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We propose a self-consistent scheme for the determination of the fictitious temperature in thermally-
assisted-occupation density functional theory (TAO-DFT) [J.-D. Chai, J. Chem. Phys., 2012, 136, 154104],
a very efficient electronic structure method for studying nanoscale systems with strong static correlation
effects (which are “challenging systems” for traditional electronic structure methods). In comparison with
semilocal density functionals in Kohn-Sham density functional theory (KS-DFT), the corresponding
semilocal density functionals in TAO-DFT (with the self-consistent fictitious temperature) provide
significant improvement for systems with strong static correlation effects (e.g., the dissociation of H, and
N, and twisted ethylene), and retain very similar performance for systems without strong static
correlation effects (e.g., thermochemistry, kinetics, and reaction energies), yielding a much more
balanced performance for both types of systems than those in KS-DFT. Besides, a reliably accurate
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corrections in TAO-DFT. Relative to the previous system-independent fictitious temperature scheme in
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. Introduction

Over the last 20 years, Kohn-Sham density functional theory
(KS-DFT)* has been a very popular electronic structure method
for the ground-state properties of large systems, due to its
delicate balance between cost and performance.? However,
since the exact exchange-correlation (XC) energy functional
E.[p] (i.e., the essential ingredient of KS-DFT) has not been
known, density functional approximations (DFAs) for E.J[p]
have been consecutively developed to extend the applicability of
KS-DFT to a wide range of systems.

Functionals based on the conventional semilocal DFAs, such
as the local density approximation (LDA)** and generalized
gradient approximations (GGAs),*” are reasonably accurate for
properties governed by short-range XC effects, and are compu-
tationally efficient for very large systems (for brevity, hereafter
we adopt “DFAs” for “the conventional semilocal DFAs”).
Nevertheless, the DFA XC functionals in KS-DFT (KS-DFAs) can
yield erroneous results in situations where an accurate
description of nonlocal XC effects is necessary.*™* Since the
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performance for a very broad range of applications.

1990s, numerous efforts have been made by researchers to
reduce the qualitative failures of KS-DFAs at affordable
computational costs.

In particular, an accurate prediction of the ground-state
properties of systems with strong static correlation effects
(i.e., multi-reference (MR) systems) has been a very important
and challenging subject in KS-DFT.*'"*** Within the frame-
work of KS-DFT, the conventional DFA,*” global hybrid,***°
range-separated hybrid,*** and double-hybrid*” XC func-
tionals can lead to unreliable results for MR systems, due to
the inappropriate treatment of static correlation. Fully
nonlocal XC functionals, such as those based on the random
phase approximation (RPA), can be essential to provide
a reasonably accurate description of static correlation.
However, these functionals are computationally very
demanding, which limits their application only to small
systems.>%?%29

To address these challenges with minimum computational
complexity, Chai has recently developed thermally-assisted-
occupation density functional theory (TAO-DFT),'**®
a density functional theory with fractional orbital occupations
given by the Fermi-Dirac distribution function (controlled by
a fictitious temperature 6), wherein strong static correlation is
explicitly described by the entropy contribution (e.g., see eqn
(26) of ref. 16). Unlike finite-temperature density functional
theory (which is developed for the thermodynamic properties
of physical systems at finite temperatures),®® TAO-DFT is

This journal is © The Royal Society of Chemistry 2017
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developed for the ground-state properties of physical systems
at zero temperature (just like KS-DFT). The conventional DFA,
global hybrid, and range-separated hybrid XC functionals in
KS-DFT can be combined seamlessly with TAO-DFT.'**® Note
also that TAO-DFT has similar computational cost as KS-DFT
for single-point energy and analytical nuclear gradient calcu-
lations, and reduces to KS-DFT for systems without strong
static correlation effects (i.e., single-reference (SR) systems).
Accordingly, TAO-DFT provides a much more balanced
performance for both SR and MR systems than KS-DFT. Very
recently, TAO-DFT has been applied to study the ground-state
properties of nanoscale systems (e.g., containing up to a few
thousand electrons) with strong static correlation effects,*'-**
all of which are very challenging systems for traditional elec-
tronic structure methods!

Nevertheless, as the optimal 6 in TAO-DFT is closely related
to the strength of static correlation,'*™® it should be sufficiently
small for SR systems, and can span a wide range of values for
MR systems. Therefore, for the DFA functionals in TAO-DFT
(TAO-DFAs), it is impossible to adopt a common (system-
independent) 6 that is optimal for both SR and MR systems.
To go beyond the previous TAO-DFAs (with a system-
independent ), in this work, we propose an iterative scheme
for the self-consistent determination of 6 for TAO-DFAs,
yielding very promising performance for a wide variety of SR
and MR systems. The rest of this paper is organized as follows.
First, we briefly review the formulation of TAO-DFT. Secondly,
we define and discuss a number of properties associated with
the reference system in TAO-DFT, yielding a stability index in
TAO-DFT. Thirdly, we develop a self-consistent scheme for the
determination of ¢ (based on the stability index), and examine
the performance of TAO-DFAs (with the self-consistent ) for
various SR and MR systems. Finally, we give our conclusions
and future plans.

Il. TAO-DFT

A. Self-consistent equations

Consider a physical system of N, up-spin and Ng down-spin
electrons moving in an external potential ve.(r) at zero (phys-
ical) temperature. In spin-polarized (spin-unrestricted) TAO-
DFT,'*"” one adopts the thermally-assisted-occupation (TAO)
reference system, which is an auxiliary system with N, up-spin
and Ng down-spin noninteracting electrons at the fictitious
(reference) temperature § (measured in energy units), with the
corresponding thermal equilibrium density distributions ps ,(r)
and ps p(r) exactly equal to the up-spin density p,(r) and down-
spin density pg(r), respectively, of the original interacting
(physical) system at zero temperature. The resulting self-
consistent equations for the o-spin electrons (¢ = a or B) are
given by (i runs for the orbital index)

{_§+Mmﬁ%m:%wwx W

where {y; ;(r)} are the TAO orbitals, {¢;;} are the TAO orbital
energies, and
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is the effective potential (atomic units, i.e., i = m. = e = 41we, =
1, are employed throughout this work). Here, Ey[p,,0s] is the XC
energy defined in spin-polarized KS-DFT,***” and Eg[p,,pp] =
ASH:O[pm,pﬁ] - Asa[pa,pﬁ] is the difference between the noninter-
acting kinetic free energy at zero temperature and that at the
fictitious temperature . The o-spin density is represented by

Vs.n(r) = cht(r) + J (2)

