mol ™) WBI
NCp7-Pt(NH;);(9-MeGua)]** native A

MeGau C=0 —0.712 W37 BB N-H 0.407 2.08 6.44 0.025
G35 BB C=0 —0.779 MeGua N;-H 0.462 1.88 12.26 0.044
G35 BB C=0 —0.779 MeGau NH,-Ha 0.432 1.93 10.47 0.039
Q45 SC C=0 —0.745 MeGau NH,-Hb 0.435 1.92 12.32 0.048
M46 SC S 0.065 Pt-NH; N-H 0.435 2.21 13.63 0.084
MeGau C=0 —0.712 M46 BB N-H 0.400 2.39 1.25 0.008
MeGau C=0 —0.712 M46 SC C-H 0.211 2.20 1.59 0.005
MeGau C=0 -0.712 Pt-NH; N-H 0.444 2.46 0.58 0.005
NCp7-[Pt(NH;);(9-MeGua)[** B

MeGau N; —0.627 M46 SC N-H 0.411 2.26 4.63 0.018
K34 BB C=0 —0.736 MeGau NH,-Ha 0.441 1.88 14.41 0.050
K34 BB C=0 —0.736 MeGua N;-H 0.461 2.32 2.45 0.012
G35 BB C=0 —0.694 MeGau NH,-Hb 0.436 2.47 0.94 0.004
Q45 SC C=0 —0.750 Pt-NH; N-H 0.466 1.84 17.69 0.053
MeGau C=0 —0.731 R32 SC N-H 0.430 1.82 16.26 0.058
MeGau C=0 -0.731 Pt-NH; N-H 0.451 1.90 10.77 0.043
NCp7-{Pt(NH;);(7-MeGua)[** B

MeGau C=0 —0.679 R32 SC N-H 0.437 1.80 17.19 0.059
K34 BB C=0 -0.732 MeGau N;-H 0.465 2.09 6.04 0.041
K34 BB C=0 —0.732 MeGau NH,-Ha 0.436 2.21 4.44 0.020
W37 BB N —0.727 MeGau NH,-Hb 0.426 2.35 3.65 0.016
M46 SC S 0.056 Pt-NH; N-H 0.421 2.22 17.23 0.082
M46 SC S 0.056 Pt-NH; N-H 0.424 2.39 7.75 0.051
MeGau N; —0.641 Pt-NH; N-H 0.449 2.38 1.70 0.013
NCp7-Pt(NH;);(Xan)]**

Xan Ce=0 —0.687 M46 SC N-H 0.419 2.04 6.34 0.023
Xan Cg=0 —0.687 W37 BB N-H 0.413 2.02 7.42 0.024
G35 BB C=0 —0.762 Xan N;-H 0.483 1.91 12.41 0.040
M46 SC S 0.077 Pt-NH; N-H 0.423 2.20 13.81 0.084
M46 SC S 0.077 Pt-NH; N-H 0.412 2.09 16.21 0.116
Xan C,=O —0.653 R32 SC N-H 0.442 1.94 7.80 0.023

Inhibition of the NCp7-RNA(DNA) interaction

Given the trends in the association constants and the
good correlations with computational studies the next question to
ask is how does the stacking interaction affect the peptide-nucleic
acid interaction? As part of the viral packaging process, NCp7
binds to viral RNA, which is comprised of four stem loops (SL).
SL2 and SL3 bind strongly to NCp7 and with similar affinity
compared to SL1 and SL4.>** The ability of the compounds to
inhibit or dissociate the complex between NCp7 and SL2 was
evaluated by electromobility gel shift assays (EMSAs).** As previ-
ously reported, hairpin SL-2 RNA interacts with the zinc-knuckle
motifs present in NCp7.* The interaction of NCp7 with *’P-SL2 is
apparent in Fig. 9A-D as a shift from the faster migrating species
(free RNA, lane 1) to the slower migrating species (bound RNA,
lane 2). Both [Pt(dien)(9-EtGua)]>" and [Pt(dien)(xanthosine)]**
disrupt the interaction of SL-2 with NCp7. The addition order of
SL-2 or inhibitors to the reaction mixture with NCp7 did not alter
their capacity to disrupt the NCp7-SL2 complex. [Pt(dien)(Xan)]**
inhibits the complex more effectively when added to preformed
NCp7-SL2 (Fig. 9C and D), and requires 4 times less concentra-
tion than [Pt(dien)(9-EtGua)]** (Fig. 9A and B).

