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LC-MS/MS suggests that hole hopping in
cytochrome c peroxidase protects its heme from
oxidative modification by excess H,O,¥

Meena Kathiresan and Ann M. English*

We recently reported that cytochrome c peroxidase (Ccpl) functions as a H,O, sensor protein when H,O,
levels rise in respiring yeast. The availability of its reducing substrate, ferrocytochrome c (Cyc"), determines
whether Ccpl acts as a H,O, sensor or peroxidase. For H,O, to serve as a signal it must modify its receptor
so we employed high-performance LC-MS/MS to investigate in detail the oxidation of Ccpl by 1, 5and 10 M
eq. of H,O;, in the absence of Cyc" to prevent peroxidase activity. We observe strictly heme-mediated
oxidation, implicating sequential cycles of binding and reduction of H,O, at Ccpl's heme. This results in
the incorporation of ~20 oxygen atoms predominantly at methionine and tryptophan residues. Extensive
intramolecular dityrosine crosslinking involving neighboring residues was uncovered by LC-MS/MS
sequencing of the crosslinked peptides. The proximal heme ligand, H175, is converted to oxo-histidine,
which labilizes the heme but irreversible heme oxidation is avoided by hole hopping to the polypeptide
until oxidation of the catalytic distal H52 in Ccpl treated with 10 M eq. of H,O, shuts down heterolytic
cleavage of H,O, at the heme. Mapping of the 24 oxidized residues in Ccpl reveals that hole hopping
from the heme is directed to three polypeptide zones rich in redox-active residues. This unprecedented

Received 15th July 2016 analysis unveils the remarkable capacity of a polypeptide to direct hole hopping away from its active site,
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consistent with heme labilization being a key outcome of Ccpl-mediated H,O, signaling. LC-MS/MS

DOI: 10.1035/c65c03125k identification of the oxidized residues also exposes the bias of electron paramagnetic resonance (EPR)

www.rsc.org/chemicalscience detection toward transient radicals with low O, reactivity.

Within the heme peroxidase class of oxidoreductases, there
is a dramatic variation in the number of oxidizable residues

Introduction

There is an expanding list of enzymes with residues that
undergo metal-mediated residue oxidation during their normal
catalytic cycle." For example, reversible oxidation of tyrosine to
a tyrosyl radical (Y") is well documented in the catalytic cycles of
ribonucleotide reductase®® and prostaglandin H synthase.* In
the former, Y can generate a transient cysteinyl radical (C") in
a substrate over 35 A away via a hopping mechanism involving
the transient formation of new Y' radicals between the two sites.
Similarly, the enzyme MauG oxidizes a substrate separated by
40 A from its di-heme center by hole hopping through an
interfacial tryptophan residue.” Recently, Gray and Winkler re-
ported that the chains of tyrosine and tryptophan residues
present in many oxidoreductases likely perform a protective
function by transporting oxidizing equivalents (or electron
holes) away from the active site to the protein's surface, where
they can be scavenged by the reducing power of the cell.®
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present in their polypeptides.” For example, manganese perox-
idase possesses just one tryptophan and no tyrosine, whereas
cytochrome c peroxidase (Ccpl) is studded with redox-active
aromatic residues (Fig. 1). Thus, Ccp1 is endowed with a high
capacity for hole hopping within its polypeptide, which must be
pertinent to its physiological function. In vitro, Ccp1 efficiently
couples the two-electron reduction of H,0, to the one-electron
oxidation of two ferrocytochrome c (Cyc") molecules:®

Cep!™ + H,0, — CpdI(Fe'Y, W191"") + H,0 (1)
CpdI(Fe', W191"") + Cyc"" — CpdII(Fe') + Cyc"' (2

CpdII(Fe') + Cyc™ + 2H* — Ccpl™ + Cyc™ + H,O  (3)

Ccp1™ is the resting ferric enzyme and compound I (Cpdi)

and compound II (Cpdll) are catalytic, high-valent oxyferryl
(Fe") intermediates. The second of the two oxidizing equiva-
lents (i.e., the two electron holes) in CpdlI is localized on W191.
This residue forms a stable cationic radical, which was the first
tryptophanyl radical identified in a protein.®'® Notably, W191

This journal is © The Royal Society of Chemistry 2017
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Fig. 1 Oxidizable residues in Ccpl. PyMOL-generated cartoon of
Ccpl (PDB 1ZBY) showing the protein's 14 tyrosines (Y, green), 7
tryptophans (W, blue), 6 histidines (H, orange), 5 methionines (M, grey)
and the single cysteine (C, magenta). Solvent-exposed residues are
underlined.

lies in the electron-transfer pathway between the Ccp1 and Cyc
hemes and mutation of this residue to non-redox active
phenylalanine gives the W191F variant, which exhibits negli-
gible Cyc™-oxidizing ability.*!

Ccp1's catalytic cycle has been examined in exquisite detail
in vitro over several decades as a model of heme-peroxidase
catalysis.® Despite the intense focus on Ccp1 as a peroxidase, we
have recently reported that it mainly functions as an H,0,
sensor protein in yeast mitochondria.*»** As yeast cells switch
from fermentation to respiration, heme-free apoCcp1 escapes
from the mitochondria."”** Concomitantly, the activity of the
peroxisomal-mitochondrial catalase (Ctal) increases and we
have gathered strong evidence that apoCtal is a recipient of
Ccpl's heme." Intracellular H,0, levels spike as cells begin to
respire,"** and the proximal heme ligand, H175 (Fig. 1), is
extensively oxidized in Ccpl isolated from respiring yeast.**
Thus, labilization of Cep1's heme on H175 oxidation enables its
transfer to apoCtal, converting the latter into a powerful cata-
Iytic H,0, scavenger.