%m:immmm )

where the TAO orbital occupation numbers (TOONs) {f; 5}, are
given by the Fermi-Dirac distribution function

fio = {1+ expl(eio — ua)l0]} (4)

and the chemical potential u is chosen to conserve N (i.e., the
number of o-spin electrons),

©

E{l +6Xp[(€[‘07,uc)/tﬂ }71 = Ns. (5)

i=1

The formulation of spin-polarized TAO-DFT yields the two
sets (one for each spin function) of self-consistent equations,
eqn (1) to (5), for p,(r) and pg(r), respectively, which are coupled
with the ground-state density

o,B
o0 =S p(r). ©)

The self-consistent procedure described in ref. 16 may be
adopted to obtain the converged {¢; s}, {fi.o}, {¥:,o(r)}, pu(r), and
p(r). Subsequently, the noninteracting kinetic free energy

Asg[{fl:,av‘//i,u}s{fl",ﬁswi,ﬁ}] =
Tso[{fi,ua‘pi,a}a{fiﬁawi,ﬁ}] + ESB[{f},oc}a{f;',B}] [7)

is evaluated as the sum of the kinetic energy

1 af  ®

L [{fir ik Fin Vis}] = =3 ;ﬁs Jw;(r)vzw,-,g(r)dr

a,B ’ o
= Z{ f[,ogi,c - Jpﬂ(r)vsaﬁ(r)dr}

(8)

and entropy contribution

Es'[{fia}, {fis}] = 0263 Z{f In(fic) + (1 = fio)in(1 ~fic) }
)

of noninteracting electrons at the fictitious temperature 6.
Accordingly, the Helmholtz free energy of the TAO reference
system at the fictitious temperature 6 is given by
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o,B

FS(NOH NB) = Asa [{fl}m wi,a}v {flﬁv 1//1',[&}} + Z J pc(r)vm(r)dr

(o2

{

= zj: g{_ﬁ.cei,o‘ + 0[fi,6 ln(fi-ff)
+ (1= fio)ln(1 = fio)]},
(10)

while the ground-state energy of the physical system at zero
temperature is given by

E[pzz: pﬁ} = AS@ [{ff.tzv wi‘a}v {ﬁ,Bv lpf‘[i}] + Jp(r)vexl (l‘)dl’ + EH [,0]

+ Exc [Pm p[}} + Eﬂ [pa7 pB] )
(11)
1 r
where Ey[p]= > ”%drdr’ is the Hartree energy. Spin-
r—r
unpolarized (spin-restricted) TAO-DFT can be formulated by

imposing the constraints of v, ,(r) = ¥; 4(r) and f; , = f; s to spin-
polarized TAO-DFT. Note also that TAO-DFT at § = 0 is the same

as KS-DFT.

B. Strong static correlation from the DFA and hybrid
functionals in TAO-DFT

As the exact Ex[p,,pp] and Eg[p,,pp] (i-e., the essential ingredi-
ents of spin-polarized TAO-DFT), in terms of the spin densities
po(r) and pp(r), remain unknown, it is necessary to develop DFAs
for both Ey [p,,pp] and Eg[p,,pp] in TAO-DFT (i.e., TAO-DFAs) for
practical purposes. Therefore, the accuracy of TAO-DFAs
depends on the underlying DFAs and the chosen fictitious
temperature . Noted that Exs “[p,,pp] can be readily obtained
from that of KS-DFA, and Ej"*[p,,pp] can be constructed from
ASP™[p,,,pg], which can be expressed in terms of its spin-
unpolarized form A°F[p]:

E;)FA [Pwﬂg] = 4 DFAd=0 [Pwﬁﬁ} RN [/Jwﬂﬁ]
1 _ _
_ Z(ASDFA.(LO[zpu] 4 A PFAS=0 [2%])

_ % (ASDFA.H [2pm] 4 ASDFA,ﬂ [2/7[5} )’

(12)
due to the spin-scaling relation of Asf)[pm,,oﬁ].38 Note that
Ep 8[paspp] = 0, which is an exact property of Eg[p,,pg], can be
easily achieved by eqn (12). Consequently, TAO-DFAs at 6 =
0 correctly reduce to the corresponding KS-DFAs.

In 2012, Chai developed TAO-LDA (i.e., the first and simplest
TAO-DFA),** adopting the LDA XC functional Ex2*[p,,ppl* and
the LDA #-dependent energy functional Ey*[p,,ps] (given by eqn
(12) with A;"P4?[], the LDA for A,’[p]** (also see eqn (37) of ref.
16)) in TAO-DFT. Even at the simplest LDA level, TAO-LDA was
shown to provide a reasonably accurate description of static
correlation via the entropy contribution Es’[{f; ,},{f;s}] (see eqn
(9)), when the distribution of TOONs {f; ;} (related to the chosen
0) is close to the distribution of the natural orbital occupation
numbers (NOONSs) for an interacting (physical) system.* This
suggests that a 6 related to the distribution of NOONs should be
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adopted for TAO-LDA to adequately describe strong static
correlation effects. Nonetheless, for the sake of simplicity, an
optimal system-independent # = 7 mhartree for TAO-LDA was
previously defined as the largest 6 value for which the perfor-
mance of TAO-LDA (with this §) and that of KS-LDA (i.e., the § =
0 case) remain comparable for SR systems. Consequently, TAO-
LDA (with ¢ = 7 mhartree) was shown to consistently outper-
form KS-LDA for MR systems (due to the appropriate treatment
of static correlation), while performing comparably to KS-LDA
for SR systems (i.e., in the absence of strong static correlation
effects).

To go beyond TAO-LDA with similar computational
complexity, in 2014, Chai also developed TAO-GGAs,"” employ-
ing the GGA XC functionals Eg *[p,,ps] and the gradient
expansion approximation (GEA) #-dependent energy functional
E§™p,,pp] (given by eqn (12) with A,F*?[p], the GEA for A,"[p]**)
in TAO-DFT. Since TAO-GGAs should outperform TAO-LDA
mainly for properties governed by short-range XC effects,>®
and the orbital energy gaps of TAO-LDA and TAO-GGAs (i.e.,
TAO-DFAs) should be similar,' the optimal 6 values for all TAO-
DFAs should remain similar. Therefore, the optimal system-
independent § = 7 mhartree can be adopted for all TAO-DFAs.
By construction, Ef,;EA[pa,pB] should be more accurate than
E§"p.spp] for the nearly uniform electron gas. However, for
a small 4 value (i.e., 7 mhartree), their difference was found to
be much smaller than the difference between two distinct XC
functionals. Therefore, E§”*[p,,ps] may also be employed for
TAO-GGAs. TAO-DFAs (with # = 7 mhartree) were indeed shown
to consistently outperform the corresponding KS-DFAs (i.e., the
6 = 0 cases) for MR systems, while performing comparably to
the corresponding KS-DFAs for SR systems. TAO-GGAs were
found to be superior to TAO-LDA in performance for a broad
range of SR systems. Besides, the inclusion of dispersion
corrections in TAO-DFAs was found to yield an efficient and
reasonably accurate description of noncovalent interactions.

