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An increasing number of studies have demonstrated that confinement within carbon nanotubes (CNTs)

provides an effective approach for the modulation of catalysis. It was generally predicted that

confinement became stronger with a decreasing diameter of CNTs. However, our present study here

overturns the previous expectation: the influence on catalysis is not monotonic. Instead, it exhibits

a volcano relationship with CNT diameter. Taking Pt catalyzing O2 conversion and Re catalyzing N2

conversion as probes using density functional theory, we show that only within tubes with an i.d. of �1

nm can the activity of metal clusters be enhanced to its maximum. Furthermore, confinement only

enhances the catalytic activity of metals with strong intrinsic binding with reactants, whereas it is

suppressed for those with weak binding. These findings shed further light on the fundamental effects of

confinement on catalysis, and could guide more rational design of confined catalysts.
Tuning the physical and chemical properties of metal andmetal
oxide clusters via encapsulation within a conned nanospace of
porous materials has attracted increasing attention.1 Carbon
nanotubes (CNTs) with a well-dened one-dimensional channel
provide an ideal model for studying conned chemistry.2

Peculiar structures were observed for a series of substances even
under mild conditions, which otherwise did not exist in the
bulk.3 For example, a molecular dynamics (MD) simulation
showed that a CNT(6,6) with a diameter of 0.81 nm has a strong
effect on water, inducing the formation of a single-le chain
structure and facilitating its transport.4 Wang et al.5 further
demonstrated that the structure of conned water in wider
CNTs becomes more disordered towards that of bulk water.
NMR using pulse-eld gradient technology demonstrated that
the diffusivity of water in CNTs with an i.d. of �2 nm is twice
that in wider tubes with an i.d. of �6 nm.6 In addition, we also
observed experimentally that the reduction of encapsulated iron
oxide is facilitated more in smaller diameter nanotubes, as
evidenced by a stepwise declining reduction temperature with
the decreasing diameter of CNTs.7 Therefore, it was accepted
that smaller CNTs would exert stronger connement effects
considering their larger curvature and more distorted sp2

hybridization.2 This has prompted wide efforts for growing
smaller CNTs with diameters down to less than 0.5 nm8,9 in
order to unveil more fascinating chemistry within such
nanospaces.
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Despite signicant progress being made in the synthesis
technologies of CNTs with different diameters and morphol-
ogies, experimental verication of stronger connement in
a smaller nanospace is still hampered by the availability of
CNTs with diameters smaller than 1 nm in reasonable amounts
and effective methods to introduce metals into such small
nanotubes. Therefore, we turn to density functional theory
calculations by carrying out a systematic investigation into the
connement effects in nanotubes with a wide range of inner
diameters, by taking the activation and conversion of O2 and N2

catalyzed by Pt and Re, respectively, as probes. With this, we
intend to elucidate the size effect of the nanospace on catalysis
with particular attention to the underlying mechanism.

To assess this effect, we employed microkinetic modelling
and the concept of connement energy (Econ). Econ is dened as
Econ ¼ Eb(in) � Eb(out), as in our previous study,10 where Eb(in)
and Eb(out) are the dissociative binding energies of O2 and N2

over an encapsulated metallic cluster and the same sized cluster
located outside the same CNTs, respectively. Taking the CNT-
encapsulated Pt catalysts as an example, which were shown
experimentally with an extraordinary stability and activity in the
oxidation of methylbenzene in contrast to conventional sup-
ported Pt clusters on a variety of supports.11 The catalyst with Pt
clusters encapsulated within the CNT channels is denoted Pt-in,
and Pt-out points to the clusters supported on the exterior walls
of CNTs.

Although diffusion through nanochannels may slow down
the reaction to some extent, this does not seem to offset the
connement effects on catalysis, as demonstrated by numerous
studies.6,13,15,28,29 Furthermore, it was also frequently reported
that molecules transported faster inside CNTs than in the bulk,
e.g. N2, n-heptane9, etc. Although the precise effect of the
This journal is © The Royal Society of Chemistry 2017
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diffusion on the exterior walls of CNTs is not known yet
compared to that inside the interior channels, electronic effects
can still be one of the dominant factors for catalytic perfor-
mance considering the host–guest interactions. Therefore, we
only considered the electronic effects in the present work in
order to capture the fundamentals of connement on catalysis.
The catalytic oxidation of methylbenzene can be assumed to
follow the Langmuir–Hinshelwoodmechanism. O2 rst adsorbs
on the surface and the resulting *O2 adsorbates undergo
dissociation. As the dissociation of *O2 is usually much slower
than the adsorption process, the dissociation of *O2 is irre-
versible. Although the rate-determining step of O2 conversion
may change over different catalysts,30 it was found that the
optimal binding energy to allow desorption of oxygen-contain-
ing species is quite close to the optimum required for dissoci-
ation. Therefore, it is reasonable to study the trend by assuming
the dissociation of *O2 as the rate-determining step. Thus, by
referring to a previous report,12 the overall reaction rate at
a steady state, r, can be written as:

r ¼ 2kP(O2)q*
2

where k is the rate constant for O2 dissociation in the forward
direction, P(O2) is the partial pressure of O2 gas and q* is the
surface coverage of free active sites.12

