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We describe an effective means of defining optimisation criteria for self-optimising reactors, applicable to

situations where a compromise is sought between several competing objectives. The problem is framed as

a constrained optimisation, in which a lead property is optimised subject to constraints on the values that

other properties may assume. Compared to conventional methods (using weighted-sum- and weighted-

product-based merit functions), the approach described here is more intuitive, easier to implement, and

yields an optimised solution that more faithfully reflects user preferences. The method is applied here to

the synthesis of o-xylenyl adducts of Buckminsterfullerene, using a cascadic reaction of the form X0 → X1
→ X2 → … XN. Specifically, we selectively target the formation of the (technologically useful) first- and

second-order adducts X1 and X2, while at the same time suppressing the formation of unwanted higher-

order products. More generally, the approach is applicable to any chemical optimisation involving a trade-

off between competing criteria. To assist with implementation we provide a self-contained software pack-

age for carrying out constrained optimisation, together with detailed tutorial-style instructions.

The goal of finding an efficient route to a target molecule,
while at the same time minimising the formation of
unwanted side products, lies at the heart of synthetic
chemistry. In the ideal case, where the target molecule
corresponds to the sole end-point of a reaction, a near-
quantitative product yield may be readily achieved by allowing
the reaction to progress to completion. More often than not,
however, the target is just one of several possible end prod-
ucts, or else it is an intermediate that can only be obtained by
quenching the reaction before it has reached completion. In
such circumstances, a mixture of reaction products is inevita-
bly obtained, with the yield of the target molecule depending
on the (typically unknown) kinetics of the reaction and the
specific reaction conditions employed. Manually searching for
reaction conditions that deliver an acceptable yield of the tar-
get molecule is a laborious undertaking, requiring extensive
experimentation and chemical intuition. Even then, there is
no guarantee the chosen conditions will correspond to the
best attainable solution.

In this paper we set out an easily-implemented and fully
automated approach for preferentially synthesising one or
more target molecules amongst a larger group of possible
products, using a technique that (given sufficient time) will
yield a globally optimised solution. Our approach builds on
previous work in the area of ‘intelligent’ or ‘self-optimising’
reactors,1–5 using an automated reactor with on-line analysis
and algorithmic control to repeatedly update the reaction
conditions until a desired goal has been achieved. For each
set of reaction conditions tested, the system is allowed to sta-
bilise, a measurement is made using the on-line analysis sys-
tem, and a scalar merit value that quantifies the acceptability
of the product is then extracted from the data. In this way
the overall physical process may be treated as a mathematical
objective function in which the inputs are the selected reac-
tion conditions and the output is the merit value. Assuming
lower merit values signify superior products, optimisation of
the chemical process is formally equivalent to minimisation
of the associated objective function, and may accordingly be
achieved using numerical techniques.

In two of the earliest reports in the field, self-optimisation
was used by Krishnadasan et al.1 in 2007 to tailor the spectral
characteristics of metal chalcogenide quantum dots and by
McMullen et al.6 in 2010 to optimise the Knoevenagel conden-
sation reaction of p-anisaldehyde and malononitrile. Further
important contributions in the area have been made by the
groups of Bourne,7,8 Jensen,9–11 and Poliakoff.12–14 Using a vari-
ety of in-line/on-line analysis techniques – including infrared
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absorption spectroscopy,9 visible fluorescence spectroscopy,1

chromatographic separations,6,8,10–15 nuclear magnetic reso-
nance,16 and mass spectrometry7,17 – self-optimisation has
been successfully used to optimise the yield and/or production
rate of a variety of target molecules6–17 and to control the physi-
cal properties of materials.1,18 The above optimisations were
carried out using a mixture of local6,9–18 and global1,6–8 search
methods. For unknown chemical systems that may potentially
exhibit multiple optima, global routines that fit measured data
to approximating surfaces are typically preferred since they do
not get trapped in sub-optimal local minima, can cope with
measurement noise, and – by avoiding the need for derivative
calculations – require relatively few function evaluations to lo-
cate optima. In situations where the chemical parameter space
is monotonic with a single minimum (or multiple minima exist
but the approximate location of the global minimum is known)
local search methods may sometimes offer faster convergence.

In many cases a trade-off or compromise must be reached
between several competing criteria. Mathematically, this may
be achieved through the use of a compound merit function,
typically formed from a weighted sum19,20 or weighted prod-
uct20,21 of individual merit functions that separately take into
account each property being optimised. Weighted-product-
based merit functions were used by Krishnadasan et al. to max-
imize the intensity of quantum dot emission at a target wave-
length1 and by Jumbam et al. to achieve an optimised trade-off
between the production rate and yield of methylated ethers;15

while weighted-sum-based merit functions were used by Moore
et al. to achieve an optimised trade-off between the production
rate and the conversion efficiency of a Paal–Knorr reaction.9

The above studies showed that merit-based multi-objective
optimization can be a powerful method for chemical optimi-
zation. However, its success hinges on the ability of the merit
function to reduce multiple property values to a single, mean-
ingful number that can be used to objectively rank the ade-
quacy of different outcomes. Unfortunately, devising a suit-
able merit function can be a fraught endeavor,17,19 especially
when there are more than two parameters to balance: exten-
sive physical experimentation and mathematical manipula-
tion is often required to find an appropriate form of merit
function that sensibly balances the different optimisation
criteria and, even then, there is no guarantee that the merit-
based ranking will fully accord with user perception.

The lack of a straightforward method for codifying prod-
uct requirements in the form of chemical merit functions is
a major obstacle to the widespread deployment of self-
optimising reactors. What is needed is an easily implemented
procedure that allows a user to set out all requirements in a
simple, intuitive form that can then be directly translated
into a usable merit function without significant experimenta-
tion or mathematical effort. Here we demonstrate how this
may be readily achieved by configuring the problem as a
constrained optimisation, in which a lead property is
optimised, subject to lower and upper limits being placed on
the values that other properties of interest may assume. By
way of example, in a typical polymerization reaction, the lead

property might be the conversion rate (which we wish to max-
imize), while typical constrained properties could include the
weight-averaged molecular weight (which should fall between
certain application-dependent bounds) and the polydispersity
index (which should not exceed a maximum level).

The constraints are handled here using an analytical pro-
cedure due to Huyer and Neumaier.22,23 In the discussion be-
low we focus primarily on implementational aspects of the
method; a description of its mathematical basis may be
found in the ESI.† We assume that our goal is to minimise
the lead property subject to specific constraints on other
properties (if the goal were to maximize the lead property, we
would minimize its negative). For each constrained property
the user specifies a range of values [FLower, FUpper] within
which that property should preferably lie plus a parameter ΔF
corresponding to the maximum permitted deviation from the
preferred range (see Fig. S1a†). Property values that lie within
the preferred range [FLower, FUpper] completely satisfy user
specifications and hence are said to be “fully feasible”. Values
that lie outside the preferred range but within the expanded
range [FLower − ΔF, FUpper + ΔF] partially satisfy user require-
ments and are said to be “semi feasible” (since they lie
within a permitted margin of the preferred range). Values
outside the expanded range do not meet user requirements
and are said to be “infeasible”. It is the goal of the optimisa-
tion procedure to identify the set of reaction conditions that
minimises the value of the lead property, while at the same
time ensuring the values of all constrained properties are fea-
sible or at worst semi-feasible (i.e. they lie within or as close
as possible to their preferred windows).