To provide an improved description of nonlocal exchange
effects, in 2017, Chai further developed the global and range-
separated hybrid schemes in TAO-DFT,'® incorporating the
exact exchange into TAO-DFAs. With a few simple modifica-
tions, the conventional global hybrid and range-separated
hybrid XC functionals in KS-DFT can be combined seamlessly
with TAO-DFT. Similar to TAO-DFAs, a global hybrid functional
in TAO-DFT was also shown to provide a reasonably accurate
description of static correlation, when the distribution of
TOONS {f; o (related to the chosen 6) is close to the distribution
of NOONSs. Note that a global hybrid functional with a larger
fraction of exact exchange yields larger orbital energy gaps,"
and hence requires a larger # value to retain a similar distri-
bution of TOONs in TAO-DFT. In the system-independent ¢
scheme, a linear relationship between the optimal § value and
the fraction of exact exchange a, was established for a global
hybrid functional in TAO-DFT. Global hybrid functionals in
TAO-DFT (with the optimal system-independent 6§ values) were
found to consistently outperform the corresponding global
hybrid functionals in KS-DFT (i.e., the § = 0 cases) for MR
systems, while performing comparably to the corresponding
global hybrid functionals in KS-DFT for SR systems. Relative to

This journal is © The Royal Society of Chemistry 2017
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TAO-DFAs, global hybrid functionals in TAO-DFT were shown to
be generally superior in performance for a wide range of
applications. In addition, the inclusion of dispersion correc-
tions in hybrid TAO-DFT was also found to lead to an efficient
and reasonably description of noncovalent
interactions.

accurate

C. System-independent 6 scheme

TAO-DFT with DFA and global hybrid functionals in the afore-
mentioned system-independent 6 scheme is conceptually
simple, easy to implement, computationally efficient, and
reasonably accurate for a wide range of SR and MR systems."***
Furthermore, the analytical computation of nuclear gradients is
readily available for this scheme, which is crucially important
for the efficient optimization of molecular geometries. There-
fore, this scheme can be promising for the study of ground
states of large SR and MR systems. However, as with all
approximate electronic structure methods, some limitations
remain. While the DFA and global hybrid functionals in TAO-
DFT (with the optimal system-independent # values) perform
comparably to the corresponding DFA and global hybrid func-
tionals in KS-DFT (i.e., the § = 0 cases) for several SR systems,
some results remain noticeably different (e.g., atomization
energies and noncovalent interactions),'”*® wherein the smaller
0 values should be adopted. On the other hand, the DFA and
global hybrid functionals in TAO-DFT (with the optimal system-
independent § values) can provide insufficient amounts of static
correlation for some MR systems (e.g., the dissociation of H,
and N, and twisted ethylene),**® wherein the larger # values
should be employed. Accordingly, to improve the performance
of the DFA and global hybrid functionals in TAO-DFT for a wide
range of SR and MR systems, the optimal ¢ could be related to
the stability (i.e., the SR/MR character) of systems.

To improve upon the system-independent # scheme, in the
following sections, we define and discuss various properties
associated with the TAO reference system, which are shown to
be useful for the definition of a stability index in TAO-DFT. In
addition, we express the optimal # of a system as a function of
the stability index, yielding a self-consistent scheme for the
determination of optimal # in TAO-DFT.

lll.  Various properties of the TAO
reference system

Here, we define and discuss various properties associated with
the TAO reference system, which can be obtained rather
straightforwardly from standard TAO-DFT calculations at
essentially no extra computational cost.

For a physical system with N, o-spin (¢ = o or B) and N4 -
spin (i.e., opposite-spin) electrons in an external potential Vey(r)
at zero (physical) temperature, the TAO reference system (i.e., an
auxiliary system with N, o-spin and N5 c-spin noninteracting
electrons at the fictitious temperature ) is adopted in spin-
polarized TAO-DFT.**"” As mentioned previously, the Helm-
holtz free energy of the TAO reference system at the fictitious
temperature 4 is given by (see eqn (10))

This journal is © The Royal Society of Chemistry 2017
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F,(Ns,N3)

Z{ﬁo&cw[f In(fio) + (1 = fio)In(1 — fio) ]}

+ Z{fx,&ei,a +0[fis In(fi5) + (1 —fis)In(1 - fi5)] }»

(13)

where {¢; ;} and {¢; 5} are the TAO orbital energies (see eqn (1)),
and {fi s} and {f;s} are the TOONs given by the Fermi-Dirac
distribution function (see eqn (4))

Ro)l61}

Jio =11+ expl(e;o — (14)

fio= {1+ expl(eio — nall0]} (15)

and pu, and us (see eqn (5)) are the chemical potentials chosen
to conserve N, and N, respectively,

i {1+ expl(eio — 1) /0]} " = No

(16)

(17)

i {1+ expl(ers — uz) /0]} " =

Removing a o-spin electron from the TAO reference system
at fixed v 5(r) and vy A1) (i.e., {¢; o} and {¢; 5} remain unchanged,
respectively) yields the Helmholtz free energy

Z{fmfw+9[fmln(fw)

Fy(Ng —

(1-S'i0)

x In(

1-fio)]} + ;{ﬁ.a&,s +0[fis In(fi5)
+(1 = fiz)n(1 - fi3)] }

for the remaining (N; — 1) o-spin and N5 &-spin electrons
in the TAO reference system. Here, the ¢-spin TOONs {f’; 5}
are rearranged based on the Fermi-Dirac distribution
function

(18)

fi,c ={1+ CXP[(&‘,G - /’L/G)/ﬂ]}ils (19)

as the chemical potential y'; needs to be adjusted to conserve
the number of the remaining (N, — 1) o-spin electrons,

%

Z{l +exp[(e,-.6_“/c)/ﬂ}—1 N1

i=1

(20)

Therefore, the o-spin ionization potential of the TAO refer-
ence system can be defined as

ISG_FS( 1 N3 ) F‘s(NmNE)

= Z{f/[,ogi,c + ﬁvlt]o' ln(f,i,c) +
=1
- Zw:{.fl:‘qgi,ﬂ + 0[f},(‘f In (flcr) +
i=1

(1=fie)n(1 = fi0) ]}

(I =fio)n(1 = fio)]}-

(21)
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Similarly, adding a o-spin electron to the TAO reference
system at fixed v, o(r) and v, +(r) (i.e., {& s} and {¢ s remain
unchanged, respectively) yields the Helmholtz free energy