This journal is © The Royal Society of Chemistry 2017

The [Pt(dien)(Xan)]*" reactions with NCp7 and SL2 showed
an additional slower migrating band on the gel (Fig. 9C and D).
Control experiments identified this species as inhibitor - RNA
aggregates, which appear to form at the expense of the pool of
free SL2. The study of model DNA quadruplexes formed exclu-
sively by guanine and xanthine showed, for the latter case, that
a major interaction responsible for maintaining the helical
structure was m-stacking.** Thus, an inevitable consequence of
enhancing stacking is also to enhance RNA affinity. Yet, the
affinity of [Pt(dien)(Xan)]® interactions for DNA or RNA is ex-
pected to be relatively low.*® Specific NCp7-SL2 binding would
likely out-compete this type of interaction, particularly once
the complex is formed. Therefore, it is hypothesized that
[Pt(dien)(Xan)]*" undergoes two concurrent binding events: (1)
specific (1:1) high affinity binding with NCp7 and (2)
nonspecific and low affinity binding with RNA.

Cellular accumulation and cytotoxicity

The end-product of any biophysical study is to achieve suitable
cellular activation. Two parameters which dictate anti-viral
specificity are cellular accumulation and cytotoxicity. In the case
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Structure B NCp7—[Pt(NH3)3(9—MeGua)]2+
NCp7-[ Pt(NHs)s (Xan)]""
NCp7-[ Pt(NHs)s; (7-MeGua)]
NCp7-[ Pt(NHs)s (9-MeGua)]""
NCp7-Trp-MeGua
10.00 0.00 -10.00 -20.00 -30.00 -40.00 -50.00
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B
18.0 [Pt(NH,),(Xan)]**
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~ 6.0
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Fig. 8 ONIOM(B97-D:PM6) interaction energies for platinated

nucleobases with the large NCp7 model calculated relative to the free
9-MeGua complex (A). These energies correlate well with the exper-
imental association constants K, (K) (B).

of the series here, we hypothesized that the addition of methyl
groups to the dien ligand would increase lipophilicity, in turn
increasing the cellular accumulation. To evaluate this hypoth-
esis, we tested CCRF-CEM and Jurkat cell lines. Both cell lines
are CD4+ and HIV susceptible. The methylation of the dien did
not result in a significant difference in the cellular accumula-
tion for platinum complexes containing 9-EtGua (1a-d), Gua
(2a-d) or Xan (a-d) (Fig. S5t). Three compounds show greater
accumulation compared to all others: 1a, 1b, and 2a. From 3 to
6 hours, a negligible increase in accumulation is seen for most
compounds, with the exception of the three compounds that see
the highest concentration of platinum per cell. The cell uptake
trends are the same for the CCRF-CEM and Jurkat cells, which
may be indicative of a similar mechanism. To rationalize the
trend upon dien methylation, the octanol-water coefficients
(log Poctjwater) for compounds 1a-1d were calculated, Table S3.1
There does not appear to be a trend in the number of methyl
groups and 10g Poctiwater OF the lipophilicity and cellular accu-
mulation. Based on the cellular accumulation profile, cytotox-
icity studies were performed for compounds 1a, 1b and 2a as
well as compound 3a (to test the cytotoxicity of a xanthosine
derivative). None of the compounds exhibited significant