The procedure begins with an initial search of the chemi-
cal parameter space to identify at least one data point that
completely satisfies all constraints (see Methods). This is typi-
cally a straightforward task since any fully feasible point will
suffice, irrespective of its lead property value. Two experimen-
tal parameters are extracted from these initial measurements:
f0 the value of the lead property at the best feasible point (i.e.
the feasible point with the lowest lead property value); and Δ,
the median value of | f Ĳx) − f0| where f Ĳx) is the value of the
property at the data point x.

Using the experimentally determined parameters f0 and Δ,
together with the user defined-parameters FLower, FUpper and
ΔF for each constrained property, one may then construct a
merit function f softĲx) that takes into account both the value
of the lead property and the specified constraints:

(1)

where the index i runs over all constrained properties and
piĲx) is assigned a value [Fi

Lower − FiĲx)]/ΔFi, zero, or [FiĲx) −
FUpperi ]/ΔFi according to whether FiĲx) lies below, within, or
above the preferred bounds of the window. With the merit
function defined in this way, constrained optimisation is
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straightforwardly carried out by searching for the location x̂
of the global minimum of f softĲx).

We note here some pertinent properties of eqn (1). The first
term f *(x) is simply a rescaled variant of the original
unconstrained merit function f Ĳx): f *(x) varies monotonically
with f Ĳx), so the optima of f*(x) occur at the same locations as
the optima of f Ĳx). The second term pĲx) is a penalty term that
has the effect of increasing the value of f softĲx) whenever a
property value lies outside its preferred window (otherwise if
all constraints are satisfied its value is zero). From the con-
struction of eqn (1), the merit values are bounded to lie be-
tween −1 and 3. Fully feasible points have merit values less
than one (with x0 having a merit value of zero), infeasible
points have merit values greater than zero, while semi-feasible
points can span the range from −1 to 2. It follows from these
properties that the optimisation procedure will never prefer an
infeasible point over a feasible point (since the infeasible
point will always have a higher merit value than x0). Moreover,
it will only prefer a semi-feasible point over the best identified
feasible point if the value of the lead property at the semi-
feasible point is substantially lower than that at the best iden-
tified feasible point (resulting in a lower overall merit value).
The complete step-by-step procedure for carrying out the
constrained optimisation is summarised in the flow diagram
of Fig. S1b† for a problem involving two constrained
variables. The diagram makes clear the simplicity of the pro-
cedure, which in practice is scarcely more difficult to imple-
ment than a standard unconstrained optimisation. Impor-
tantly, the optimisation routine requires little prior knowledge
of the system being optimised and, by using only easily sup-
plied values for the constraints, avoids the usual need for la-
borious tuning of penalty parameters (see ESI† and ref. 24).

To exemplify the application of the procedure to chemical
optimisation, we show how it may be used to tune the prod-
ucts of a cascadic reaction of the type X0 → X1 → X2 → … XN.
It is a characteristic feature of such reactions that a mixture
of products is present at all intermediate times, with the in-
stantaneous distribution of products depending (in an often
complicated way) on the underlying kinetics of the reaction.
For the purposes of exposition, we specifically focus on the

synthesis of o-xylenyl adducts of Buckminsterfullerene by the
reaction of C60 with cyclic esters of a hydroxy sulfinic acid
(sultines),25 see Scheme 1. While these molecules have im-
portant applications as light-harvesting agents and electron
conductors,25–27 the details of their use need not concern us
here. Suffice to say, it is frequently the first- and second-
order adducts that are used in practice, with the presence of
significant quantities of higher-order adducts having a detri-
mental impact on optoelectronic behaviour.28 Hence, there is
a need to identify reaction conditions that maximise the
yields of singly- and doubly-functionalised molecules, while
minimising the fractions of higher-order adducts.

The high stabilities of the reagents used in the synthesis
of o-xylenyl-functionalised C60 make it a viable candidate for
self-optimisation, with the one-pot nature of the reaction
lending itself to straightforward automation. Here we used a
simple single-phase, capillary-based flow reactor,‡ incorporat-
ing: two syringe pumps, separately loaded with C60 and
sultine solutions; a passive y-shaped mixer for bringing the
two solutions into contact; and a cylindrical solid-state heater
for thermally activating the reaction (see Fig. 1 and Methods).
Control over the time, temperature and chemical composi-
tion of the reaction was achieved by making independent ad-
justments to the infusion rates of the two reagent streams
and the temperature of the heater.

High performance liquid chromatography (HPLC) was se-
lected for on-line analysis, being a moderately fast, flow-
compatible method for analysing multicomponent solutions.
HPLC has been successfully applied to self-optimising reac-
tors by the groups of Jensen6,10,11 and Bourne.8 For the cur-
rent work, discrimination of the o-xylenyl adducts was
achieved using pyrenylpropyl-functionalised silica as the sta-
tionary phase and a mixture of toluene and hexane as the
mobile phase27 (the affinity of the C60 adducts to the mobile
phase rises substantially with increasing order number,
resulting in progressively shorter and well separated elution
times). Following each change of reaction conditions, the sys-
tem was allowed to stabilize for a time period equal to twice

Scheme 1 Synthesis of o-xylenyl C60 adducts of varying order via in situ conversion of sultine (1,4-dihydro-2,3-benzoxathiin 3-oxide) to
o-quinodimethane (oQDM) (a) followed by successive attachments of oQDM to C60 (X0) by Diels–Alder cycloadditions (b).

‡ A flow synthesis for indene C60 adducts has previously been reported by Seyler et al.29
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the current calculated residence time. A sample of the prod-
uct mixture was then taken by diverting the out-flow of the
reactor to a sample coil, from where it was injected into an
HPLC column using a high-pressure switching valve. Detec-
tion was carried out optically by absorption spectroscopy. For
ease of comparison all chromatograms reported here have
been normalised to the total area under the measured peaks.
The relative concentrations of the adducts were determined
from the areas under the chromatographic peaks, using a cal-
ibration curve.

Initial testing of the reactor was carried out by varying in
turn the reaction temperature, reaction time and molar ratio of
sultine to C60, while holding the other two parameters con-
stant. The effects of varying these parameters on the measured
chromatograms are shown in Fig. 2a(i–iii), while the effects on
the mole fractions of the adducts are shown in the stacked area
plots of Fig. 2b(i–iii). Up to four distinct and well separated
chromatographic peaks were observed in each case at elution
times of approximately 4.4, 5.4, 7.5, and 11.4 min, correspond-
ing to triply-(X3), doubly-(X2), singly-(X1) and un-(X0) function-
alised C60, respectively (see Methods). Similar trends are evi-
dent in each plot, with there being a reduction in the C60 peak
accompanied by an increase in the other peaks as the variable
parameter was increased. Hence, for the conditions tested, in-
creases in the temperature, reaction time and sultine : C60 ratio
all resulted in increased conversion of C60 into higher-order
adducts in broad accordance with expectation.