Fi(No+ 1,Na) = > {f1sei0 + 0/t n(f7,) + (1= 17,)
i=1

(£} + S {fiseie +01fie (i)
+(1=/iz)n(1 - fi5)]}

for the resulting (N, + 1) o-spin and N G-spin electrons in the
TAO reference system. Here, the o-spin TOONs {f”; ;} are rear-
ranged based on the Fermi-Dirac distribution function

(22)

[ =1+ explleio — wo)l0]} ", (23)

as the chemical potential u”; needs to be adjusted to conserve
the number of the resulting (N, + 1) o-spin electrons,

0

ST {1+ expl(eie —ul)/0]} " = No+ 1.

i=1

(24)

Accordingly, the o-spin electron affinity of the TAO reference
system can be defined as

As.GEFs(NmNE) - Fs(Nc + 17N8) = Z{f}.cei.c + 6[](;'.6 ln(/‘;}o')
i=1

(1= fio)n(l = fia)]} = > A lotio + 01/7o In(F)
i=1

+(1 = f)In(1 = £7 )]} (25)
Consequently, the o-spin TAO gap can be defined as
ATAO,G = Is,c - As,c~ (26)

At § = 0, TAO-DFT reduces to KS-DFT, wherein I ; = —¢en_o
(the negative of the orbital energy of the -spin HOMO (highest
occupied molecular orbital)), As s = —en_+1,c (the negative of the
orbital energy of the o-spin LUMO (lowest unoccupied molec-
ular orbital)), and hence drso,c = en 1,6 — €n,o (the o-spin
HOMO-LUMO gap).

In addition, the ionization potential of the TAO reference
system can be defined as

I =min{/,, Iy}, (27)
the minimum energy required to remove an electron from the
TAO reference system at fixed v, 5(r) and v (r). Similarly, the
electron affinity of the TAO reference system can be defined as

A, = max{4,,, Asp}, (28)

the maximum energy gained when an electron is added to the
TAO reference system at fixed v, o(r) and v (r). Accordingly, the
TAO gap can be defined as

ATAO EIS — As = mcin{lsm Is,B} — m?X{AS’a, AS,B}‘ (29)
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At § = 0, TAO-DFT reduces to KS-DFT, wherein I is the negative
of the HOMO energy, 4; is the negative of the LUMO energy, and
hence 4rpo is the HOMO-LUMO gap.

IV. Self-consistent § scheme for TAO-
DFAS

A. Stability index in TAO-DFT: dysr

For a spin-unpolarized system with high stability (i.e., low
chemical reactivity), the exact NOONs should be very close to
either 0 or 1, the optimal ¢ in TAO-DFT should be vanishingly
small, and hence the corresponding TAO gap (4drao), which
should be very close to the HOMO-LUMO gap in KS-DFT for this
system, should be very large. In KS-DFT, the HOMO-LUMO gap
(or a closely related quantity, the global hardness) has been
commonly adopted as an important stability index for a spin-
unpolarized system.** Accordingly, in TAO-DFT, we adopt
the TAO gap as the stability index for a spin-unpolarized system.
The larger the TAO gap, the more stable the spin-unpolarized
system.

For a spin-polarized system, the a-spin TAO gap (4rao,.) and
the B-spin TAO gap (drao,p), Which serve as the stability indexes
for the a-spin electrons and B-spin electrons, respectively, of the
system can be different. Therefore, to have a unique description
for the system stability, we adopt the maximum spin TAO gap

Ayst = m?X{ATAO,m ATAO,B} (30)
as the stability index for a spin-polarized system. In contrast to
the HOMO-LUMO gap (which depends only on the HOMO and
LUMO energies), dysr generally depends on the fictitious
temperature , TAO orbital energies, and TOONs in TAO-DFT.
Note however, that 4yt can be easily obtained from standard
TAO-DFT calculations at essentially no extra computational
cost. For a spin-unpolarized system, 4dysr reduces to drao.

B. Determination of the self-consistent 6

As previously mentioned, the fictitious temperature 6 in TAO-
DFT should be chosen so that the distribution of TOONs is
close to that of NOONs.'®" In this situation, the strong static
correlation effects can be adequately described by the entropy
contribution. While the exact NOONs are intractable for large
systems (due to the exponential complexity), some common
characteristics are summarized as follows. Since SR systems do
not have significant amounts of static correlation, the exact
NOONSs should be close to either 0 or 1, which can be properly
simulated by the TOONs in TAO-DFT (with a sufficiently small
6). However, for MR systems, the distribution of NOONs can be
diverse (due to the varying strength of static correlation), and
hence, the optimal # in TAO-DFT can span a wide range of
values. As shown in ref. 16 and 17, the optimal system-
independent ¢ for TAO-DFAs is about 40 mhartree for the
dissociation of H, and N,, and about 15 mhartree for twisted
ethylene. Therefore, for TAO-DFAs, it is impossible to adopt
a system-independent 6 that is optimal for a wide range of SR
and MR systems.

This journal is © The Royal Society of Chemistry 2017
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To rectify the above situations, it is essential to go beyond the
system-independent # scheme. In the present scheme, we
express the fictitious temperature of a spin-polarized system

0 = 0(4dmst) = O erfc(dmst/do) (31)
as a simple function of Aygr (ie., the stability index for the
system). Note that 6, and 4, are universal parameters (i.e., the
same for all systems). Here, erfc is the complementary error
function, the maximum fictitious temperature

0o = 40 mhartree (32)
is defined as the optimal system-independent # for TAO-DFAs
for the dissociation of H, and N,,'*'” and 4, is the character-
istic gap. On the basis of eqn (31), the larger the Aygr, the
smaller the #, and hence, the more stable the system. Note that
is vanishingly small for a system with a 4ys much larger than
4y, and 6 = 6, can be achieved only for a system with a van-
ishing Aysr. Accordingly, eqn (31) provides a smooth and
monotonic transition between the two limits: 8(dysy = 0) = 6,
and lim 6(4yst) = 0.

MsT > @

For a given 4,, the self-consistent § of a spin-polarized
system can be obtained as follows: (i) choose a trial 6
(between 0 and 6,); (ii) with this 6, follow the self-consistent
procedure described in ref. 16 to obtain the converged TAO
orbital energies {¢; -} and TOONs {f; .}; (ii) determine Ayao, by
eqn (26), 4yt by eqn (30), and new 6 by eqn (31). This process is
repeated, until self-consistency is attained.