To better understand this unprecedented mechanism of
H,0,regulated heme transfer, detailed characterization of
Ccpl modification by excess H,O, in the absence of substrate
was undertaken. Heme-mediated reduction of H,0, by endog-
enous donors in Cepl in the absence of Cyc" is well-docu-
mented in vitro™ but the oxidized forms of Ccpl have been
poorly characterized. Repeated two-electron reduction of H,O,
by Ccp1 requires repeated intramolecular radical transfer or
hole hopping from the oxidized heme. This will generate new
transient radicals in the polypeptide, which will hop to new sites

This journal is © The Royal Society of Chemistry 2017

View Article Online

Chemical Science

before being trapped as stable oxidation products (eqn (5)) or
the nascent radicals may be trapped (eqn (6)):**

Cepl™ + H,0, — Cpdl + H,O (4)
Cpdl — Cepl™(A*, B") — Cepl™(C,yx, Doy) (5)

CCleI(COX, Dox) + HZOZ - =
Ccpllu(coxa Doxs ona Fox) + H2O (6)

Ccp1's ability to endogenously reduce up to 10 M eq. of H,0,
stems from its abundance of oxidizable residues (Fig. 1).
Polypeptide oxidation has been confirmed by the detection of
transient radicals in CpdI and overoxidized Ccp1 (defined here
as Ccp1 oxidized by >1 M eq. of H,0,) by spectroscopic studies
on the wild-type protein and its variants.**>* A broad EPR signal
at 4 K was unequivocally assigned to W191"* and a narrow EPR
signal to Y71 and Y236°.'**" Trapping of radicals provides
additional evidence for oxidation of Ccp1 at multiple residues.
Spin adducts can be characterized by mass spectrometry
(MS),>>2¢ and Y" radicals trapped in Ccpl by 2-methyl-2-nitro-
sopropane (MNP) give MNP mass adducts that were localized to
tyrosine-containing tryptic peptides T6 (Y36, Y39, Y42) and T26
(Y229, Y236),>* as well as to specific residues, Y39, Y236 and
Y153.%* Efficient radical quenching by TEMPO" (2,2,6,6-tetra-
methylpiperidinyl-1-oxy) also generates mass adducts amenable
to MS analysis.”® We isolated several TEMPO-labeled peptides
from digests of overoxidized Ccp1l, including T6, T14 + T15
(W126), T18 + T19 (Y153), T23 (Y187, W191, Y203, W211), T27 +
28 (Y244, Y251) and T28 (Y251), where the oxidizable residues
are in brackets, but the actual residue(s) labeled in each peptide
was (were) not identified.>®

EPR investigations detect the more stable radicals in
proteins, notably those with low O,-reactivity, as the results of
this study suggest. Spin trapping and scavenging can identify
less stable radicals but those that react with spin traps and
scavengers tend to be exposed on a protein's surface because of
steric hindrance. We rationalized that high-performance MS,
the current method of choice for the qualitative and semi-
quantitative characterization of oxidative protein modifica-
tion,*~** would allow us to identify all residues in Ccp1 that
serve as endogenous donors, including those that undergo only
small mass changes on oxidation. Indeed, the LC-MS/MS results
described here provide a comprehensive map of the residues
modified on heme-mediated oxidation of Ccpl by 1 M eq. of
H,0,, which generates CpdI (eqn (4)),”* and by 5 and 10 M eq. of
H,0,. Multiple cycling of the heme back to its ferric form by
hole transfer to the polypeptide (eqn (5) and (6)) enables
repeated H,0, activation and reduction at the heme iron,
leading to a highly overoxidized protein.'®?>*2331-35

The chemical nature of the stable oxidation products and
their location within Ccp1's polypeptide are identified by LC-
MS/MS. The results are interpreted by considering both the
intrinsic reactivity of the amino acid radicals formed on hole
hopping from the heme as well as their proximity to conserved
internal waters and to regions of O, density found by molecular
dynamics (MD) simulations. Overall, our results reveal that
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extensive H,O,-initiated hole hopping can be accommodated in
a seemingly controlled manner within a relatively small protein
matrix. We also elucidate how heme-mediated oxidation of
Ccp1 supports its remarkable role in yeast as a H,O, sensor and
signaling molecule that partakes in H,O,-regulated heme
transfer. Until recently H,O, was viewed as a toxic by-product of
aerobic metabolism and associated with many pathologies and
biological aging.**** However, H,O, signaling is now known to
mediate many physiological processes via thiol- and metal-
catalyzed protein oxidation.***' Furthermore, our study
suggests that extensive protein oxidation may be physiological
and not just pathophysiological.

Experimental
Materials

Proteins were obtained from the following suppliers: bovine
catalase, horse heart cytochrome c¢ (Cyc) type III (Sigma),
sequencing grade modified trypsin (Promega) and thrombin
(EMD Millipore). Recombinant Ccpl with MI at positions —2
and —1 of the mature protein was overexpressed as the apo-
protein in BL21(DE3) cells, purified and reconstituted with
hemin as described previously." Suppliers of (bio)chemicals
were as follows: Coomassie (MP Biomedicals); hemin chloride,
HPLC grade acetonitrile, diethylenetriamine-pentaacetic acid
(DTPA) (Sigma Aldrich); and 30% hydrogen peroxide (Fisher
Scientific).

Ccp1 oxidation. A 5 uM Ccp1 stock solution was prepared in
20 mM KPi pH 7.5 with 100 uM DTPA (KPi/DTPA) and mixed
with a stock H,O, solution in the same buffer to give 1 pM Ccp1
with the desired H,0, concentration. DTPA was added to all
buffers to inhibit catalysis of H,O, or O, oxidation of Ccp1l's
residues by trace metal impurities in the buffers. Catalase (0.1
nM) also was routinely added to remove residual H,0, although
none was detected in the samples after 1 h by the HRP/ABTS
assay,*” which agrees with our previous report that Ccp1 rapidly
consumes H,0, using endogenous donors (eqn (4), (5) and
(6))-** The CCP activity of oxidized Ccpl was determined by
monitoring the oxidation of horse heart Cyc" by H,O, as
reported.™

MS analyses. LC-MS analysis of intact apo- and holoCcp1 +
H,0, and of Ccp1-derived heme is described in the ESI.{ Details
of the LC-MS/MS analysis of tryptic digests (Fig. S1t) of oxidized
Ccp1 also are provided in the ESIL.} Sequest filters, XCorr (>2)
and false discovery rate (<0.01), and the mass filters in Table

Table 1 Properties of amino acid radicals
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S1, were implemented for confident peptide identification,*
and donor residues were identified by sequencing the oxidized
tryptic peptides.