The plots in Fig. 2 show smooth trends in the concentra-
tions of the adducts as the reaction parameters were varied,

indicating a well controlled reaction environment and low
noise in the measurement system – necessary characteristics
for developing a reliable self-optimising reactor. However,
collectively, the plots represent a very limited data set since
only one reaction parameter was varied in each case, with the
other two being held fixed. There is no guarantee similar
trends would be obtained for different values of the fixed pa-
rameters (indeed, given the cascadic nature of the reaction,
the mole fractions of all species must eventually decrease as
the reaction proceeds and they are converted into higher-
order adducts in contrast to the behaviour seen in Fig. 2).

For a more complete understanding of how the distribu-
tion of reaction products depends on the reaction conditions,
the three-dimensional parameter space should be mapped
out by varying all reaction parameters in parallel. The result
of doing this at a coarse level – using a 6 × 6 × 6 set of evenly
spaced grid points for the temperature, time and sultine : C60

ratio – is shown in Fig. 3. The measurements were carried
out in a randomized order, with several sets of reaction pa-
rameters being repeated multiple times. Chromatograms for
the replicate measurements showed only slight differences
(see Fig. S2†), indicating negligible system drift over the time-
scale of the measurement run, with only small sample-to-
sample variations due to minor reactor instability and/or
measurement errors.

A number of general observations may be made about the
data in Fig. 3: as before, in all cases a mixture of reaction
products was obtained; increasing the reaction time, temper-
ature and/or sultine : C60 ratio resulted in a progressive

Fig. 1 Schematic showing experimental set-up for manual and automated synthesis of o-xylenyl C60 adducts. Sultine and C60 solutions are sepa-
rately injected into the two inlets of a y-shaped mixer, and the resulting mixture is then passed helically around a cylindrical solid-state heater to
initiate the reaction prior to collection in a flask. For on-line analysis, a small amount of the product mixture is diverted to a sample coil, from
where it is injected into an HPLC column using a high-pressure switching valve. Detection is carried out optically by absorption spectroscopy. The
transient signal from the detector is passed to a personal computer (PC) for display and analysis. In manual mode, the flow rates and temperatures
used in successive measurements are read in sequence from a pre-written file; in automated mode they are determined at runtime by an optimisa-
tion routine on the basis of previously acquired data.
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reduction in the mole fraction of unreacted C60 and a pro-
gressive increase in the mole fraction of the (typically
unwanted) third-order adduct; at lower temperatures the (typ-
ically preferred) first- and second-order adducts were the
dominant products, while at higher temperatures and
sultine : C60 ratios the second- and third-order adducts domi-
nated; an increase in higher-order adducts was evident at
higher temperatures and sultine concentrations, under which
conditions C60 was fully depleted during the reaction, consis-
tent with the cascadic reaction mechanism.

The systematic, reproducible nature of the data in Fig. 3
and S2† suggest the complete system – i.e. the reagents, reac-
tor and measurement system taken as a whole – is a good
candidate for self-optimisation (reproducibility being a pre-
requisite for successful optimisation). As noted above, first-
and second-order adducts of C60 are typically preferred for

electronic applications, with the presence of higher-order ad-
ducts often having a detrimental impact on optoelectronic
behaviour. Hence, as an initial test, a simple unconstrained
optimisation was carried out, in which we sought to mini-
mise the formation of the third-order adduct by setting the
merit function – i.e. the quantity to be minimised – equal to
the mole fraction of the third-order adduct, [X3] (see Table
S1†).

For all optimisation runs reported here we used the global
optimisation code Stable Noisy Optimisation by Branch and
Fit (SNOBFit)22 – a noise-tolerant routine that first divides
the search space into separate boxes that each contain one
sampled data point, and then forms quadratic models
around each point; local searching is handled by selecting
the model minima as new evaluation points, and global
searching is handled by making measurements in large boxes

Fig. 2 (a) Graphs showing chromatograms for flow-synthesised o-xylenyl fullerene adducts as a function of temperature (i), reaction time (ii), and
sultine to C60 ratio (iii), holding in each case the other two reaction parameters fixed. The peaks corresponding to each adduct are labelled in the
uppermost plots. (b) Stacked plots showing mole fraction distributions for the fullerene adducts versus temperature (i), reaction time (ii), and
sultine to C60 ratio (iii), using mole fraction values extracted from the chromatograms in (a). For the reaction conditions chosen, increases in tem-
perature, reaction time and sultine to C60 ratio all lead to increased conversion of C60 into higher order adducts, with the concentration of C60 de-
creasing and the concentration of higher order adducts increasing.
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(which correspond to large regions of unexplored territory).
In each iteration, a batch of new points is selected for testing,
some for local optimisation and others for global searching.
In all cases: the temperature was varied between 100 and
150 °C; the reaction time was varied between 3 and 31 min;
the flow-rate ratio was varied between 2 : 1 and 1 : 2;§ the rou-
tine was started ‘cold’, i.e. with no pre-supplied measure-
ment data; and approximately one hundred trial measure-
ments were carried out during each search, of which 30%
were selected for global searching and 70% for local refine-
ment (see Methods).

The left side of Fig. 4 shows a scatter plot of the sampled
data from run I, in which the marker locations indicate the
reaction conditions and the colours denote the merit values:

lower merit values are denoted by darker colours; and, for
ease of distinction, merit values higher than the median

§ When the sultine flow rate (FS), the C60 flow rate (FC60
) and the temperature (T)

are plotted along the x, y and z axes, respectively, the constraints define a right

prism shaped parameter space with vertical walls and a trapezoidal base (see
Fig. 4) – the non-parallel sides of the base being due to the constraints imposed
on the flow-rate ratio. SNOBFit by contrast accepts only box-bounded con-
straints, corresponding to a rectangular prism shaped parameter space. The trap-
ezoidal flow constraints were handled by a two-stage transformation of the exter-
nal variables FS and FC60

to box-bounded internal variables. The first stage
involved a rotation of each coordinate [FS, FC60

] by 45°, the angle between the
axis of symmetry of the trapezium and the y-axis; while the second stage in-
volved a mapping of each rotated coordinate to the internal rectangular space
used by SNOBFit, using the shadow-map algorithm of Martin and Tan.30

Fig. 3 Stacked plots showing the effect on the mole fraction distribution of concurrently varying the temperature, reaction time, and sultine to
C60 ratio. Each individual plot shows the variation of mole fraction distribution with reaction time at a given temperature and sultine to C60 ratio.
Plots in the same row correspond to reactions undertaken at a common temperature, while plots in the same column correspond to reactions
undertaken at a common sultine to C60 ratio. The measurements were carried out in a randomized order to eliminate possible bias due to system
drift. Increases in the reaction time, temperature and/or sultine : C60 ratio cause a progressive reduction in the mole fraction of unreacted C60 and
a progressive increase in the mole fraction of the third-order adduct; at lower temperatures the first- and second-order adducts are the dominant
products, while at higher temperatures and sultine : C60 ratios the third-order adduct dominates.
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value of 0.011 are coloured red, while those lower than the
median value are coloured blue (pale, near-white markers de-
note points with merit values equal or close to the median
value). The wire-frame ‘cage’ denotes the bounds defined by
the flow rate and temperature constraints. The algorithm has
evidently sampled certain regions of the parameter space
preferentially – in particular the region next to the lower half
of the right face of the cage, corresponding to lower tempera-
tures and lower sultine concentrations. The data markers in
this region are all coloured blue, signifying low merit values,
i.e. low mole fractions of the third-order adduct.