All calculations are performed with a development version of
Q-Chem 4.3.*® Spin-restricted theory is used for singlet states
and spin-unrestricted theory for others, unless noted otherwise.
For the interaction energies of the weakly bound systems, the
counterpoise correction® is adopted to reduce the basis set
superposition error (BSSE). Results are computed using the 6-
311++G(3df,3pd) basis set with the fine grid EML(75,302), con-
sisting of 75 Euler-Maclaurin radial grid points and 302 Leb-
edev angular grid points, unless noted otherwise. The error for
each entry is defined as (error = theoretical value — reference
value). The notation adopted for characterizing statistical errors
is as follows: mean signed errors (MSEs), mean absolute errors
(MAEs), root-mean-square (rms) errors, maximum negative
errors (Max(—)), and maximum positive errors (Max(+)).

For a system with a non-vanishing 4ysr (e.g:, a SR system),
0 = 0 for 40 = 0 and 6 = 0, as 4, — . Therefore, for SR
systems, the performance of TAO-DFAs (with a sufficiently small
4,) in the present scheme should be very similar to that of the
corresponding KS-DFAs (i.e., the # = 0 cases). Accordingly, the
numerical investigations described in ref. 16 can be adopted to
define the optimal 4, value for TAO-DFAs in the present
scheme.

In this work, the performance of TAO-LDA (with 4, = 5, 10,
15, ..., and 100 mhartree) in the present scheme is examined for
the SR systems: the reaction energies of the 30 chemical reac-
tions in the NHTBH38/04 and HTBH38/04 sets.*>** The optimal
4, value for TAO-LDA in the present scheme is defined as the
largest 4, value for which the difference between the rms error
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of TAO-LDA (with this 4,) in the present scheme and that of KS-
LDA (i.e., the 6 = 0 case) is less than 0.1 kcal mol~* for the 30
reaction energies. On the basis of our numerical investigations
(see Fig. 1), the optimal characteristic gap for TAO-LDA is esti-
mated to be

4o = 70 mhartree. (33)

In the present self-consistent # scheme, our preliminary
TAO-LDA results show that the converged ¢ value for each
system studied is unique (within the numerical accuracy of our
calculations, i.e., 0.01 mhartree), regardless of the choice of
initial trial § values. Therefore, for all the TAO-DFA calculations
in this work, we adopt the initial trial # = 7 mhartree, unless
noted otherwise.

As mentioned previously, the orbital energy gaps of TAO-
LDA and TAO-GGAs (i.e., TAO-DFAs) should be similar, and
hence, the same optimal characteristic gap (given by eqn (33))
can be adopted for all TAO-DFAs in the present scheme. To
further confirm this, we examine the performance of TAO-
LDA and various TAO-GGAs (with the self-consistent 6 given
by eqn (31)-(33)) on the 30 reaction energies. For brevity,
hereafter the self-consistent 6 given by eqn (31)-(33) is
denoted as 6*. The results are compared with those obtained
from the corresponding KS-DFAs (i.e., the # = 0 cases) and
TAO-DFAs (with the optimal system-independent 6 = 7
mhartree).’” For the choice of TAO-GGAs, we adopt TAO-PBE,
TAO-BLYP, and TAO-BLYP-D, which are the PBE,” BLYP,*” and
BLYP-D (i.e., BLYP with dispersion corrections)'> XC func-
tionals (together with the LDA #-dependent energy functional
E§P*) in TAO-DFT." At f = 0, TAO-LDA, TAO-PBE, TAO-BLYP,
and TAO-BLYP-D reduce to KS-LDA, KS-PBE, KS-BLYP, and KS-
BLYP-D, respectively.

L e
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112t g

&
o ®
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Fig. 1 Root-mean-square (rms) errors of the reaction energies of the
30 chemical reactions in the NHTBH38/04 and HTBH38/04 sets,>*>!
calculated using TAO-LDA (with various 4g) in the present self-
consistent § scheme (together with egn (31) and (32)). The rms error of
KS-LDA (i.e., the § = 0 case) is numerically the same as that of TAO-
LDA (with 4¢ = 5 mhartree) in the present scheme for the 30 reaction
energies.
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As shown in Table 1, the 30 reaction energies calculated
using TAO-LDA, TAO-PBE, TAO-BLYP, and TAO-BLYP-D (with
0*) are indeed very similar to those calculated using KS-LDA, KS-
PBE, KS-BLYP, and KS-BLYP-D, respectively (see Table S1 in
ESIt). By contrast, the results obtained with TAO-DFAs (with § =
7 mhartree) are only qualitatively similar to those obtained with
the corresponding KS-DFAs (i.e., the § = 0 cases)."”

C. Results and discussion for the test sets

For a comprehensive comparison, we assess the performance of
TAO-LDA, TAO-PBE, TAO-BLYP, and TAO-BLYP-D (with the 6*
and system-independent # values) on various test sets,
including both SR and MR systems.

1. ©wBY97 training set. The wB97 training set* contains
various types of popular databases, involving

Table 1 Statistical errors (in kcal mol™) of the reaction energies of the
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e The 223 atomization energies (AEs) of the G3/99 set,***

e The 40 ionization potentials (IPs), 25 electron affinities
(EAs), and 8 proton affinities (PAs) of the G2-1 set,*

e The 76 barrier heights (BHs) of the NHTBH38/04 and
HTBH38/04 sets,****

e The 22 noncovalent interactions of the S22 set.>®

Since these systems do not possess much static correlation,
the exact NOONSs should be close to either 0 or 1, and hence can
be properly simulated by the TOONs of TAO-DFAs (with a suffi-
ciently small ).

Table 2 summarizes the statistical errors of TAO-LDA, TAO-
PBE, TAO-BLYP, and TAO-BLYP-D (with various 6 values) for
the wB97 training set (see Tables S2 to S4 in ESIf). While the
results obtained from TAO-DFAs (with the optimal system-
independent § = 7 mhartree)"” are qualitatively similar to

30 chemical reactions in the NHTBH38/04 and HTBH38/04 sets,>*>*

calculated using TAO-LDA, TAO-PBE, TAO-BLYP, and TAO-BLYP-D with the * and system-independent 6§ values. The § = O cases correspond to
KS-LDA, KS-PBE, KS-BLYP, and KS-BLYP-D, respectively. The results obtained with § = 0 and 7 mhartree are taken from ref. 17