Semiquantitation of residue oxidation. Label-free semi-
quantitation was performed at the MS1-level.** Peptide ion
intensity is expressed as the integrated peak area (PA) extracted
within a 10 ppm window from the digest mass chromatogram.
Four peptides consistently found unmodified (Table S21) were
used as internal standards to correct for changes in PA due to
variation in instrument response. The normalized yield of an
oxidized form of a residue (X,y) identified by MS/MS is given by:

100 3" PAo,

N lized% Xoy = —=———————
ormalized% SPAL +5 PA

(7)

The numerator sums the normalized PAs of all peptides
containing X,y (PA,y) and the denominator sums the normal-
ized PAs of all peptides containing any form of X. The relative
standard deviation of the reference peptide PAs is ~4% (Table
S2t), which reflects the precision in the percent oxidation re-
ported here.

Purification and dityrosine fluorescence of monomeric
oxidized Ccpl. Intramolecular dityrosine crosslinking in
oxidized Ccpl was investigated by dityrosine fluorescence.
Following its separation from higher molecular weight species
by gel filtration chromatography, the steady-state fluorescence
of monomeric oxidized Ccpl was monitored at 410 nm, the
maximum emission of dityrosine,* as outlined in the caption to
Fig. S2.7 Oxidized Ccpl also forms intermolecular dityrosine
crosslinks® but, given the high sensitivity of MS, we could work
at 1 uM Ccpl and suppress H,O,-induced intermolecular
crosslinking (Fig. S2At). Since dilution effectively attenuates the
rapid bimolecular reaction between Y' radicals (Table 1) on
different protein molecules, we assume that other bimolecular
reactions are likewise repressed.

Molecular dynamics simulation of O, diffusion in Ccpl.
Accessibility of O, to internal regions of Ccpl was examined
using MD simulations as outlined in the ESL.}

Results
Oxidation of Ccp1 by H,O, is heme mediated

Following oxidation, the mass spectrum of intact holoCcp1
exhibits new peaks with incremental mass shifts of +16 u
(Fig. 2). We assign these peaks to oxidized forms of the protein

R pK, of R"* Reduction potential E; of R"" at pH 7 (V) Peroxy radical reported k(M ' s for R* + O, reaction
vt —2 (ref. 49) 0.93 (ref. 50 and 51) Yes (ref. 52) <10? (ref. 53)

w 4 (ref. 50) 1.01 (ref. 50, 51 and 54) Yes (ref. 55) <10° (ref. 56)

(o NR® 0.92 (ref. 57) Yes (ref. 58 and 59) 6.1 x 107 (ref. 60)

H’ 5-7 1.17 (ref. 61) Yes (ref. 62) NR

M —6 (ref. 63) 1.5 (ref. 63) NR NR

“ R' is the neutral amino acid radical of tyrosine (Y), tryptophan (W), cysteine (C), histidine (H) and methionine (M). ” Note that k=5 x 10° M~*s™*

for dimerization of Y' to dityrosine.* ¢ NR, not reported.
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Fig.2 Deconvolved mass spectra showing that Ccpl oxidation by H,O5 is mediated by its heme. Oxidized Ccpl (1 uM) was diluted 5-fold into the
MS solvent and 5 pl aliquots were analyzed by LC-MS on a Waters QToF3 mass spectrometer. Mass spectra of (A—C) holoCcpl oxidized with 0, 1
and 10 M eq. of H,O, and (D) apoCcpl oxidized with 10 M eq. of H,O,. The observed mass of the unoxidized polypeptide is 33 730.50 + 1.35u
(calc. 33 730.33 u) and overoxidation of holoCcpl gives incremental mass shifts of +16 u, which are not observed for apoCcpl (panels B and C vs.

D). Experimental details are provided in the ESI.¥

that have incorporated an oxygen atom at an increasing number
of residues. For example, Ccp1 treated with 10 M eq. of H,0,
forms up to 20 covalent adducts (Fig. 2C), signifying extensive
overoxidation of its polypeptide by H,O, in the absence of Cyc"
(eqn (5) and (6)) as we and others reported previously.'*?»2*31-35
In sharp contrast, no mass adducts are detected for heme-free,
apoCcpl incubated with 10 M eq. of H,0, (Fig. 2D), demon-
strating that oxidation of the holoprotein by H,0, is strictly
mediated by its heme.

Localization of the oxygen adducts in oxidized Ccp1

Using the mass filters in Table S1,T the peptides identified in
tryptic digests of oxidized Ccp1 based on their monoisotopic m/
zvalues are listed in Table S3.1 Importantly, the <5 ppm error in
m/z ensures high confidence in peptide identification. Four
(M119, M163, M172, M231, Fig. 1) of the five methionine resi-
dues in Ccp1 are oxidized to the sulfoxide (MetO; +16 u) above
the 5% level in peptides from untreated Ccp1 (Fig. 3A). With the
exception of M163, MetO levels increase to ~40-100% in

A B
i 60
100 m 0:1
m 1:1 50 -
80 m 51
o] ; T
T 60 " 101 3
2 230

40 A
20 A
10 4

0 + L 5
SO,H  SOsH

-l

M119 M163 M172 M230 M231

Fig. 3 Methionine and cysteine oxidation. Ccpl (1 uM) in KPi/DTPA
was treated with the indicated molar ratio of H,O, for 1 h at room
temperature, digested with trypsin and the peptides were analyzed by
LC-MS/MS as described in the ESI.{ Percent (A) methionine oxidation
to MetO (+16 u); (B) C128 oxidation to CysSO,H (+32 u) and CysSOzH
(+48 u). Yields are based on peptide PAs (egn (7)) from three inde-
pendent experiments (n = 3) and presented as averages + SD. Solvent-
exposed methionines are underlined in panel A.