The mole fractions [X0], [X1], [X2] and [X3] of the four ad-
ducts are plotted against measurement number in Fig. 5a(i).
The mole fraction distribution can be seen to fluctuate sub-
stantially between successive measurements due to local
searching at the beginning of each batch of points, and
global searching at the end of each batch: in the local phase,
the parameter space is sampled preferentially in regions
where the existing merit values are low, yielding new merit
values that are typically low also; in the global phase,
unexplored regions of the parameter space are sampled
where the merit values tend to be large (but where superior,
as yet undiscovered, minima might potentially exist). Insight
into the behaviour of the algorithm can be drawn from
Fig. 6a(i) and (ii) which show successive merit values and a
histogram of the merit values, respectively. The plots indicate
that the algorithm preferentially explored regions of the pa-
rameter space that yielded low merit values, with more than
80% of sampled data points having merit values of 0.050 or
less (compared to a maximum measured value of 0.389). The
best point with the lowest merit value of 0.001 had mole frac-

tions of 0.318, 0.649, 0.033 and 0.001 for the zero-, first-,
second- and third-order adducts, respectively, confirming ef-
fective suppression of the third-order adduct.

Fig. 4 Scatter plots for runs I and II, showing the influence of the sultine flow rate, the C60 flow rate and the temperature on the merit values fI
and fII. The location of each data point indicates the reaction conditions used, while the colour denotes the corresponding merit value. For ease of
interpretation, points with merit values above the median merit value have been coloured red, while those with merit values below the median
value have been coloured blue; points with merit values close to the median value appear as white. The black cage defines the flow rate and
temperature constraints. The arrows indicate the locations of the best point (i.e. the point with the lowest merit value) for the two runs. In run I,
the algorithm preferentially sampled the region next to the lower half of the right face of the cage, corresponding to lower temperatures and
lower sultine concentrations. In run II it preferentially sampled the same broad region, but placed a stronger emphasis on data points close to the
foremost ‘spine’ of the cage, corresponding to longer reaction times.

Fig. 5 (a) Time series for runs I and II, showing the mole fraction
distribution of the o-xylenyl adducts versus measurement number N.
(b) Time series showing the mole fraction distribution for the best re-
sult to date (i.e. the data point yielding the lowest merit value) versus
N. In the case of run I, the reduction in [X3] was achieved at the cost of
an unwanted increase in [X0], whereas in the case of run II [X0] was
maintained at a low value as intended. (c) Mole fraction distributions
from (a) arranged in order of decreasing [X3].
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Fig. 5b(i) shows mole fractions for the best result obtained
so far versus measurement number, N. Changes in the best
result occur whenever the most recently tested reaction
conditions give rise to a product distribution with a lower
merit value than the previous best result, i.e. a lower mole
fraction for the third-order adduct. Improvements occurred
at N = 5, 15, 18 and 53, with the mole fraction of the third-
order adduct falling from an initial value of 0.384 at N = 1 to
a value of 0.001 at N = 53. At the same time, the concentra-
tion of unreacted C60 increased from an initial value of 0.000
at N = 1 to a value of 0.318 at N = 53. Hence, it is evident that
the reduction in [X3] was primarily achieved at the expense of
an undesirable drop in C60 conversion.

To improve the conversion rate, a second optimisation
(run II) was carried out in which the mole fraction of the
third-order adduct was again minimized, but constraints
were applied to the combined mole fraction of the (desired)
first- and second-order adducts: soft and hard lower limits of
90 and 60%, respectively, were imposed on the combined
mole fraction [X1,2] = [X1] + [X2], using a constraint window
for [X1,2] of [0.9, 1.0] and a ΔF value of 0.3. The right side of
Fig. 4 shows a scatter plot of the measurements made during
run II, where merit values above the median value (0.020) are
again coloured red and those below the median value are
coloured blue. As before, the algorithm preferentially sam-
pled the low temperature, low sultine region close to the
right face of the cage. However, this time the majority of sub-
median data points occurred close to the foremost ‘spine’ of
the cage, corresponding to lower flow rates, i.e. longer reac-
tion times. Hence, in common with the unconstrained case
of run I, the algorithm ensured a low mole fraction of the
third-order adduct by selecting low temperatures and low

sultine concentrations, but this time it selected longer reac-
tion times that resulted in higher C60 conversion. The best
point with the lowest merit value of −0.166 had mole frac-
tions of 0.101, 0.784, 0.110 and 0.004 for [X0], [X1], [X2] and
[X3].

The mole fraction distribution is plotted against measure-
ment number in Fig. 5a(ii). While the observed behaviour is
similar to that seen in Fig. 5a(i) for run I – with the mole
fractions again fluctuating substantially between successive
measurements as the optimisation routine switched between
local and global searching – the average height of the dark
purple bars that denote unreacted C60 is significantly lower.
Hence, compared to the first optimisation run, the algorithm
preferentially selected reaction conditions that resulted in
substantial conversion of C60. Fig. 5b(ii) shows mole fractions
for the best result to date versus N, where the best result cor-
responds to the outcome with the lowest (soft) merit value.
Improvements occurred at N = 3, 13, 14 and 33, with [X3] as-
suming respective values of 0.013, 0.006, 0.005 and 0.004 and
[X0] assuming respective values of 0.067, 0.155, 0.134 and
0.101. Hence, although the initial reduction in [X3] was again
achieved at the cost of an increase in [X0], the C60 concentra-
tion subsequently dropped without the concentration of the
third-order adduct increasing. The algorithm therefore
succeeded in its aim of minimizing the amount of the third-
order adduct, while also achieving a close to 90% yield of
first- and second-order adducts.

The contrasting behaviour of the constrained and
unconstrained optimisation runs can be seen more easily by
ranking the data from Fig. 5a(i) and (ii) in order of decreas-
ing third-order adduct. While the two ranked plots in
Fig. 5c(i) and (ii) are qualitatively similar in appearance –

Fig. 6 (a) Merit values for optimisation run I expressed as a time series (i) and a histogram (ii). The square-shaped marker in the time-series plot
corresponds to the best point. (b) Merit values for optimisation run II expressed as a time series (i) and a histogram (ii). Also shown for run II are
the time series and histograms for (iii and iv) and pIIĲx) (v and vi). The square- and circle-shaped markers in the time-series plots correspond
to the best point and the best feasible point, respectively. As expected, during both runs the optimiser preferentially explored regions of the chem-

ical parameter space that yielded low merit values. In the case of run II, these low values were achieved through a combination of low values

(corresponding to points with low [X3] values) and low pĲx) values (corresponding to points that satisfied or nearly satisfied the constraint).
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with the concentrations of the second- and third-order ad-
ducts decreasing and the concentrations of the zero- and first-
order adducts broadly increasing from left to right – clear dif-
ferences are evident: the average mole fraction of the third-
order adduct is slightly higher in the case of the constrained
optimisation (run II), while the average mole fraction of
unreacted C60 is markedly lower. Hence it is evident that,
during run II, the algorithm preferentially probed regions of
the parameter space that resulted in high C60 conversion.