0* f# = 0 mhartree f# = 7 mhartree

LDA PBE BLYP BLYP-D LDA PBE BLYP BLYP-D LDA PBE BLYP BLYP-D
MSE —0.55 0.85 0.56 0.50 —0.41 1.08 0.80 0.74 —1.32 0.23 —0.12 —0.20
MAE 8.63 4.57 3.37 3.19 8.51 4.39 3.23 3.02 7.09 3.97 3.80 3.67
rms 11.19 6.39 4.47 4.31 11.10 6.24 4.37 4.20 9.38 5.97 4.95 4.89
Max(—) —18.31 —8.12 —7.24 —7.28 —18.31 —7.86 —7.24 —7.28 —15.92 —8.89 —11.24 —11.71
Max(+) 35.68 22.59 11.96 12.03 35.68 22.59 11.96 12.03 30.50 21.60 10.65 10.73

Table 2 Statistical errors (in kcal mol ™) of the wB97 training set,? calculated using TAO-LDA, TAO-PBE, TAO-BLYP, and TAO-BLYP-D with the
6* and system-independent 6 values. The § = O cases correspond to KS-LDA, KS-PBE, KS-BLYP, and KS-BLYP-D, respectively. The results

obtained with § = 0 and 7 mhartree are taken from ref. 17

0* f# = 0 mhartree 6 = 7 mhartree
System Error LDA PBE BLYP BLYP-D LDA PBE BLYP BLYP-D LDA PBE BLYP BLYP-D
G3/99 (223) MSE 120.47 20.75 —4.74 —0.98 120.60 20.90 —4.59 —0.83 95.02 7.91 —16.24 —12.27
MAE 120.54 21.48 9.84 7.04 120.60 21.51 9.76 7.03 95.04 11.41 19.01 15.33
rms 142.37 26.15 12.99 9.15 142.51 26.30 12.96 9.17 114.19 15.07 24.24 19.35
IP (40) MSE 3.38 0.19 —1.38 —1.38 3.42 0.03 —1.50 —1.50 1.79 —1.08 —2.61 —2.61
MAE 5.56 3.44 4.31 4.31 5.54 3.46 4.43 4.44 6.18 4.86 6.10 6.10
rms 6.69 4.32 5.16 5.17 6.66 4.35 5.28 5.29 7.63 6.00 7.40 7.40
EA (25] MSE 6.13 1.19 —0.06 —0.07 6.45 1.72 0.36 0.36 4.20 0.22 —1.08 —1.07
MAE 6.13 2.82 2.83 2.83 6.45 2.42 2.57 2.57 5.49 2.88 4.38 4.40
rms 7.02 3.51 3.46 3.48 7.29 3.06 3.17 3.17 6.45 3.44 5.44 5.47
PA (8) MSE —5.91 —0.83 —1.47 —1.09 —5.91 —0.83 —1.47 —-1.09 —5.66 —0.58 —1.22 —0.84
MAE 5.91 1.60 1.58 1.55 5.91 1.60 1.58 1.55 5.66 1.47 1.50 1.55
rms 6.40 1.91 2.10 1.98 6.40 1.91 2.10 1.98 6.16 1.80 1.94 1.86
NHTBH (38) MSE —12.50 —8.71 —8.89 —9.53 —12.41 —8.52 —8.69 —9.32 —11.93 —8.38 —8.52 —9.15
MAE 12.71 8.81 8.93 9.55 12.62 8.62 8.72 9.35 12.15 8.49 8.56 9.19
rms 16.16 10.75 10.42 10.98 16.13 10.61 10.27 10.83 15.09 10.28 9.90 10.46
HTBH (38) MSE —17.90 —9.67 —7.84 —8.89 —17.90 —9.67 —7.84 —8.89 —16.34 —9.20 —7.25 —8.33
MAE 17.90 9.67 7.84 8.89 17.90 9.67 7.84 8.89 16.34 9.20 7.29 8.34
rms 18.92 10.37 8.66 9.52 18.92 10.37 8.66 9.52 17.06 9.87 8.24 9.17
S22 (22) MSE —1.95 2.78 5.07 0.24 —1.97 2.77 5.05 0.23 —2.30 2.44 4.70 —0.12
MAE 2.07 2.78 5.07 0.34 2.08 2.77 5.05 0.33 2.33 2.44 4.70 0.28
rms 3.17 3.90 6.33 0.45 3.18 3.89 6.31 0.45 3.40 3.57 5.95 0.37
Total (394) MSE 65.75 10.20 —4.19 —2.49 65.86 10.33 —4.07 —2.37 51.26 2.81 —10.81 —8.99
MAE 72.36 14.65 8.12 6.43 72.41 14.63 8.05 6.40 57.76 9.01 13.48 11.31
rms 107.43 20.30 10.91 8.44 107.53 20.40 10.88 8.44 86.26 12.38 18.92 15.43

50502 | RSC Adv., 2017, 7, 50496-50507

This journal is © The Royal Society of Chemistry 2017


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7ra10241k

Open Access Article. Published on 30 October 2017. Downloaded on 7/23/2025 1:35:35 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

those obtained from the corresponding KS-DFAs (i.e., the § =
0 cases), some results remain noticeably different (e.g., the AEs
of the G3/99 set), showing the limitations of TAO-DFAs (with 6 =
7 mbhartree). By contrast, TAO-DFAs (with 6*) perform very
similarly to the corresponding KS-DFAs for the entire wB97
training set! Therefore, it can be anticipated that the accuracy of
KS-DFAs can essentially be transferred to that of the corre-
sponding TAO-DFAs (with #*) for a wide range of SR systems,
revealing the significance of the present scheme. Relative to
TAO-LDA, TAO-GGAs provide enormous improvement for the
AEs of the G3/99 set, the EAs and PAs of the G2-1 set, and the
BHs of the NHTBH38/04 and HTBH38/04 sets, due to the
improved treatment of short-range XC effects. For the IPs of the
G2-1 set, TAO-GGAs perform slightly better than TAO-LDA. For
the noncovalent interactions of the S22 set, KS-BLYP-D and
TAO-BLYP-D (i.e., the dispersion-corrected functionals*® in KS-
DFT and TAO-DFT, respectively) are reliably accurate, while all
the other functionals perform poorly.