This journal is © The Royal Society of Chemistry 2017

oxidized Ccp1 (Fig. 3A), suggesting that these residues are major
donors to the heme. It has been reported that 60 M eq. of H,O,
extensively oxidizes M119, M230 and M231 in apoCcp1 at pH 4
and that the reconstituted holoenzyme exhibits negligible
reaction with H,0, (eqn (4)).** However, the mass spectrum of
apoCcp1 treated with 10 M eq. of H,0, in KPi/DTPA is essen-
tially identical to that of the untreated protein (Fig. 2A vs. D),
which does not support H,0,-induced MetO formation in the
apoprotein under the experimental conditions examined here.

A single buried cysteine residue (C128) is located >20 A from
the heme in the distal domain. In CpdI ~3% of C128 is oxidized
to CysSO,H/CysSO;H, and the oxidized forms sum to 60% and
100% on treatment with 5 and 10 M eq. of H,0,, respectively
(Fig. 3B), revealing that C128 also acts as a donor to the heme.

A

100
80
60

% TrpOH

40
20

W51 W57 W101 W126 W191 w211 W223

o)

30
100 ~
20
80 ~

% kynurenine

60 -

40 ~

% Trp(OH)2

W51 W57 W101 W126 W191 W211 w223

Fig. 4 Tryptophan residues undergo extensive mono- and dihy-
droxylation. Percent tryptophan oxidation to (A) TrpOH, (B) Trp(OH),
and kynurenine (inset). Experimental details are given in the caption to
Fig. 3. Solvent-exposed tryptophans are underlined.
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Fig. 5 Tyrosine oxidation products include TyrOH and dityrosine.
Percent tyrosine oxidation to (A) TyrOH (+16 u) and (B) dityrosine (—2
u) in T6 (Y36, Y39, Y42), T8 (Y67, Y71) and T26 (Y229, Y236). Experi-
mental details are given in the caption to Fig. 3. Solvent-exposed
tyrosines are underlined in panel A.

Ccp1's seven tryptophans undergo extensive H,O,-induced
hydroxylation and up to 15% of W223 is additionally converted
to kynurenine (Fig. 4). Notably, W191, W211, W223 proximal to
the heme are ~5-40% oxidized by 1 M eq. of H,O,, whereas the
distal W57 and W126 are extensively oxidized by 5 M eq. of H,0,
but W51 at 3.1 A from the heme is modified only in protein
exposed to 10 M eq. of H,0, (Fig. 4). Furthermore, oxidized W51
and W57 are detected solely as Trp(OH), (dihydroxytryptophan),
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from which we infer that their TrpOH form is readily oxidized as
hole hopping to the distal domain increases in overoxidized
Ccpl. W101, located on Cep1's distal surface at >25 A from the
heme, undergoes little oxidation (Fig. 4) probably because hole
hopping to this residue is blocked by O, scavenging of radicals
on W126 or C128 or other residues closer to the heme (Fig. 1).

Tyrosine is oxidized mainly to dityrosine

Oxygen uptake by tyrosine contributes minimally to the +16
peaks in Fig. 2C since only Y229 proximal to the heme forms
TyrOH (hydroxytyrosine) in high yield. Y16 and Y251 are 10-
30% converted to TyrOH (Fig. 5A) but none of the remaining 11
tyrosines appear to undergo hydroxylation. Peptides T4 (Y23),
T18 (Y153) and T27 (Y244) exhibit similar MS1 PAs in untreated
and oxidized Ccp1 (data not shown), revealing that these tyro-
sines escape oxidation. In contrast, the PAs of T6 (Y36, Y39, Y42)
and T8 (Y67, Y71) decrease 100-fold when Ccp1 is overoxidized
with 10 M eq. of H,0, (Fig. S2D1) so we assumed that Y' is
quenched by intramolecular dityrosine crosslinking, which is
supported by fluorescence measurements. Dityrosine emits
strongly at 410 nm above pH 7, and oxidized monomeric Ccp1
(Fig. S2Bt) exhibits increasing 410 nm emission up to a H,O,-
: Cepl ratio of 10 (Fig. S2Ct), consistent with H,0,-induced
ditryosine formation within its polypeptide.
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Fig.6 LC-MS/MS analysis of dityrosine formation in tryptic peptide T6. MS2 spectrum of the (M + 3H)** ion of: (A) native T6 at m/z 672.9784 and

(B) oxidized T6 at m/z 672.3047. The T6 precursor ions (green) were fra

gmented by CID (30 V) to give b, (red) and y, (blue) sequence ions. The

y102+ and y;32* ions encircled in panel B have masses consistent with loss of an H atom (—1 u) from both Y36 and Y39. The peptide sequence in
each panel shows Y36, Y39 and Y42 in red font and the observed fragmentations are mapped onto the sequence. Note the absence of frag-
mentation between crosslinked Y36 and Y39 in panel B. For clarity, low abundance ions are not mass labeled in the spectra but a complete list of