The behaviour of (the constrained optimisation) run II can
be understood by examining the plots in Fig. 6b, which show
successive values and the corresponding histograms for the
total objective function f softĲx), the transformed merit func-
tion f *(x) and the constraint function pĲx). It can be seen that
the algorithm preferentially explored regions of the chemical
parameter space that yielded low merit values, with these low
values being achieved through a combination of low f *(x)
values and low pĲx) values. The f*(x) values, while running
from −0.227 to 0.887, were strongly biased towards negative
values, indicating that the algorithm identified many points
that yielded a lower third-order adduct concentration than
the first identified feasible point x0 (identified at N = 1). In ad-
dition, the pĲx) values were preferentially skewed towards
zero, signifying a strong bias towards points that satisfied or
nearly satisfied the constraint: of the 100 measurements, 46
resulted in a pĲx) value of zero, corresponding to fully feasible
points that completely satisfied the applied constraint (i.e.
yielded a combined mole fraction for X1 and X2 of >90%).

Fig. 7a(i) shows the chromatogram corresponding to the
lowest merit value (0.001) obtained during run I, while
Fig. 7a(ii) shows chromatograms for the lowest merit value
(−0.166) and the lowest fully feasible merit value (−0.123)
obtained during run II. Comparing these chromatograms, it
can be seen that [X1,2] was substantially higher for run II
(∼0.9) than run I (0.68), consistent with the successful appli-
cation of the constraint in the former case. The fully feasible
and semi-feasible chromatograms of Fig. 7a(ii) are very simi-
lar to one another, implying similar amounts of the four ad-
ducts in both cases. The best feasible point had a third-order
adduct mole fraction of 0.007 and a combined mole fraction
[X1,2] of 0.905 for the first- and second-order adducts, com-
pared to values of 0.004 and 0.894 for the best semi-feasible
point. Hence, comparing the best point and the best feasible
point, it is clear that – in accordance with the discussion
above – an improvement (reduction) in the primary parame-
ter [X3] was achieved through a slight violation of the con-
straint on [X1,2]. The violation in this particular case was
rather small since the best feasible point had an [X3] value
that was already close to the lowest possible value of zero, so
straying far outside the feasible zone would have caused a
substantial increase in pĲx) without significantly reducing
f *(x).

In run II, a constraint was applied to [X1,2], the combined
mole fraction of the first- and second-order adducts, but the
relative amounts of the two mole fractions were allowed to
vary freely. While the best point and best feasible points

Fig. 7 (a) Chromatograms for the best points (dark purple curves) and the best feasible points (red curves) obtained during the six optimisation
runs (note: for varying reasons only a single chromatogram is shown for runs I, IV and V: run I was an unconstrained optimisation, meaning all
points were feasible; no feasible point was found for run IV; and the best feasible point for run V was also the best overall point for that run). The
mole fraction distributions extracted from the chromatograms are shown inset, with “B” denoting the best point and “F” denoting the best feasible
point. (b) Illustrative chromatograms from run IV, obtained at different values of [X3], ranging from 0.01 to 0.4. (c) Trade-off curve for run IV, show-
ing an unwanted increase in [X3] as 12 decreases.
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corresponded to product mixtures that contained substan-
tially more of the first-order adduct than the second-order ad-
duct, this was not specifically encoded within the merit func-
tion. To ensure such an outcome, it is necessary to impose a
constraint on the ratio 12 = [X1]/[X2], alongside the existing
constraint on [X1,2]. To demonstrate the feasibility of doing
this, in the next optimisation run (run III), we additionally
sought to enforce a lower limit of 4 : 1 on the ratio 12 = [X1]/
[X2], using a constraint window of [4, ∞] and a ΔF value of
0.3¶ (while maintaining the existing constraint on [X12]).

Scatter plots for run III, plots of mole fractions and merit
values versus measurement number, and histograms of
f softĲx), f *(x) and pĲx) are provided in Fig. S3.† The chromato-
grams for the best point and the best feasible point, obtained
at measurement numbers 26 and 99 respectively, are shown
in Fig. 7a(iii). The best feasible point had mole fractions of
0.085, 0.778, 0.128 and 0.009, implying an 12 value of
∼6.1 : 1 and an [X12] value of 0.906 – both values being con-
sistent with the specified limits. The best point by contrast
had mole fractions of 0.129, 0.776, 0.091 and 0.004, implying
an 12 value of ∼8.5 : 1 and an [X12] value of 0.867 – the
slight violation of the [X12] constraint having led to a benefi-
cial reduction in [X3] from 0.009 to 0.004.

Obtaining a product mixture that is rich in the first-order
adduct is not especially difficult, and indeed occurred by
chance in run II, even without imposing a constraint on 12.
For the fourth optimisation run (run IV), we sought to obtain
a product mixture that contained more of the second-order
adduct than the first-order adduct. Owing to the cascadic na-
ture of the reaction, this is a substantially harder challenge
since the second-order product lies adjacent in the reaction
sequence to the unwanted third-order adduct, meaning con-
ditions that favour the formation of the second-order product
are liable to promote (to a lesser extent) the unwanted forma-
tion of the third-order product.

To assess the feasibility of attaining an end-product rich
in the second-order adduct, we placed what we hoped
would be a physically achievable upper limit of 1 : 2 on the
ratio 12 = [X1]/[X2], using a constraint window of [0, 0.5]
and a ΔF value of 0.3, while again maintaining the con-
straint on [X12]. The resultant scatter plots, plots of mole
fraction and merit value versus measurement number, and
histograms of f softĲx), f *(x) and pĲx), are provided in Fig.
S4.† In contrast to the previous results, no feasible point
was identified during the course of the run, with the histo-
gram for pĲx) spanning the range 0.280 to 1.999 due to par-
tial (0 < pĲx) ≤ 1) or complete (pĲx) > 1) violation of at
least one of the constraints in all cases. There were 50 cases
of partial violations, of which 36 were due to partial viola-
tion of the yield constraint only, and 14 were due to partial
violation of both constraints. There were 50 cases of full vi-

olations, of which 2 were due to full violation of the yield
constraint, 26 were due to full violation of the ratio con-
straint, and 22 were due to full violation of both con-
straints. The constraint violations are consistent with the
difficulty noted above of suppressing the formation of the
third-order adduct, while at the same time trying to achieve
a high mole fraction of the second-order adduct.