2. Dissociation of H, and N,. H, dissociation (a single-
bond breaking system) is particularly challenging for KS-DFT
owing to the presence of strong static correlation effects. Due
to the symmetry constraint, the spin-restricted and spin-
unrestricted dissociation energy curves of H, obtained from
the exact theory must be the same. Consequently, we can adopt
the difference between the spin-restricted and spin-unrestricted
dissociation limits obtained from an approximate electronic
structure method as a quantitative measure of the static corre-
lation error (SCE) of the method.*'* Due to the inaccurate
description of static correlation, the conventional DFA, global
hybrid, range-separated hybrid, and double-hybrid XC func-
tionals in spin-restricted KS-DFT can yield enormous SCEs for
the dissociation of H,.'® By contrast, spin-restricted TAO-DFAs
(with a # around 40 mhartree) can dissociate H, correctly
(vielding vanishingly small SCEs) to the respective spin-
unrestricted dissociation limits, which is intimately related to
that the distribution of TOONs (related to the chosen 6) agrees
reasonably well with that of NOONs.'*”

To investigate the performance of the present scheme for the
SCE problems, the potential energy curves (in relative energy)
for the ground state of H, are calculated using spin-restricted
TAO-LDA with various 6 values (see Fig. 2), where the zeros of
energy are set at the respective spin-unrestricted dissociation
limits. The reference curve is obtained from the coupled-cluster
theory with iterative singles and doubles (CCSD),*” which is
equivalent to the exact full configuration interaction (FCI)
method for any two-electron system.*® Near the equilibrium
bond length of H,, where the SR character is dominant, TAO-
LDA (with *) performs very similarly to KS-LDA (i.e., the 6 =
0 case), matching reasonably well with the exact CCSD curve.
Nevertheless, it has a noticeable SCE at the dissociation limit,
where the MR character is significant. By contrast, while spin-
restricted TAO-LDA (with § = 40 mhartree) performs less satis-
factorily at the equilibrium geometry, it can dissociate H,
correctly (i.e., possessing a vanishingly small SCE) to the
respective spin-unrestricted dissociation limit.

To assess if this is relevant to the distribution of TOONs, we
plot the occupation numbers of the 1o, orbital for the ground

This journal is © The Royal Society of Chemistry 2017
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state of H, as a function of the internuclear distance R, calcu-
lated using spin-restricted TAO-LDA with various 6§ values (see
Fig. 3), where the reference data are the FCI NOONs (1.9643 at
R = 0.741 A (the equilibrium bond length), 1.5162 at R = 2.117
A, and 1.0000 at R = 7.938 A).%® As can be seen easily, the log
orbital occupation numbers of spin-restricted TAO-LDA (with
6 = 40 mhartree) match reasonably well with the FCI NOONSs,
which is closely related to the vanishingly small SCE of TAO-
LDA (with this 6). Similar results are also found for TAO-PBE,
TAO-BLYP, and TAO-BLYP-D (see Fig. S1 and S2 in ESI}).
Accordingly, in TAO-DFT, it is indeed essential to adopt a ¢ that
is related to the distribution of NOONs.
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Fig. 2 Potential energy curves (in relative energy) for the ground state
of H, calculated using spin-restricted TAO-LDA with the #* and
system-independent 6 values. The # = O case corresponds to spin-
restricted KS-LDA. The reference curve is calculated using the CCSD
theory (exact for any two-electron system). The zeros of energy are set
at the respective spin-unrestricted dissociation limits.
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Fig. 3 Occupation numbers of the 1og4 orbital for the ground state of
H, as a function of the internuclear distance R, calculated using spin-
restricted TAO-LDA with the 6* and system-independent 6 values. The
6 = 0 case corresponds to spin-restricted KS-LDA. The reference data
are the FCI NOONGs.°8
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Here, we plot the 6* values for the ground state of H, as
a function of the internuclear distance R, calculated using spin-
restricted TAO-LDA, TAO-PBE, and TAO-BLYP/TAO-BLYP-D in
the present scheme. As shown in Fig. 4, the * values of spin-
restricted TAO-DFAs are vanishingly small near the equilib-
rium bond length of H, (ie., in the absence of strong static
correlation effects), and approach some constant values (about
15.5 mhartree) at the respective dissociation limits (i.e., in the
presence of strong static correlation effects).

It is noteworthy that similar results are also found for N,
dissociation (a triple-bond breaking system), where experi-
mental results are also presented for comparison.>**® As shown
in Fig. 5, spin-restricted TAO-LDA (with # = 40 mhartree) can
dissociate N, properly (leading to a vanishingly small SCE) to

TAO-LDA
TAO-PBE - -@- -
TAO-BLYP - .

*

0 (mbhartree)
[ee]

1 2 3 4 5 6 7 8 9 10
Internuclear Distance (A)

Fig. 4 The 6* values for the ground state of H, as a function of the
internuclear distance R, calculated using spin-restricted TAO-LDA,
TAO-PBE, and TAO-BLYP/TAO-BLYP-D in the present scheme.
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Fig.5 Potential energy curves (in relative energy) for the ground state
of N,, calculated using spin-restricted TAO-LDA with the 6* and
system-independent # values. The § = 0 case corresponds to spin-
restricted KS-LDA. The reference data (—228.3 (kcal mol™) at R =
1.098 A (ie., the equilibrium bond length)) are the experimental
results.>®*®® The zeros of energy are set at the respective spin-unre-
stricted dissociation limits.
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the respective spin-unrestricted dissociation limit, which is
highly correlated with the fact that the occupation numbers of
the 3o, (see Fig. 6) and 17, (see Fig. 7) orbitals for the ground
state of N, as functions of the internuclear distance R, calcu-
lated using TAO-LDA (with this #), agree reasonably well with
the corresponding NOONs of MR configuration interaction
(MRCI) method (i.e., the reference data).** Nevertheless, spin-
restricted TAO-LDA (with § = 40 mhartree) performs less satis-
factorily near the equilibrium bond length of N,, where the SR
character is pronounced. By contrast, TAO-LDA (with 6%*)
performs very similarly to KS-LDA (i.e., the § = 0 case) near the
equilibrium geometry, and performs reasonably well (yielding
a small SCE) at the dissociation limit. Similar results are also
found for TAO-PBE, TAO-BLYP, and TAO-BLYP-D (see Fig. S3 to
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Fig. 6 Occupation numbers of the 3o, orbital for the ground state of
N> as a function of the internuclear distance R, calculated using spin-
restricted TAO-LDA with the 6* and system-independent 6 values. The
6 = 0 case corresponds to spin-restricted KS-LDA. The reference data
are the NOONs of the MRCI method.¢*
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Fig.7 Occupation numbers of the 1, orbital for the ground state of
N> as a function of the internuclear distance R, calculated using spin-
restricted TAO-LDA with the 6* and system-independent 6 values. The
6 = 0 case corresponds to spin-restricted KS-LDA. The reference data
are the NOONs of the MRCI method.¢*
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Fig. 8 The 6* values for the ground state of N, as a function of the
internuclear distance R, calculated using spin-restricted TAO-LDA,
TAO-PBE, and TAO-BLYP/TAO-BLYP-D in the present scheme.