the identified sequence ions is provided in Tables S6 and S7.}
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The doubly and triply charged ions of peptides T6 and T8
from untreated Ccpl show high intensity MS1 signals (data not
shown). Overoxidized Ccp1 has peptide ions at two mass units
lower (—2 u) than the untreated protein which, based on the
MS2 spectra (Fig. 6 and S3A and Bt), are assigned to peptide T6
and T8 that have lost an H atom (—1 u) from each of two tyro-
sines. Notably, no b,, or y, sequence ions arising from peptide-
bond fragmentation between the oxidized tyrosines appear in
the MS2 spectra (Fig. 6B and S3Bt). In fact, the stability of the
cyclic peptide region identifies Y36-Y39 and Y36-Y42 as cross-
links in T6 (Table S3t). The yield of crosslinked T6 and T8 is
>70% in overoxidized Ccp1 (Fig. 5B) and, in addition to M230/
M231 oxidation (Fig. 3A and Table S37), ~10% of Y229-Y236
undergoes crosslinking in T26 (Fig. 5B and S3Dt) in competi-
tion with Y229 hydroxylation (Fig. 5A). Intramolecular dityr-
osine crosslinking has not been reported for overoxidized Ccp1
previously but intermolecular crosslinking involving the T6
tyrosines (Y36, Y39, Y42)***3% and Y236* is documented.
Presumably, the Ccpl dimers and trimers detected here
(Fig. S2At) contain such intermolecular crosslinks.

Oxidation of the proximal iron ligand H175 and of the
catalytic distal H52

Solvent-exposed H6, H60, H96 and H181 are <2% oxidized (+16
u) in overoxidized Ccpl (data not shown). In contrast, the
proximal H175, which coordinates the heme iron, is up to 40%
oxidized (Fig. 7A). The absorption spectrum of untreated Ccpl
in KPi/DTPA at pH 8.1 shows a Soret maximum at 410 nm and
visible bands at 505 and 645 nm (Fig. 7B), which is indicative of
pentacoordinate high-spin heme.*”” Immediately upon addition
of 1 M eq. of H,0,, the spectrum converts to that of CpdI with
a Soret at 419 nm and 530/560 nm visible bands (Fig. 7B), which
is stable over 1 h. The spectrum of the protein overoxidized with
10 M eq. of H,0, initially resembles that of CpdI but with time
the Soret drops in intensity and blue shifts to 414 nm, which we
tentatively associate with the partial oxidation of H175 to HisO
(oxo-histidine). The heme released in the MS solvent at low pH
from overoxidized Ccpl has the same exact mass (616.1742 +
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Fig.7 The proximal heme ligand H175 and the distal H52 are oxidized
to HisO. (A) Yield of HisO formation. Experimental details are given in
the caption to Fig. 3, and Fig. S51 shows the MS2 spectra of T7 and T21
with oxidized H52 and H175. (B) UV-vis spectrum of 1 uM Ccpl treated
with O (black trace), 1 (blue trace) and 10 M eq. of H,O, (green trace).
Spectra were recorded at pH 8.1 in KPi/DTPA 1 h after H,O, addition.
Results in panel B are representative of three independent
experiments.
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0.00025 u) and peak intensity as that from untreated Ccpl
(Fig. S47). Importantly, these MS results reveal that (i) essen-
tially all of the heme escapes irreversible oxidation by 10 M eq.
of H,0, and (ii) any time-dependent changes in the absorption
spectrum of overoxidized Ccpl are not due to heme
modification.

Close to 60% of the distal H52 is present as HisO in Ccp1l
oxidized with 10 M eq. of H,0, (Fig. 7A). The low CCP activity
(11%) of this sample (Table S47) reflects the critical function of
H52 as an acid-base catalyst in heterolytic cleavage of the per-
oxy bond of H,0, as evinced by the 10°-fold lower H,O, reac-
tivity of the H52L variant.*® The extensive heme loss in Ccp1
exposed to 100 M eq. of H,0, (Fig. S4ET) may result from attack
by the OH" produced on homolytic H,O, cleavage catalysed by
the heme or heme-derived iron following H52 oxidation.

Discussion

This study provides a comprehensive profile of Ccp1 oxidation
by 1, 5 and 10 M eq. of H,0,. Using high-performance LC-MS/
MS, we identify and semiquantitate stable oxidative modifica-
tions on 24 of Ccp1's 294 residues (Fig. 3-5 and 7). Key findings
include the oxidation of tyrosine to dityrosine, tryptophan to
TrpOH, Trp(OH), and kynurenine, histidine to HisO, methio-
nine to MetO, and cysteine to CysSO,H and CysSOz;H. Forma-
tion of these products is likely triggered by hole hopping from
the heme as Ccp1 endogenously reduces up to ten molecules of
H,0,. A plausible common mechanism for (solvent-derived)
oxygen incorporation into Ccpl's oxidizable residues is the
reaction of their radicals with O, to yield peroxy radicals that
release superoxide, allowing the hypovalent cations to trap
water and deprotonate to give the +16 u mass products detected
by MS (Schemes S1-S57). Of key interest is how intrinsic radical
reactivity is modulated by the local protein environment as this
dictates the preferred donor residues in Ccp1l. This question is
explored in the following sections before we discuss how over-
oxidation by H,0, may enable Ccp1 to perform its remarkable
H,0, sensing and signaling function in the cell.

Intrinsic radical reactivity

Table 1 summarizes the properties of the radicals derived from
the one-electron oxidation of the free amino acids that consti-
tute the redox-active residues in proteins. These properties,
combined with the protein microenvironment, determine the
oxidized forms of the donor residues found by LC-MS/MS in
oxidized Ccpl.