We rst examined the averaged Eb(O) over 10 different
adsorption sites of a supported Pt42 cluster (Pt-out) on the
exterior of CNT(18,0) and the same cluster encapsulated in the
same CNT (Pt-in), as shown in Fig. 1. The calculated value of
Eb(O) over Pt-in is �1.31 eV while it is �1.57 eV over Pt-out,
indicating that the binding strength between the adsorbate, O,
and the catalyst surface is weakened by 0.26 eV via encapsula-
tion, which is dened as Econ. This is due to the stronger elec-
tronic interaction between the encapsulated Pt cluster and the
interior wall of the CNT compared to the supported one.
Although the connement effect becomes weaker with
decreasing size of the encapsulated Pt clusters in the same CNT,
for example, connement energies of 0.11 eV and 0.03 eV for
Pt13 and Pt9 clusters, respectively, the study here by taking one
specic cluster size with 9 atoms still allows us to capture
a general trend in energetics. Since SWCNTs in experiments
frequently contain a certain number of double-walled CNTs
(DWCNTs) and triple-walled CNTs (TWCNTs), we examined
Fig. 1 Optimized structures of (a) a Pt42 cluster supported on the
outer wall of CNT(18,0) (Pt-out) and (b) a Pt42 cluster encapsulated in
CNT(18,0) (Pt-in).

This journal is © The Royal Society of Chemistry 2017
the effect of the CNT wall thickness on Eb(O). Three nanotubes
with the same outer diameter, namely a SWCNT(16,16),
a DWCNT(10,10)@(16,16) and a TWCNT(6,6)@(10,10)@(16,16)
were checked rst. As shown in Table 1, Eb(O) of Pt-out is about
�1.23 eV over the SWCNT and it is practically the same within
the DWCNT and TWCNT. In addition, encapsulated Pt-in
within three nanotubes with the same inner diameter were also
examined, i.e. SWCNT(6,6), DWCNT(6,6)@(10,10), and
TWCNT(6,6)@(10,10)@(16,16), which show a comparable Eb in
the range of 0.07–0.08 eV. Further taking Fe-in and Fe-out as
probes (Table 1) validates the negligible effect of CNT wall
thickness on Eb of O2 for these metals. Therefore, we will take
a SWCNT as a model in the following for the sake of simplicity
in the calculations.

Fig. 2a shows Eb(O) over the Pt-in and Pt-out clusters as
a function of coverage (q). For a CNT(8,8), Eb(O) over Pt-out is
�2.25 eV at a low oxygen coverage such as q¼ 1/3 ML. However,
when Pt clusters are placed into the channel of CNT(8,8), Eb(O)
reduces by 0.5 eV due to connement effects. This is also the
case at a higher oxygen coverage, implying that it is more
difficult for the encapsulated Pt to bind oxygen. Even at
a coverage of 2/3 ML, Eb(O) over Pt-out is still slightly stronger
(�1.87 eV) than that over Pt-in at q ¼ 1/3 ML (�1.76 eV). This
suggests that encapsulation can protect the Pt clusters from
oxidation by oxygen with respect to those exposed on the outer
walls of the CNTs (Pt-out). For comparison, within a smaller
nanotube CNT(12,0), Eb(O) over Pt-in is again weaker than that
over Pt-out (Fig. 2b). More interestingly, Eb(O) over Pt-in at
a coverage of 1/3 ML is even weaker than that over Pt-out at a full
coverage (1 ML). This means that CNT(12,0) has a greater
connement strength and Pt clusters can be better protected
against oxidation than in CNT(8,8). Fig. 3a shows that Econ(O)
further increases with decreasing diameter, such as (6,6) and
(10,0), almost monotonically as a function of the reciprocal of
the diameter. This suggests that the smaller diameter of the
CNTs, the more difficult it is to oxidize the encapsulated metal
clusters, which is consistent with the previous ndings for
encapsulated Fe and Fe2O3 in a redox reaction too.7