1278 | Chem. Sci,, 2017, 8, 1269-1281
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[Pt(dien)(Xan)]?*
D
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Fig. 9 Effects of [Pt(dien)(9-EtGua)l®* and [Pt(dien)(Xan)]?* on SL2
RNA-NCp7 protein interaction. (A) [Pt(dien)(9-EtGua)l** incubated
with NCp7 for 30 min prior to addition of SL2. Lane 1, SL2 RNA; lane 2,
SL2 RNA + NCp7; lanes 3—6 NCp7, SL2, and 1000, 500, 250, 125 uM
[Pt(dien)(9-EtGua)l?*. (B) NCp7 was incubated with SL2 for 30 min
prior to addition of [Pt(dien)(9-EtGua)l. Lane 1, SL2 RNA; lane 2, SL2
RNA + NCp7; lanes 3-6 NCp7, SL2, and 1000, 500, 250, 125 uM
[Pt(dien)(9-EtGua)l?* (C) [Pt(dien)(9-EtGua)l** incubated with NCp7
for 30 min prior to addition of SL2. Lane 1, SL2 RNA; lane 2, SL2 RNA +
NCp7; lanes 3—-6 NCp7, SL2, and 1000, 500, 250, 125 uM [Pt(dien)(-
Xan)]2*. (D) NCp7 was incubated with SL2 for 30 min prior to addition
of [Pt(dien)(Xan)]?*. Lane 1, SL2 RNA; lane 2, SL2 RNA + NCp7; lanes 3—
6 NCp7, SL2, and 250, 125, 62.5, and 31.3 uM [Pt(dien)(Xan)l>*. F, free
SL-2; B, bound SL-2; *, inhibitor-SL2 aggregate.

cytotoxic properties with ICs, values over 100 pM in all cases,
Table S3B.} This is a desirable property, as the compounds are
ultimately designed to inhibit HIV infectivity without affecting
normal cellular function. The lack of cytotoxicity exhibited by
the compounds reported here is also favorable for anti-viral
development.

Conclusions

The work presented highlights a systematic strategy to understand
the interaction between platinum-nucleobase compounds and
tryptophan and the tryptophan-containing NCp7 as well as some
of their basic biological properties. Modulation of an intrinsic
physicochemical property — -7 stacking interactions — can be
achieved by suitable chemical design. The use of xanthosine

This journal is © The Royal Society of Chemistry 2017
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greatly increases the association constant with the C-terminal ZF2
over the “parent” guanine-based compounds. Both DFT models of
the ‘small” structures and the computational approaches using
a “large” model are consistent with the experimental association
constants. The correlation of the LUMO energies of the modified
nucleobases with the DFT 7t-stacking energies shows that frontier
orbital energies of the individual monomers can be used as a first
estimate of the 7v-stacking strength to Trp. This correlation
extends to interaction with the zinc fingers themselves where
hydrogen bonding and steric interaction can also determine the
final recognition, as shown in more detailed atomistic modeling
of the interaction of metallated nucleobases with the large NCp7
model. In this case, the calculations confirm the interaction of the
Pt(dien) fragment with Met37 as suggested in the NMR structure
of the C-terminal NCp7 peptide with the Pt(dien)-d(TACGCC)
hexanucleotide.”” These combined theoretical and experimental
results emphasize the importance of the non-zinc-bonded resi-
dues in dictating the overall reaction and the potential for tar-
geting interactions identified through computational modeling to
enhance the promising proof-of-concept results reported in the
inhibition studies.

Both components of the NC-nucleic acid chaperone activity
have been targeted.***® General approaches to inhibit the
NCp7-DNA(RNA) interaction through zinc finger targeting have
used both covalent and “non-covalent” approaches to zinc
ejection.” The results discussed here show similarities and
analogies with these broad approaches which have been used
for many organic molecules. Alkylation of nucleobase antago-
nists has been proposed as a mechanism for enhancing binding
to the essential Trp37 of NCp7.**>' Increased m-stacking
between the positively charged methylated base and aromatic
amino acid side chains is proposed to be responsible for the
preferential recognition for an alkylated base, through lowering
of the energy of its lowest unoccupied molecular orbital (LUMO)
to make it a better acceptor for electron density from aromatic
side chains.’>** In this sense the formal analogy we have made
between alkylation and platination (and metallation in general)
to guide design of coordination compounds for medicinal
applications is strengthened.