The chromatogram for the best point in run IV, i.e. the
point with the lowest soft merit value (−0.212), is shown in
Fig. 7a(iv). From the areas under the chromatographic peaks,
[X0], [X1], [X2] and [X3] were determined to be 0.001, 0.288,
0.510 and 0.201, respectively. Hence, even at the best point, a
substantial amount of the third-order adduct was present
and both constraints were partially violated, with [X12] having
a value of 0.798 (i.e. less than 0.9) and 12 having a value of
0.564 (i.e. greater than 0.5). As expected from the above dis-
cussion, in an effort to find conditions that came close to sat-
isfying the constraint on 12, the algorithm identified condi-
tions that resulted in a high concentration of the third-order
adduct and virtually no C60.

The difficulty of simultaneously achieving a high ratio of
the second- to first-order adducts, while at the same time
suppressing formation of the third-order adduct is evident
from Fig. 7b, which shows chromatograms (acquired during
run IV) at several illustrative values of [X3]. From the chro-
matograms, it is evident that the ratio of the first-order ad-
duct to the second-order adduct decreases steadily as [X3] in-
creases. In Fig. 7c, the ratio 12 is plotted against the mole
fraction [X3] for each measurement in run IV. The data points
lie on a trade-off curve, with desired reductions in 12 lead-
ing to an unwanted increase in [X3]. From the trade-off curve,
it is evident that [X3] can only be kept below the 10% level
(which we consider to be an acceptably low value) if 12 is
greater than approximately 1.5. Armed with this information,
a fifth optimisation run (run V) was carried out using an ex-
panded constraint window for 12 of [0, 1.5] and the same
ΔF value of 0.3. Scatter plots for run V, plots of the mole
fraction distributions and merit values versus measurement
number, and histograms of f softĲx), f*(x) and pĲx) are provided
in Fig. S5.†

Using the expanded constraint window for 12, an initial
feasible point x0 was found at N = 21. The same point turned
out to be both the best feasible point and the point with the
lowest overall merit value (see Fig. 7a(v) for chromatogram).
The mole fractions for [X0], [X1], [X2] and [X3] were 0.007,
0.535, 0.373 and 0.085, respectively, corresponding to values
of 0.909 and 1.43 for [X12] and 12 in close agreement with
the trade-off curve of Fig. 7c. Hence, given the successful dis-
covery of a fully feasible solution in run V, it is evident that
data generated in an initial optimisation run based on
unsatisfiable constraints (i.e. run IV) may nonetheless still be
used to identify more appropriate constraints for future runs.
In this way, it is easy to learn from experience and progres-
sively modify constraints over a number of repeat runs until
the constraints are appropriately matched to the underlying
chemical system.

¶ In this work, we were primarily interested in achieving fully feasible solutions,
for which the exact ΔF value chosen is of secondary importance. Hence a com-
mon value of 0.3 was used for all constraints.
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While the merit functions proposed above are sensible
choices for achieving the intended outcomes, they are not
the only options. The same (or at least a similar) result
should be obtained for any sensibly constructed merit func-
tion that has been designed to achieve a particular goal.
Based on the trade-off curve of Fig. 7c, as an alternative to
the merit function used for optimisation run V, the ratio 12

could be used as the principal property to be minimised, sub-
ject to [X12] lying in the constraint window [0.9, 1.0] (using
here the same ΔF value of 0.3). The results of framing the
merit function in this way were investigated in run VI. The
chromatograms for the best feasible point and the best point
are shown in Fig. 7a(vi) and can be seen to closely match
those of the previous run, confirming the approximate equiv-
alence of the optimisation criteria. The best feasible point
had mole fractions of 0.007, 0.527, 0.378 and 0.087 for [X0],
[X1], [X2] and [X3], corresponding to values of 0.906 and 1.393
for [X12] and 12 in reasonably close agreement with the best
feasible point of run V. The best point by contrast had mole
fractions of 0.004, 0.382, 0.458 and 0.157, corresponding to a
favourable reduction in 12 (to 0.833) at the expense of an
unfavourable reduction in [X12] (to 0.840).

Discussion and conclusion

The results presented above illustrate the use of self-
optimisation in two distinct forms: the first form, blind discov-
ery, relates to the optimisation of an unknown system, for
which little information is available at the outset; while the sec-
ond, rediscovery, relates to a repeat optimisation of a (partially)
known system. In the case of blind discovery, it is not known
in advance what can be achieved by the system. Physically
plausible constraints must therefore be proposed on the basis
of physicochemical intuition in the hope that an acceptable so-
lution will be attained. The acceptability or otherwise of the so-
lution is determined by the appropriateness of the constraints
chosen. In cases where the solution is not acceptable to the
user, blind optimisation may be straightforwardly followed by
one or more refinement stages, in which the constraint win-
dows are iteratively modified to achieve a superior outcome.

Rediscovery relates to repeat optimisations of a well un-
derstood system for which a near optimal outcome is known
in advance, but the detailed reaction conditions needed to
achieve that outcome remain to be discovered. This might be
the case, for instance, when resuming a previously optimised
reaction after changing reagent batches or otherwise servic-
ing/modifying the reactor, or on transferring the reaction to a
similar, but untested, reactor. In such cases, it is reasonable
to expect broadly equivalent behavior across the reaction
runs and between reactors, but the detailed mapping of reac-
tion conditions onto the final product may differ due to
slight differences in reagent compositions or the mechanical
configuration of the reactorĲs).

Most of the optimisation runs reported above were carried
out in the manner of blind runs, where we postulated appro-
priate constraints without using information gained in previ-

ous runs to guide our choice. Rather loose constraints were
applied that had a significant chance of being satisfied im-
mediately, recognising they could if necessary be tightened in
subsequent runs to achieve a superior outcome. Run V is an
example of rediscovery in the sense that we used the trade-off
information acquired during run IV to identify an achievable
solution with an acceptable mole fraction distribution. We
then modified the upper limit on 12 accordingly to deliver
that solution in run V (run VI may be considered an example
of re-optimisation for similar reasons).

We stress again that the merit functions used here are
constructed entirely on the basis of easily acquired physical
information and consequently, once the appropriate con-
straints are established, they may be written down directly
with no further work or mathematical manipulation being re-
quired on the part of the user. For the benefit of readers
wishing to implement the procedure described in this paper,
we have provided an easy-to-use self-contained software pack-
age (see https://github.com/jdmgroup/SNOBFit_for_chemi-
cal_optimisations) that takes care of the construction and
subsequent optimisation of the merit function, together with
detailed tutorial-style instructions. We hope the provision of
this software will substantially simplify the implementation
of self-optimising reactors, and so encourage their wider
adoption by the general chemistry community.

Beyond the tuning of product distributions, the procedure
used here is also applicable to reactions where product yield
must be balanced against practical factors such as produc-
tion rates and/or materials and energy costs. The approach
has further applications in materials optimisation, where a
compromise must frequently be reached between several
physicochemical properties. For instance, using a conven-
tional weighted product based multi-objective merit function,
Krishnadasan et al.1 reported a self-optimising reactor that
optimised the emission intensity of quantum dots at a cho-
sen emission wavelength. Owing to the difficulty of identify-
ing weights that accurately encapsulated the intended out-
come, small (nm-level) deviations from the target wavelength
were heavily penalized even when they resulted in a substan-
tial improvement in emission intensity. Framing the same
problem as a constrained optimisation – in which the inten-
sity is maximized subject to the emission wavelength lying in
a prescribed range – would allow the trade-off to be precisely
encoded within the merit function in a way that more closely
reflects typical user preferences.