Although Eb(O) over Pt-in clusters is weakened via encapsu-
lation in comparison with Pt-out, the oxidation activity of the Pt-
in catalyst is not suppressed, as observed experimentally.
Instead, Pt-in exhibits a higher activity and stability than Pt-out
in the oxidation of methylbenzene.11 This is governed mainly by
the volcano relationship of catalytic activity versus Eb(O),14 as
depicted by the red curve in Fig. 3b. On the le hand side of the
Table 1 Calculated Eb(O) over Pt and Fe catalysts over SWCNT(16,16)
and SWCNT(6,6), DWCNT(6,6)@(10,10) and DWCNT(10,10)@(16,16),
and TWCNT(6,6)@(10,10)@(16,16)a

Location of metal
clusters

SWCNT DWCNT TWCNT

Pt Fe Pt Fe Pt Fe

Inside 0.07 �2.29 0.07 �2.29 0.08 �2.28
Outside �1.23 �3.25 �1.23 �3.30 �1.23 �3.26

a All units are in eV.
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Fig. 2 Eb(O) over the encapsulated Pt (denoted as Pt-in) and Pt clusters supported on the outer walls of CNTs (Pt-out) at surface coverages
ranging from 1/3 to 3/3 monolayer (ML) with (a) armchair CNT(8,8); (b) zigzag CNT(12,0).
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volcano curve, oxygen binds the catalyst strongly. Strong
binding usually causes a slow diffusion of reactants and more
difficult desorption of products from the catalyst surface. In
contrast, the catalyst on the right hand of the volcano curve
usually exhibits weaker binding with oxygen. Too weak binding
will lead to slow adsorption and dissociation of O2 according to
the Brønsted–Evans–Polanyi-type relation.15 Thus, the optimum
Eb(O) for molecular dioxygen activation can be estimated to be
about�1.44 eV/O2 at T¼ 600 K and P¼ 3 MPa, according to the
microkinetic model (Fig. 3b). Since Eb(O) is weakened via
encapsulation in the channel of CNTs, the effective volcano
curve of catalytic activity in CNTs shis toward the metals with
higher binding energies, corresponding to the green curve with
a connement energy of Econ(O) ¼ 0.25 eV in CNT(8,8). Hence,
the reaction rate on Pt-in-CNT(8,8) is estimated to be enhanced
by�5 times with respect to that over Pt-out-CNT(8,8), consistent
with the trend observed experimentally.11 By decreasing the
diameter of CNTs to�1.0 nm, the activity of Pt-in can be further
enhanced (Fig. 3c).

However, this enhancement does not proceed monotonically
with further decreasing the diameter of CNTs. The activity
reaches a maximum within a diameter of �1 nm and aer
further reducing the diameter, the reaction is instead inhibited,
as demonstrated by the steep drop in activity within CNT(6,6)
and CNT(10,0) (Fig. 3c). Their corresponding Econ(O) for
encapsulated Pt is �1.0 and �1.1 eV, respectively. Obviously,
this connement is too strong and leads to overly weakened
binding, with Eb(O)¼�0.32 eV/O, which is much lower than the
optimum �0.72 eV/O. This does not benet the adsorption and
activation of O2. As demonstrated in Fig. 3b, with this Econ(O)
(corresponding to the blue curve, 1.0 eV), the turnover
frequency (TOF) is signicantly reduced, represented by the
blue lled dots. In other words, connement within CNT(6,6)
and CNT(10,0) inhibits the oxidation, showing negative effects
on the activity of Pt-in. This result overturns the common
assumption that smaller tubes provide stronger connement
effects.

We further examined the generality of this size dependence
of connement, by taking Re as a probe, since Re is a known
active metal for ammonia synthesis.18 Interestingly, the binding
between N adsorbates and encapsulated Re catalysts is also
weakened, as demonstrated by the positive Econ(N) of Re-in in
the examined diameter range (Fig. 4a). The binding strength
280 | Chem. Sci., 2017, 8, 278–283
over Re-in becomes weaker as the CNT’s diameter reduces, as
for O with Pt-in. The connement strength on N–Re bonds is
slightly weaker than O–Pt within the same CNT. The optimum
diameter of CNTs for enhancing N2 conversion is estimated to
be �1.08 nm (Fig. 4c), within which the activity can be
enhanced to a maximal value.

