Reactive molecular dynamics study of the decomposition mechanism of the environmentally friendly insulating medium C_3F_7CN†

Xiaoxing Zhang, Yi Li, Dachang Chen, Song Xiao, Shuanghuang Tian, Ju Tang and Ran Zhuo

The extensive use of sulfur hexafluoride (SF_6) gas in the power industry has a strong greenhouse effect. Hence, many scholars are committed to studying SF_6 alternative gases to achieve green power development. In the past two years, C_3F_7CN (heptafluoroisobutyronitrile) has attracted the attention of many scholars due to its excellent insulation and environmental protection characteristics as a potential alternative gas. This study theoretically explores the decomposition characteristics of C_3F_7CN and the C_3F_7CN/CO_2 gas mixture based on the reactive molecular dynamics method and density functional theory. The main decomposition pathways of C_3F_7CN and the enthalpy of each path at different temperatures were analyzed. The yield of the main decomposition products was obtained under several temperature conditions. The decomposition of C_3F_7CN mainly produced CF_3, C_3F_7, CN, CNF, CF_2, CF, and other free radicals and a few molecular products, such as CF_4 and C_3F_8. The C_3F_7CN/CO_2 gas mixture has more excellent decomposition characteristics than that of the pure C_3F_7CN. The addition of CO_2 effectively ensures that the gas mixture has a low liquefaction temperature, which is considerably suitable for use as a gas insulation medium. The relevant research results provide guidance for the further exploration on the electrical properties and practical engineering application of the C_3F_7CN gas mixture.

1 Introduction

SF_6 (sulfur hexafluoride) is the most common insulation medium used in high-voltage (HV) electrical equipment such as gas insulated switchgear (GIS).† However, SF_6 is a greenhouse gas (GHG) regulated under the Kyoto Protocol with a global warming potential (GWP) of 22 800. Although the proportion of greenhouse effect caused by the use of SF_6 is not as large as the amount of fossil fuel energy consumed, the global atmospheric content of SF_6 has increased by 20% in the past five years and the atmospheric mole fraction of SF_6 is 7.28 ppq currently corresponding to a radiative forcing of 0.0041 W m$^{-2}$. The greenhouse effect has caused widespread public concern in recent years. Climate deterioration caused by SF_6 has gradually become one of the contradictions between power industry development and environmental protection. Hence, the power industry should gradually limit the use of SF_6 and search for an environmentally friendly alternative gas for SF_6 in gas-insulated equipment.

C_3F_7CN (heptafluoroisobutyronitrile) is a potential alternative gas for SF_6 (see Fig. 1 for its molecular structure) with a GWP value of 2100 and Ozone Depression Potential (ODP) value of 0. The dielectric strength of C_3F_7CN is 2.74 times that of SF_6. It should be used in combination with CO_2 or other buffer gases with low liquefaction temperature due to its high liquefaction temperature ($i.e.$, -4.7 °C). In addition, the toxicity of the C_3F_7CN/CO_2 gas mixture with C_3F_7CN volume fraction below 10% is lower than that of pure SF_6. Thus, the former is harmless to humans. These physical and chemical properties indicate that C_3F_7CN is excellent in terms of environmental protection, insulation and safety, and has immense potential to replace SF_6.

In the past two years, many scholars have proven that the C_3F_7CN/CO_2 gas mixture has excellent insulation and arc extinguishing performance through numerous tests. For engineering applications, a gas insulated line (GIL) with a rated voltage of 420 kV and a current transformer (CT) with a rated voltage of 245 kV using the C_3F_7CN/CO_2 gas mixture as insulating medium were tested in 2015. In addition, the investigation of the decomposition properties of a gas-insulating medium is an important component to comprehensively evaluate its performance. On the one hand, the insulation defects
caused by aging under long-term operating conditions in electrical equipment will lead to partial discharge (PD) or flashover and is accompanied by the decomposition of the insulating medium. The local overheating fault can also lead to the decomposition of the insulating medium. On the other hand, the decomposition characteristics of the insulating medium are closely related to its self-recovery characteristics and arc-extinguishing properties.