In summary, we have described a simple procedure for
constructing multi-objective merit functions for self-
optimising reactors. Framing the problem as a constrained
optimisation, in which a principal property is optimised sub-
ject to soft and hard constraints on the other parameters, al-
lows the optimisation criteria to be set out in a manner that
is intuitive even for the non-specialist. The specific method
for constructing chemical utility functions used here offers
substantial advantages over conventional approaches based
on weighted sums and products, both in terms of their ease
of construction and their mathematical behaviour. In
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particular, the merit function may be written down directly
from the specified constraints without the need to tune
weighing coefficients or penalty parameters, and given suffi-
cient time (if satisfiable constraints are selected) the solution
is guaranteed to minimise the lead property, while ensuring
all other properties lie within the prescribed boundaries. The
generic approach is not tied to any specific optimisation algo-
rithm and consequently can be expected to simplify the im-
plementation of self-optimising reactors in many situations,
while at the same time yielding improved reaction products
that more closely match user requirements.

Methods
Preparation of precursors for o-xylenyl C60 adducts

C60 was obtained from Solenne BV, while all other chemicals
were obtained from Sigma-Aldrich. Sultine (1,4-dihydro-2,3-
benzoxothiin 3-oxide) was synthesised using the protocol de-
scribed in Kim et al.25 A stock solution of sultine was pre-
pared by dissolving under argon the unpurified product in
o-dichlorobenzene (o-DCB) at a concentration of 1.4 mg mL−1.
A stock solution of C60 was prepared by dissolving under ar-
gon the as-received C60 in o-DCB at a concentration of 2 mg
mL−1. The stock solutions were stored under argon for up to
a week before use.

Reactor setup

The reagent solutions were transferred to separate 500 mL
flasks, where they were stored under argon and delivered to
the reactor by a dual-channel continuous-flow syringe pump
(Syrris Asia), using PTFE tubing (1 mm I.D., 2 mm O.D., Poly-
flon Technology Ltd.). The two solutions were merged using
a static y-shaped mixer (PEEK, P-512, Upchurch Scientific).
Using the same diameter PTFE tubing, the mixed reagents
were passed helically around a heater formed from a solid 88
mm-diameter cylindrical block of aluminium containing
three symmetrically disposed inset cartridge heaters (3/8″ ×
2″, 150 W, RS Components Ltd.). The temperature of the
heater surface was monitored using a K-type flag-style ther-
mocouple (25 × 13 mm, FL-K-2M, Labfacility) connected to
a microcontroller (Arduino Uno) via a thermocouple ampli-
fier (MAX6675, Adafruit). The total length of tubing in con-
tact with the heater was 119 cm, equating to a heated reactor
volume of 0.931 mL. The heater was enclosed in a plastic
box, containing two fans inset into the walls for air cooling.
The heater and fans were controlled by the microcontroller,
using the Arduino PID library. A back-pressure regulator (20
psi, PEEK, Upchurch Scientific) was placed at the outflow of
the reactor. The destination of the product stream was con-
trolled by an injection valve as described below. The total
length of tubing in the reactor was 202 cm, equating to a to-
tal reactor volume V of 1.587 mL.

On-line HPLC analysis

Eluent solvent (hexane/toluene, 1 : 3) was passed through a
pyrenylpropyl-functionalised silica column (BuckyPrep,

Cosmosil) using an HPLC pump (Model 12-6, SSI). Sample
loading and injection were controlled by an injection valve
(MXP-7900, Rheodyne) connected to the outflow of the reac-
tor via a sample coil (stainless steel, Upchurch Scientific, Vcoil
= 5 μL). The sample transmittance after the column was mon-
itored using a 390 nm light-emitting diode and an amplified
silicon photodiode (OPT101, Texas Instruments), which were
placed either side of transparent perfluoroalkoxy tubing (I.D.
0.50 mm, O.D 1/16 in, Upchurch Scientific). A second ampli-
fied silicon photodiode arranged at 90° to the LED allowed
the signal from the first photodiode to be corrected for fluc-
tuations in LED light intensity. The signals from the photodi-
odes were acquired using a data acquisition card (NI-6211,
National Instruments) controlled by a MATLAB script.

Manual operation

The heater, injection valve and syringe pump were controlled
by a PC across the universal serial bus (USB). A custom-
written MATLAB script was used to step through a pre-
determined sequence of reaction conditions. The set-point
temperature of the heater was updated at the start of each
step. Following a delay of at least one minute as described
below, the two syringe pumps containing the C60 and sultine
solutions were set to the specified volumetric flow-rates
(FC60

and FSultine), with the injection valve oriented in the in-
ject position (i.e. with the sample loop between the eluent
stream and the column), so that the product flowed directly
to the collection flask. The flow was allowed to stabilize for a
duration Δt equal to twice the mean residence time (Δt = 2V/
[FC60

+ FSultine]). The injection valve was then switched to the
load position (i.e. the sample loop was inserted between the
product stream and the collection flask) and held there for a
duration sufficient for 50 μL (= 10Vcoil) of fluid to pass
through. With the product loaded in the sample coil, the in-
jection valve was switched back to the inject position, causing
the product to be carried by the eluent stream into the col-
umn. Chromatograms were obtained by recording the signals
from the two photodiodes for thirteen minutes. The next step
was started while the chromatogram from the previous step
was still being recorded by first updating the target tempera-
ture and waiting for it to stabilize and then, at a time Δt be-
fore the end of the current HPLC measurement, setting the
syringe pumps to infuse at the new flow rates.

Automated operation

For ease of use a class-based MATLAB wrapper was written
for the SNOBFit functions provided by Huyer and Neumaier.‖
At the start of each optimisation run, using a Latin Hyper-
cube design, SNOBFit selected a batch of npoint randomised
data points inside the region bounded by the parameter con-
straints. In subsequent iterations, SNOBFit selected new data
points for measurement in batches of size nreq. New batches
were generated until the total number n of function evalua-
tions exceeded a pre-set limit ncall (the final batch was carried
out to completion). To initialise the soft optimisations, a
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feasible point x0 satisfying the condition pĲx0) = 0 was first
identified by running an unconstrained optimisation, using
the penalty function pĲx) as the objective function to be
minimised. Once a feasible point had been found, soft merit
values for all data points so far measured were calculated
using eqn (1). The optimisation run was then restarted using
the soft merit function f *(x) as the objective function. In cases
where no feasible point had been found after fifty function
evaluations, the soft optimisation was instead started using
2fmax − fmin as a proxy for a feasible point (see main text).

The following SNOBFit parameters (see ref. 2) were used:

Parameter Value Description

N 3 Number of reaction parameters
Δf 0.02 Uncertainty in f, used for fitting
npoint N + 4 = 7 Number of points in initial batch
nreq N + 4 = 7 Number of points in subsequent batches
ncall 100 Maximum number of function calls
p 0.3 Probability of generating a point away from a

minimum: used to control the balance of local
and global searching.