Free methionine and many methionine residues are oxidized
to MetO with H,0, as a typical oxidant.®* Nonetheless, MS
analysis provides no convincing evidence for more MetO
formation in H,0,-treated apoCcp1 than in the untreated apo-
protein (Fig. 2D vs. A). This we attribute in part to inhibition of
trace-metal activation of H,O, by the 100 uM DTPA present in
the buffer. Tryptic digestion was also performed in the presence
of DTPA but 2-20% MetO is detected in peptides from untreated
holoCcp1 (Fig. 3A), which may signal methionine oxidation
catalyzed by the heme released during proteolysis. With the
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possible exception of M163, MetO levels increase significantly
in peptides from oxidized Ccp1 (Fig. 3). Hole hopping from the
oxidized heme to methionine residues in the intact protein
followed by reaction of the resultant radical with O, could
generate MetO on water capture (Scheme S51).°*° Such heme-
mediated methionine oxidation has been reported previously in
the autoreduction of the H,0,-oxidized di-heme of MauG. This
is coupled to the oxidation of a nearby methionine to MetO and
an intermediate methionine radical is assumed to be stabilized
by a two-center, three-electron (2c3e) bond between the sulfur
atom and an amide nitrogen or oxygen or an aromatic group.*”

Hole transfer to cysteine should be more thermodynamically
favorable than to methionine (Table 1). Also, free C’ reacts
rapidly with O, to give a peroxyl radical (CysSOO") that has been
detected by EPR (Table 1). Superoxide release and water capture
would give CysOH (Scheme S47) but C128 conversion to CysO,H
and CysOzH (Fig. 3B) may not be all heme-mediated given the
known instability of sulfenic acids to further oxidation.

Neutral W* also is readily converted to a peroxyl radical by O,
(Table 1). Again, superoxide release and water capture by the
aryl carbocation would lead to TrpOH, with indole-ring
hydroxylation at the 2-, 4-, 5-, 6-, or 7-positions (Scheme S17).
TrpOH can be further oxidized to Trp(OH),,*® and ~30% of
W223 is detected as kynurenine (a tryptophan metabolite)® i
overoxidized Cep1 (Fig. 4B, inset). Although the pK, of free W**
is ~4 (Table 1), W191'" is stabilized in CpdL,” allowing hole
hopping from this site to nearby solvent-exposed residues at the
protein surface, including W211 and W223 (Fig. 8). Radicals on
these tryptophans are scavenged by O, (Scheme S1}) as evi-
denced by their oxidation to TrpOH and Trp(OH), (Fig. 4). Distal
W57 is also solvent exposed whereas a number of internal
waters are <5 A from W51 and W126 (Fig. 8 and Table S8%) to
accept a proton from their W** form and promote their 100%
conversion to Trp(OH), and TrpOH, respectively, in over-
oxidized Ccp1 (Fig. 4).

In contrast to W', the slow reactivity of Y* with O, is note-
worthy (Table 1 and Scheme S21). However, Y' radicals rapidly
dimerize and dityrosine is the dominant tyrosine oxidation
product in overoxidized Ccp1 (Fig. 5). The side chains of Y36,
Y39 and Y42 are separated by 4-8 A on the same a-helix and Y36/
Y39 and Y39/Y42 crosslinks are found in T6 (Table S31). Y67 and
Y71 are 10 A apart in a large loop region (Fig. 8) with sufficient
flexibility for dityrosine formation as evidenced by the effective
crosslinking in T8 (Fig. 5B and S3Bf). Remarkably, extensive
crosslinking of its distal region causes negligible change in
Ccpl's secondary structure as assessed by circular dichroism
(Fig. S71).

The efficient (~80%) hydroxylation of Y229, which may be
a consequence of its proximity to M230, results in the only
TyrOH formed in high yield (Fig. 5A). In fact, half of Ccpl's
tyrosines (Y16, Y23, Y153, Y187, Y203, Y244, Y251) appear to
undergo little or no oxidation. The thermodynamics of Y*
formation require deprotonation because of the low pK, of Y'*
(Table 1), but all 14 tyrosines are solvent exposed (Fig. 1) and/or
close to internal waters (Fig. S6 and Table S8t) so lack of
a proton acceptor is unlikely a deciding factor in Y** formation.
Advantageously, the presence of several unmodified tyrosines in
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Fig. 8 Zoning of Ccpl based on mapping of the oxidized residues
onto its structure. PyMOL-generated cartoon of Ccpl structure (PDB
1ZBY) with labels on the 24 residues (W, blue; Y, green; H, orange; M,
grey; C, magenta) oxidatively modified on reduction of H,O, at the
heme. The oxidized residues are assumed to be the termination sites
of hole hopping from the heme. Hole transit through W191 oxidizes
residues in zone 1 (blue) until M230/M231 oxidation turns on additional
pathways from the heme to zones 2a and 2b (pink). As these pathways
become exhausted, residues close to the heme (zone 3; green) are
oxidized. Not much hole termination is detected in zone 4 (yellow)
since only one (Y251 , Fig. 5A) of its four tyrosines (Y153, Y203, Y244,
Y 251) is oxidized. See text for further discussion of the proposed hole-
hopping pathways. Solvent-exposed residues are underlined and 31
conserved internal water molecules (see Fig. S67) are depicted as pink
spheres.

overoxidized Ccpl aids in mapping hole-hopping pathways
from the heme and in delimiting donor zones within the poly-
peptide (Fig. 8).

Since the pK, of free H"" is ~5-7 and H"" has an E; of 1.17 V
(Table 1), oxidation of histidine residues also will be sensitive to
the local protein environment. Hydrogen bonding to D235
imbues H175 with imidazolate character, which promotes
donation of electron density to the hypervalent heme.”®
However, we detect <5% H175 oxidation in Ccp1 treated with 1
M eq. of H,O, (Fig. 7A) but this increases to ~50% in over-
oxidized Ccp1 as discussed in the next section. The stable HisO
product is likely formed via a peroxyl radical (Scheme S37) as
proposed for the other oxidizable residues.