S5 in ESIT). Unsurprisingly, the #* values (see Fig. 8) of spin-
restricted TAO-DFAs are vanishingly small near the equilib-
rium bond length of N,, and approach some constant values
(about 28.0 mhartree) at the respective dissociation limits. This
highlights the importance of the present scheme in TAO-DFT.
3. Twisted ethylene. Owing to the presence of strong static
correlation effects, the torsion of ethylene (C,H,) has been
a challenging subject in KS-DFT. When the HCCH torsion angle
is 90°, the m(1b,) and w*(2b,) orbitals in ethylene should be
degenerate. Nonetheless, spin-restricted KS-DFT is unable to
adequately describe such degeneracy, leading to a torsion
potential with an unphysical cusp and a far too high barrier.
To assess how spin-restricted TAO-DFT improves upon these
problems, we plot the torsion potential energy curves (in relative
energy) for the ground state of twisted ethylene as a function of
the HCCH torsion angle, calculated using spin-restricted TAO-
LDA with various 6 values (see Fig. 9), where the zeros of
energy are set at the respective minimum energies. The exper-
imental geometry of ethylene (Rgc = 1.339 A, Rep=1.086 A, and
Zucu = 117.6°)* is adopted in the calculations. On the basis of
the spin-restricted TAO-LDA results, the unphysical cusp can be
removed with 6* or a system-independent 6 larger than or equal
to 7 mhartree. Besides, an accurate torsion barrier can be ob-
tained from TAO-LDA (with # = 15 mhartree), when compared
with the torsion barrier obtained from the complete-active-
space second-order perturbation theory (CASPT2), that is, 65.2
(keal mol ). While TAO-LDA (with 6*) consistently outper-
forms KS-LDA (i.e., the § = 0 case) and TAO-LDA (with § = 7
mhartree), the predicted torsion barrier remains a bit too high.
To examine if this is also relevant to the distribution of
TOONS, we plot the occupation numbers of the 7(1b,) orbital
for the ground state of twisted ethylene as a function of the
HCCH torsion angle, calculated using spin-restricted TAO-LDA
with various @ values. As shown in Fig. 10, the m(1b,) orbital
occupation numbers of spin-restricted TAO-LDA (with § = 15
mhartree) match reasonably well with the half-projected
NOONSs of complete-active-space self-consistent field (CASSCF)

This journal is © The Royal Society of Chemistry 2017
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Fig. 9 Torsion potential energy curves (in relative energy) for the
ground state of twisted ethylene as a function of the HCCH torsion
angle, calculated using spin-restricted TAO-LDA with the #* and
system-independent 6 values. The # = O case corresponds to spin-
restricted KS-LDA. The reference data are the CASPT2 results.®® The
zeros of energy are set at the respective minimum energies.
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Fig. 10 Occupation numbers of the mt(1lb,) orbital for the ground state
of twisted ethylene as a function of the HCCH torsion angle, calculated
using spin-restricted TAO-LDA with the 6* and system-independent
values. The # = 0 case corresponds to spin-restricted KS-LDA. The
reference data are the half-projected NOONs of the CASSCF method
(HPNO-CAS).%*

method (i.e., the reference data),* which is closely related to the
accurate torsion potential energy curve obtained from TAO-LDA
(with this §). Similar results are also found for TAO-PBE, TAO-
BLYP, and TAO-BLYP-D (see Fig. S6 and S7 in ESIf). Again,
this emphasizes the importance of adopting a @ related to the
distribution of NOONs in TAO-DFT.

Here, we plot the 6* values for the ground state of twisted
ethylene as a function of the HCCH torsion angle, calculated
using spin-restricted TAO-LDA, TAO-PBE, and TAO-BLYP/TAO-
BLYP-D in the present scheme. As shown in Fig. 11, the 6*
values of spin-restricted TAO-DFAs are vanishingly small near
the equilibrium geometry of ethylene (i.e., in the absence of
strong static correlation effects), and reach the respective

RSC Adv., 2017, 7, 50496-50507 | 50505
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Fig. 11 The #* values for the ground state of twisted ethylene as
a function of the HCCH torsion angle, calculated using spin-restricted
TAO-LDA, TAO-PBE, and TAO-BLYP/TAO-BLYP-D in the present
scheme.

maximum values (about 15.5 mhartree) as the HCCH torsion
angle is 90° (ie., in the presence of strong static correlation
effects).

V. Conclusions

In summary, we have developed an iterative scheme for the self-
consistent determination of the fictitious temperature 6 in TAO-
DFT. In particular, TAO-DFAs (with the self-consistent fictitious
temperature, i.e., 6*) have been shown to greatly improve upon
the corresponding KS-DFAs (i.e., the § = 0 cases) and TAO-DFAs
(with the optimal system-independent § = 7 mhartree) for MR
systems (e.g., the dissociation of H, and N, and twisted
ethylene), while performing very similarly to the corresponding
KS-DFAs for SR systems (e.g., thermochemistry, kinetics, and
reaction energies). It is expected that the accuracy of KS-DFAs
could essentially be transferred to that of the corresponding
TAO-DFAs (with 6*) for a wide range of SR systems. Therefore,
TAO-DFAs (with 6*) can treat both SR and MR systems at the
nanoscale in a much more balanced way than the correspond-
ing KS-DFAs, revealing the importance of the present scheme!
Besides, an approach combining TAO-DFAs and dispersion
corrections has been shown to yield an efficient and reasonably
accurate description of noncovalent interactions. Relative to
TAO-LDA, TAO-GGAs are generally superior in performance for
a broad range of applications, such as thermochemistry,
kinetics, and reaction energies.

In addition, as the orbital energy gaps of TAO-LDA and TAO-
GGAs are similar, the self-consistent fictitious temperature in
TAO-DFT is, essentially, DFA insensitive (e.g., see Fig. 4, 8 and
11). Therefore, for computational efficiency, it is possible to
design an algorithm that can obtain the self-consistent ficti-
tious temperature with TAO-LDA, and then adopt this value to
calculate properties with a more sophisticated TAO-DFA.

Despite some progress, there remains room for improve-
ment in the present scheme. By construction, TAO-DFAs (with

50506 | RSC Adv., 2017, 7, 50496-50507
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0*) can perform better than the corresponding TAO-DFAs (with
6 = 7 mhartree)"” for a wide range of SR and MR systems.
However, the former are computationally more expensive than
the latter for single-point energy and geometry optimization
calculations. For the efficient optimization of molecular
geometries, the development of analytical nuclear gradients for
TAO-DFAs (with %) will be essential, which can greatly enhance
their applicability to large systems with strong static correlation
effects. In addition, different stability indexes (see eqn (30)) and
different types of functions (see eqn (31)) may also be adopted
for the representation of ¢ in TAO-DFT, which may further
improve the accuracy of the present scheme for general appli-
cations. We plan to pursue some of these issues in the near
future.
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