Data statement

The datasets generated during the current study are available
in the Imperial College Box repository at:

https://imperialcollegelondon.box.com/v/tuning-reaction-
products

The optimisations were carried out using an easy-to-use,
custom-written, class-based wrapper for SNOBFit which, together
with detailed tutorial-style instructions, may be obtained from:

https://github.com/jdmgroup/SNOBFit_for_chemical_
optimisations

Conflicts of interest

The authors declare no competing financial interests.

Acknowledgements

B. W. is funded under an EPSRC Doctoral Training Centre in
Plastic Electronics (grant number EP/G037515/1). J. B.
acknowledges financial support from an EPSRC Doctoral
Prize Fellowship (Imperial College). The authors are grateful
to Mr. Simon Turner and Mr. Lee Tooley (Department of
Chemistry, Imperial College London) for assisting in the
construction of prototype instrumentation.

References

1 S. Krishnadasan, R. J. C. Brown, A. J. deMello and J. C.
deMello, Lab Chip, 2007, 7, 1434–1441.

2 D. C. Fabry, E. Sugiono and M. Rueping, React. Chem. Eng.,
2016, 1, 129–133.

3 B. J. Reizman and K. F. Jensen, Acc. Chem. Res., 2016, 49,
1786–1796.

4 K. M. Tibbetts, X.-J. Feng and H. Rabitz, Phys. Chem. Chem.
Phys., 2017, 19, 4266–4287.

5 N. Holmes and R. A. Bourne, in Chemical Processes for a
Sustainable Future, ed. T. Letcher, J. Scott and D.
Patterson, The Royal Society of Chemistry, 2015, pp. 28–
43.

6 J. P. McMullen and K. F. Jensen, Org. Process Res. Dev.,
2010, 14, 1169–1176.

7 N. Holmes, G. R. Akien, R. J. D. Savage, C. Stanetty, I. R.
Baxendale, A. J. Blacker, B. A. Taylor, R. L. Woodward, R. E.
Meadows and R. A. Bourne, React. Chem. Eng., 2016, 1,
96–100.

8 N. Holmes, G. R. Akien, A. J. Blacker, R. L. Woodward, R. E.
Meadows and R. A. Bourne, React. Chem. Eng., 2016, 1,
366–371.

9 J. S. Moore and K. F. Jensen, Org. Process Res. Dev., 2012, 16,
1409–1415.

10 B. J. Reizman and K. F. Jensen, Chem. Commun., 2015, 51,
2–5.

11 J. P. McMullen, M. T. Stone, S. L. Buchwald and K. F.
Jensen, Angew. Chem., Int. Ed., 2010, 49, 7076–7080.

12 R. A. Bourne, R. A. Skilton, A. J. Parrott, D. J. Irvine
and M. Poliakoff, Org. Process Res. Dev., 2011, 15,
932–938.

13 Z. Amara, E. S. Streng, R. A. Skilton, J. Jin, M. W. George
and M. Poliakoff, Eur. J. Org. Chem., 2015, 2015,
6141–6145.

14 A. J. Parrott, R. A. Bourne, G. R. Akien, D. J. Irvine and
M. Poliakoff, Angew. Chem., Int. Ed., 2011, 50, 3788–3792.

15 D. N. Jumbam, R. A. Skilton, A. J. Parrott, R. A. Bourne and
M. Poliakoff, J. Flow Chem., 2012, 2, 24–27.

16 V. Sans, L. Porwol, V. Dragone and L. A. Cronin, Chem. Sci.,
2015, 6, 1258–1264.

17 D. E. Fitzpatrick, C. Battilocchio and S. V. Ley, Org. Process
Res. Dev., 2016, 20, 386–394.

18 S. Krishnadasan, A. Yashina, A. J. DeMello and J. C.
DeMello, in Advances in Chemical Engineering, ed. J. C.
Schouten, Elsevier, Amsterdam, 2010, vol. 38, pp. 195–
231.

19 R. T. Marler and J. S. Arora, Struct. Multidiscip. Optim.,
2010, 41, 853–862.

20 E. Triantaphyllou and B. Shu, Encycl. Electr. Electron. Eng.,
1998, vol. 15, pp. 175–186.

21 J. R. S. C. Mateo, in Multi Criteria Analysis in the Renewable
Energy Industry, Springer, London, 2012, pp. 19–22.

22 W. Huyer and A. Neumaier, ACM Trans. Math. Softw.,
2008, 35, 1–25.

23 S. Dallwig, A. Neumaier and H. Schichl, in Developments in
Global Optimization, ed. I. M. Bomze, T. Csendes, R. Horst
and P. M. Pardalos, Springer US, 1997, pp. 19–36.

24 Ö. Yeniay, Math. Comput. Appl., 2005, 10(1), 45–56.
25 K. Kim, H. Kang, S. Y. Nam, J. Jung, P. S. Kim, C.-H. Cho, C.

Lee, S. C. Yoon and B. J. Kim, Chem. Mater., 2011, 23,
5090–5095.

26 D. J. Kang, H. Kang, C. Cho, K. Kim, S. Jeong, J.-Y. Lee and
B. J. Kim, Nanoscale, 2013, 5, 1858–1863.‖ http://www.mat.univie.ac.at/~neum/software/snobfit/.

Reaction Chemistry & Engineering Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
Se

pt
em

be
r 

20
17

. D
ow

nl
oa

de
d 

on
 1

1/
18

/2
02

5 
9:

35
:5

9 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

https://imperialcollegelondon.box.com/v/tuning-reaction-products
https://imperialcollegelondon.box.com/v/tuning-reaction-products
https://github.com/jdmgroup/SNOBFit_for_chemical_optimisations
https://github.com/jdmgroup/SNOBFit_for_chemical_optimisations
http://www.mat.univie.ac.at/~neum/software/snobfit
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7re00123a


798 | React. Chem. Eng., 2017, 2, 785–798 This journal is © The Royal Society of Chemistry 2017

27 X. Meng, W. Zhang, Z. Tan, C. Du, C. Li, Z. Bo, Y. Li, X.
Yang, M. Zhen, F. Jiang, J. Zheng, T. Wang, L. Jiang, C. Shu
and C. Wang, Chem. Commun., 2012, 48, 425–427.

28 H. Kang, K. Kim, T. E. Kang, C.-H. Cho, S. Park, S. C. Yoon
and B. J. Kim, ACS Appl. Mater. Interfaces, 2013, 5, 4401–4408.

29 H. Seyler, W. W. H. Wong, D. J. Jones and A. B. Holmes,
J. Org. Chem., 2011, 76, 3551–3556.

30 T. Martin and T.-S. Tan, in Proceedings of the Fifteenth
Eurographics Conference on Rendering Techniques,
Eurographics Association, 2004, pp. 153–160.

Reaction Chemistry & EngineeringPaper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
Se

pt
em

be
r 

20
17

. D
ow

nl
oa

de
d 

on
 1

1/
18

/2
02

5 
9:

35
:5

9 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7re00123a

	crossmark: 