Hole-hopping pathways and electron-donor zones in Ccp1

The primary donor to the ultra-short-lived porphyrin m-cation
formed on the initial two-electron oxidation of Ccp1's heme is
W191 (eqn (4)).”* This catalytic residue is surrounded by
oxidizable residues, most notably M230 and M231 with their
sulfur atoms at ~4 A from the indole ring. Methionine-aromatic
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interactions (~1-3 kcal mol '), present in 33% of proteins in
the PDB, stabilize protein structure’ and also may regulate the
redox properties of aromatic residues as suggested over 25 years
ago for W191"".21746 Our MD simulations located no O, docking
site within 5 A of W191 (Fig. $6 and Table $81) which, combined
with its positive charge, serve to protect this key residue from
scavenging by O,. Hence, hole hopping can continue from the
transient W191'" radical to M231 and to residues at the surface
of the proximal domain, including M230, W223, W211 and
Y229. These solvent-exposed residues form stable oxidation
products detectible at 1: 1 H,0, : Ccp1l (Fig. 3, 4 and 5A) and
they are clustered in a region of the polypeptide that we label
zone 1 (Fig. 8).

Oxidation of M230 and/or M231 converts W191 into a poorer
electron donor as seen on mutation of these residues.’”*® Hence,
hole hopping from the heme to the distal region (zones 2a and
2b, Fig. 8) opens up. Both W126 and C128 act as major distal
donors in overoxidized Ccpl (Table S51). These neighboring
residues are in a favorable environment for hole formation and
subsequent termination via O, scavenging (Schemes S1 and
S47), being close to 2-3 internal waters and O, docking sites
(Fig. S6 and Table S81). W57 and Y67/Y71 are additional termi-
nation sites in zone 2a whereas zone 2b contains solvent-
exposed Y36, Y39 and Y42 that undergo efficient hole termina-
tion by crosslinking once oxidized to Y* (Fig. 5B and Scheme
S2t). The sequence of hole hopping to zones 2a and 2b is not
resolved in our study but the clustering of donors into these
subzones suggests two distinct routes from the heme via tran-
sient hole formation on W51 and on M119, respectively (Fig. 8).

W51, W191 (Fig. 4) and H52 (Fig. 7) kick in as major
endogenous donors in Ccpl treated with 10 M eq. of H,0,.
Hole-hopping from the heme presumably terminates at these
active-site residues following oxidation of residues further from
the heme. We group W51, W191, H52 and M119 into zone 3
(Fig. 8) together with M172 and H175, which are maximally
oxidized (~50%) in Ccp1 exposed to 5 M eq. of H,0, (Fig. 3A and
7A). Significantly, M172 and H175 are, for the most part,
oxidized in different Ccpl molecules (Table S5t). Also, the
relative orientation of H175 and W191 is fixed by hydrogen
bonds to D235, which additionally modulate coupling of
W191'" to the heme.” Thus, the susceptibility to oxidation of
these three proximal residues must be interdependent. Given
its probable critical importance in labilizing the heme,™
computational investigations of H175 oxidation, including the
roles of M230 and M231 that stabilize W191 ", are
underway. Oxidation of the distal H52 seen in the 10 : 1 H,O,-
: Cepl sample (Fig. 7A) also is a vital step since this histidine is
essential for H,O, heterolytic cleavage by Ccp1.*® Shutting-down
this rapid reaction by H52 oxidation is necessary to defend the
heme as the endogenous donors become exhausted.

So far we have only considered hole hopping from the heme
as a mechanism of residue oxidation in Ccp1l. For the sake of
completeness, we note that once H52 is oxidized (Fig. 7), slow
homolytic H,0, cleavage may generate some "OH at the heme. A
likely target would be W51 just above the heme (Fig. 8) as highly
reactive "OH radicals do not diffuse far from their site of
generation. It is noteworthy that W51 is 100% dihyroxylated in
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the 10 : 1 H,0, : Ccp1 sample (Fig. 4B), which may reflect some
oxidation of this residue by “OH. However, we anticipate very
little "OH formation in the H,O,-Ccp1 incubations examined
here since H,0, is consumed rapidly.*> In CuZn-superoxide
dismutase, on the other hand, homolytic cleavage of H,0, at the
catalytic copper results in oxidation of histidines ligated to the
catalytic center.®*’*”* In fact, histidines are oxidized in the dis-
mutase during cell aging,”*”” and HisO is viewed as a biological
marker for evaluating protein modification from oxidative
stress.”®

Comparison of MS and EPR studies on Ccp1 oxidation

Radicals are detected by EPR, which directly confirms their
transient presence in proteins during catalysis. Catalytic Y*
radicals that are well-characterized by EPR include those in
ribonucleotide reductase, prostaglandin H synthase, photo-
system II and dopamine  monooxygenase.>” A recent elegant
EPR study on H,0, oxidation of Ccpl variants with multiple
mutations identified Y71" as a catalytic radical and Y236" as
a non-catalytic radical in peroxidase turnover with guaiacol as
a reducing substrate.>® Our LC-MS/MS product analysis iden-
tifies Y71 as a major donor in zone 2a but establishes Y229 and
not Y236 as a major donor in zone 1 (Fig. 5B and 8). Efficient
scavenging of Y229' by O, (Fig. 5A) would compete with its
detection by EPR as would hole hopping from Y236 to neigh-
boring W223 and W211, which are extensively oxidized (Fig. 4).
We also locate tyrosine donors in zone 2b (Fig. 8) where
a second molecule of guaiacol is known to bind near residue
140.*° Rapid quenching of these Y’ radicals by dimerization
would likely preclude their detection by EPR but, as we
demonstrate here, dityrosine-crosslinked peptides as well as the
specific tyrosines involved in the crosslinking can be readily
identified by high-performance LC-MS/MS (Fig. 6 and S37).

The assignment of W* radicals by EPR can be challenging due
to peak broadening.®* Moreover, their efficient scavenging by O,
as seen in oxidized Ccp1 (Fig. 4) will compete with their detec-
tion by EPR. In fact, W191'" with low O, reactivity is the only
indolyl radical reported in EPR studies of CpdI and overoxidized
Ccp1.'?* Furthermore, MNP succeeded in trapping Y153", Y39°
and Y236" but no W' radicals in Ccp1,*** revealing that spin
trapping also is biased toward Y" with low O, reactivity. Thus, the
current results underscore the complementarity of MS and EPR
for studies of protein-based radicals. EPR can directly detect
relatively long-lived radicals and provide information on their
stability and, in some instances, the specific residues oxidized
can be selected from EPR spectra.®* MS, on the other hand, can
identify all oxidized residues and additionally characterize their
stable end products. This sheds light on radical-quenching
mechanisms and also on possible hole-hopping pathways from
heme or other redox-active metal centers in proteins.