Overall, the biophysical properties displayed by the
[Pt(dien)(nucleobase)]** are favorable. A study of approximately
2000 small molecules from the NCI Diversity Set suggested
a possible fluorescein-based pharmacore with a good correlation
between tryptophan quenching and inhibition of NC-nucleic
acid binding.>® A second high-throughput screening of small
molecules for inhibition of NC-mediated destabilization of the
stem-loop structure of cTAR DNA (a sequence complementary to
the transactivation response element) produced five selected
hits from a total of 4800 compounds.* The inhibitory activity of
4 of the 5 correlated with their ability to compete with the nucleic
acid for binding to NCp7.>* It is relevant that in both these
surveys the inhibitory doses (to inhibit peptide/nucleic acid)
were in the micromolar range. In the study using cTAR DNA the
apparent dissociation constants (K for inhibitor/NCp7 binding)
of two leading compounds were 7.7 x 10~® M (designated CO7)
and 1.7 x 107> M (designated HO2).>* The value obtained for
[Pt(dien)(Xan)]*" is in fact close to this latter value, further

This journal is © The Royal Society of Chemistry 2017
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validating the study of this class of coordination compounds as
potential inhibitors of the NCp7-RNA interaction.

Modulation of the NCp7-RNA interaction through RNA
affinity has also been examined. In this respect the affinity of
the compounds for DNA in presence of NCp?7 is of high interest.
While biophysical studies would not predict a high binding
affinity for DNA in standard measurements such as Tm or EtBr
competition assays the high excess of RNA in the biophysical
studies may account for a possible “transfer” of the complex
from peptide association to polynucleotide. The details of these
reactions may depend very much on the exact experimental
conditions - while the overall hypothesis is based on one site for
the peptide (Trp) the polynucleotide will have multiple binding
sites. This transfer would be a unique approach to inhibition of
function because a priori, it is also likely to result in inhibition
of the overall interaction. The results suggest that the study of
the ternary system would be a novel approach to design of more
effective inhibitors.

This paper has emphasized the optimization of the protein-
Pt complex interactions. Nevertheless, it is of interest to briefly
compare in vitro inhibition of infectivity of the prototype
[Pt(dien)(9-EtGua)]*" with the compound SP-4-2-[PtCI(NH;)(9-
EtGua)(quinoline)]" which displayed modest anti-HIV activity.*
For comparison, exploratory activity of [Pt(dien)(9-EtGua)]**
against HIV-1 strains BaL, NL4-3 and 91-US001 strains in
peripheral mononuclear blood (PBMC) cells showed only
modest HIV inhibitory activity for the latter with an IC5, =
28.61 uM (Roger Ptak, personal communication). A number
of extra factors come into play when considering cellular
properties - amongst them the overall stability of the complex
in blood and other non-selective interactions. The concept
of “substitution-inert” is relative and while in principle,
[PtN;(nucleobase)] compounds could stack with any available
tryptophan moieties, relatively promiscuous biomolecule substi-
tution reactions of the much more substitution-reactive Pt-Cl
bond will be avoided. Optimization of the 2™ step in our
concept** - slow substitution by a nucleophilic cysteinate - is
a valid approach for enhancement of specificity and differentia-
tion amongst Trp moieties where only those in proximity to strong
nucleophiles would enhance eventual nucleobase displacement.
In summary the results presented show from first principles the
systematic modulation of a fundamental biophysical property
through the advantage of considering hitherto relatively under-
studied non-covalent interactions — more characteristic of the
biodisciplines - compared to covalent biomolecule interactions,
generally considered as belonging to the field of chemistry.
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