These results further validate our previous nding of tunable
catalytic activity by connement and this can be described by
the concept of connement energy. Connement generally
makes the binding of a reactant on a catalyst weaker. Therefore,
it is not desirable to introduce connement to metals with
intrinsically weak or intermediate binding strengths because
this will only inhibit their activity, for example, Ru. Lowered CO
conversion,10 ammonia synthesis16 or decomposition17 have
been reported for the encapsulated Ru catalysts. As the Eb(N)
over Ru-out is intermediate (about �1.0 eV) and the Eb(N)
becomes weaker within CNTs (about �0.5 eV), resulting in the
dissociation of N2 over encapsulated Ru-in being �1.5 times
slower, agreeing with the observed inhibition of ammonia
synthesis.10 Eb(CO) over Ru-out is smaller than�1.44 eV, located
on the right-hand side of the volcano curve too, while Eb(CO) is
smaller by �0.5 eV over Ru-in, qualitatively consistent with
experimentally measured CO adsorption heat in microcalo-
rimetry.16 In other words, a negative connement effect will be
observed for the catalyst with weak or intermediate intrinsic
reactivity.

In contrast, the catalysts which have stronger intrinsic
binding with reactants will benet from encapsulation because
weakened binding facilitates desorption and consequently
enhances the catalytic activity according to microkinetic
modelling, as observed experimentally in CO conversion13,19

over encapsulated Fe and RhMn, and O2 activation11 over Pt-in.
Thus, enhanced CO oxidation can be audaciously predicted over
conned Pt, which is notorious for binding with CO too strongly
and, hence, becoming poisoned. Indeed, recent experiments
show that the CO oxidation reaction over Pt nanoparticles was
enhanced in a conned 2D space.31 Furthermore, an appropri-
ately sized CNT should be chosen because the connement
effect exhibits a volcano relationship with CNT diameter.
Within too small nanotubes, the binding is overly weakened,
and thus activation of the reaction molecules is sluggish.
Consequently, the overall activity is inhibited according to the
Sabatier principle20 and volcano plots.21 The optimum diameter
This journal is © The Royal Society of Chemistry 2017
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Fig. 3 (a) The confinement energy of oxygen, Econ(O), as a function of
CNT diameter ranging from 1.41–0.78 nm; (b) the volcano curve of
catalytic activity in CNTs as a function of Eb(out) at different confine-
ment energies, Econ(O); (c) tunable catalytic activity of molecular
dioxygen dissociation over the Pt-in catalysts as a function of the CNT
diameter.

Fig. 4 (a) The confinement energy of nitrogen, Econ(N), as a function
of CNT diameter ranging from 0.78–1.41 nm; (b) the volcano curve of
catalytic activity in CNTs as a function of Eb(out) at different confine-
ment energies, Econ(N); (c) tunable activity of N2 dissociation over the
Re-in catalysts as a function of the CNT diameter.
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of CNTs is identied to be about 1 nm for both O2 and N2

conversion. However, the optimum diameter may deviate from
1 nm in experiments because of inhomogeneity of the nano-
tubes and metal clusters. It could vary with specic reactions
and chosen metal clusters as well.

With this, a simple descriptor is provided for guiding more
rational design of conned catalysts. First of all, connement
This journal is © The Royal Society of Chemistry 2017
only enhances the catalytic activity of metals with intrinsic
strong binding with reactants. Secondly, this enhancement is
size dependent, exhibiting a volcano relationship. Taking Pt
catalyzing oxidation and Re catalyzing N2 conversion as probes,
the activity reaches a maximal within a tube with an i.d. of
around 1.0 nm. Beyond this diameter, connement leads to
a steep drop in activity due to overly weakened binding under
a stronger connement energy. More interestingly, this concept
Chem. Sci., 2017, 8, 278–283 | 281
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is also applicable to other conned catalysts and reactions.22–24

For example, CO oxidation was enhanced within a connement
environment generated by an extended Pt surface and two-
dimensional boron nitride/graphene sheets, also due to weak-
ened binding of CO.22,23
Computational details

All calculations were carried out using density functional theory
(DFT), as implemented in the Vienna ab initio simulation
package (VASP).25 The projector augmented wave (PAW)
formalism26 in conjunction with the Perdew–Burke–Ernzerhof
functional27 was adopted in the total energy calculations. A
kinetic energy cutoff of 400 eV was chosen for the plane wave
expansion and the k-point was sampled at gamma. In the
geometric optimization, the calculated Hellmann–Feynman
force was acquired smaller than 0.05 eV Å�1. All CNTmodels are
periodic in the axial (z) direction, and the radial directions (x
and y) are separated by a vacuum distance of�10 Å. In addition,
we considered two representative chiralities of CNTs, i.e.
armchair and zigzag. Two semiconducting CNTs (13,0) and
(10,0) were also studied for comparison with other metallic
ones. The dissociative binding energies of O2 and N2 over the
supported and encapsulated catalysts (Fe, Ru, Pt, and Re) were
calculated with an analogous denition. Taking the denition
of Eb(O) as an example, the chemical potential of oxygen was
referred to an O2 molecule in a vacuum. Optimized geometries
are given in the ESI.†
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