In addition to confirming W191"" as the main radical species
in Cpdl, a recent QM/MM computational analysis®* proposed
Y203/Y251 and Y236 as secondary radical sites in two possible
pathways from W191'". Y203/Y251 together with Y153 and Y244
are clustered in proximal zone 4 (Fig. 8) and undergo little or no
oxidation detectable by MS (Fig. 5). However, we did detect
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TEMPO mass adducts of peptides that contain tyrosines from
zone 4 (T18, T23, T27 + 28, and T28),> and a MNP mass adduct
has been localized on Y153.”> Thus, the mass adducts found by
MS or the spin adducts detected by EPR will depend on the
trapping and scavenging agents employed as well as on the
agents' accessibility to different protein regions. In this context,
it is pertinent to point out that scavenging of protein-based
radicals by O, is of physiological relevance due to its presence in
cells under aerobic conditions.

Characterization of overoxidized Ccp1l provides insights into
its possible physiological functions

The safeguarding of heme integrity in Ccp1 is evocative of the
antioxidant role proposed for the chains of tyrosine and tryp-
tophan residues present in many oxidoreductases.® Nonethe-
less, hole hopping to residues remote from the heme is not
protective of CCP activity (Table S47). Instead, the physiological
importance of Ccpl's multiple hole-hopping pathways is related
to its function in H,0,-regulated heme transfer. We reported
that in respiring yeast mitochondria, Ccpl donates its heme
directly or indirectly to catalase A (Ctal).** H,O, levels spike
~10-fold when yeast begin to respire'* causing Ccpl to
become overoxidized™ since synthesis of its reducing substrate,
Cyc1™ (eqn (2) and (3)), is under O,/heme control,® unlike Ccp1
itself.®**> Oxidation by excess H,0, of Ccpl's proximal ligand,
H175, labilizes its heme as seen in H175 variants with weakened
axial ligation.*® The current study shows that diverting the
oxidizing equivalents derived from H,O, away from the heme
(Fig. 8) spares it from irreversible oxidative modification
(Fig. S47). This allows Ccp1* to function as a H,O,-regulated
donor of unmodified heme, a role unique to Ccp1 until now.

Intriguingly, ascorbate peroxidase (APX) possesses a very
similar active-site structure to Ccp1 with W41 and W179 occu-
pying the same distal and proximal locations as W51 and W191,
respectively, in Ccp1.*”*® However, heme crosslinking to W41
occurs in oxidized APX,®® which is associated with stabilization
of a transient w-cation radical on the porphyrin rather than on
W179.8 Cep1™W''F also forms a transient porphyrin 7-cation
radical and heme crosslinking to W51 has been reported in this
variant.*® Thus, ultra-rapid radical transfer from the porphyrin
appears to be key in preventing heme crosslinking to the distal
tryptophan in Ccpl. A role other than that of catalytic H,0,
scavenger has not been proposed for APX whereas our recently
published targeted proteomics study provides additional
support for Ccpl's participation in heme transfer.”®

Intramolecular dityrosine crosslinking is prevalent in Ccp1
overoxidized with 5 and 10 M eq. of H,O, (Fig. 5B). Crosslinked
Ccp1 may signal oxidative stress in yeast given that dityrosine is
becoming increasingly identified as a marker of oxidative stress
and is linked to a number of pathologies including amyloid
fibril formation.**

Conclusions

Building on previous studies*®>*?%%*>-3% that pinpointed a limited
number of donors to the heme in the endogenous oxidation of
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Ccpl by H,0,, here we identify an unprecedented number of
donor residues (24) by characterizing their stable end products
by in-depth LC-MS/MS analysis. This large number of proximal
and distal donors delineates numerous hole-hopping pathways
emanating from Ccpl's heme that protect it from irreversible
modification. All routes may not be operative or lead to poly-
peptide oxidation in cells because of the efficient repair of
protein radicals by glutathione and ascorbate®> and/or the
reversible phosphorylation of tyrosine residues. Importantly, we
have already demonstrated that Ccpl's heme is labilized in
respiring mitochondria by H175 oxidation.' Here we report
that the heme is spared irreversible oxidative modification by
H,0, and illuminate the structural mechanism of how this is
achieved during the reduction of up to 10-fold excess H,0, by
endogenous donors in Ccpl.

Interestingly, Fe-catalyzed histidine oxidation is implicated
in H,0, sensing by the peroxide resistance protein (PerR) from
B. subtilis. H,0, binding to the non-heme Fe'" center of PerR
results in oxidation of the Fe ligands (H37 and H91), promotes
Fe release and apoPerR dissociation from DNA to turn on genes
such as that encoding the catalase, KatA.”*** Thus, both PerR
and Ccpl can be viewed as metalloreceptor proteins that enable
their ligand, H,0,, to regulate its own consumption by a cata-
lase: H,0, regulates heme transfer from Ccp1 to apoCtal and Fe
loss from PerR to initiate KatA translation. Although these
mechanisms are fascinatingly different, they share a common
essential step: oxidation by H,0, of Fe-ligated histidine to
trigger heme or Fe release from the metalloreceptor.

Finally, on a methodological note, we reiterate that our
detailed analysis of oxidized Ccpl using a high-performance
universal detection/characterization method such as MS
exposes a bias in EPR detection toward protein-based radicals
like Y* with low O, reactivity. This should be borne in mind
when mapping hole-hopping pathways in proteins based on
EPR monitoring of transient radicals.
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