At present, researches on the decomposition characteristics of C_{3}F_{7}CN have achieved noteworthy results. Kieffel et al. investigated the pyrolysis characteristics of the C_{3}F_{7}CN/CO_{2} gas mixture. They found the initial decomposition temperature of C_{3}F_{7}CN was 650 °C, thereby mainly producing decomposition products, such as CO, CF_{3}CN, and C_{2}F_{5}CN. Andersen et al. investigated the atmospheric chemistry of C_{3}F_{7}CN and evaluated its environmental effects based on density functional theory and infrared spectroscopy. Our team has explored the decomposition mechanism of C_{3}F_{7}CN in the presence of trace water impurity through quantum chemical calculation. The ionization parameters of C_{3}F_{7}CN and various decomposition products were analyzed from the perspective of molecular structure, thereby providing a theoretical reference for the further study of the C_{3}F_{7}CN decomposition characteristics.

At present, only a few studies have been conducted on the decomposition characteristics of the C_{3}F_{7}CN/CO_{2} gas mixture. Our previous studies on the decomposition mechanism of C_{3}F_{7}CN were from the perspective of individual molecule and did not consider the decomposition process in multi-molecular and gas mixture systems. In this paper, we constructed the multi-molecular and C_{3}F_{7}CN/CO_{2} gas mixture model to study the decomposition process of C_{3}F_{7}CN using the reactive force field molecular dynamics (ReaxFF-MD) method and density functional theory (DFT). The decomposition paths, reaction enthalpy, and products distribution of the C_{3}F_{7}CN gas mixture at different temperatures were firstly investigated. Relevant results provide guidance for further exploration on electrical properties and practical engineering application of C_{3}F_{7}CN gas mixture.

2 Theoretical methods and computational details

2.1 ReaxFF-MD simulation details

ReaxFF is based on bond order to describe the dissociation and formation of covalent bonds at the atomic level and is a beneficial tool for studying chemical reactions and predicting the performance of new materials. During the past more than ten years, ReaxFF has been used to treat a variety of elements.
and multifunctional systems and is suitable for describing polyatomic systems. The energy expression of ReaxFF is presented as follows:

\[E_{\text{system}} = E_{\text{bond}} + E_{\text{over}} + E_{\text{under}} + E_{\text{val}} + E_{\text{pen}} + E_{\text{tors}} + E_{\text{conj}} + E_{\text{vdW}} + E_{\text{Coulomb}} \]

(1)

where \(E_{\text{bond}} \) corresponds to bond energy; \(E_{\text{over}} \) and \(E_{\text{under}} \) denote the over and under coordinated atoms, respectively, in the energy contribution; \(E_{\text{val}}, E_{\text{pen}}, E_{\text{tors}}, E_{\text{conj}}, E_{\text{vdW}}, \) and \(E_{\text{Coulomb}} \) represent the valence angle term, penalty energy, torsion energy, conjugation effects to energy, nonbonded van der Waals interaction, and Coulomb interaction, respectively.

Two periodic cubic boxes were built to explore the decomposition of \(\text{C}_3\text{F}_7\text{CN} \) and the \(\text{C}_3\text{F}_7\text{CN}/\text{CO}_2 \) gas mixture (see Fig. 2). The \(\text{C}_3\text{F}_7\text{CN} \) system contains 100 \(\text{C}_3\text{F}_7\text{CN} \) molecules with a density of 0.00811 g cm\(^{-3}\). The length of the box is 159 Å. At present, many scholars have tested the insulation characteristics of \(\text{C}_3\text{F}_7\text{CN}/\text{CO}_2 \) mixture and found that mixtures with 20% \(\text{C}_3\text{F}_7\text{CN} \) displayed dielectric strengths comparable to SF\(_6\). In order to reveal the decomposition properties of mixtures in this scale, we built the \(\text{C}_3\text{F}_7\text{CN}/\text{CO}_2 \) system which contains 100 \(\text{C}_3\text{F}_7\text{CN} \) molecules and 400 \(\text{CO}_2 \) molecules with a density of 0.00351 g cm\(^{-3}\). The length of the box is 260 Å. The initial density corresponds to the actual density of \(\text{C}_3\text{F}_7\text{CN} \) under 25 °C and 0.1 Mpa. The system was minimized with the NVE ensemble for 5 ps at 5 K and equilibrated with the NVT ensemble thereafter for 10 ps at 1000 K using a time step of 0.1 fs. The NVT simulations were then conducted at different temperatures for 1000 ps to explore the decomposition process of \(\text{C}_3\text{F}_7\text{CN} \) and \(\text{C}_3\text{F}_7\text{CN}/\text{CO}_2 \) gas mixture. The temperature was controlled by the method of a Berendsen thermostat with a 0.1 ps damping constant. All the ReaxFF-MD simulations in this paper were performed based on the ReaxFF module of ADF (Amsterdam Density Functional).

2.2 DFT calculation details

The first principle of calculations based on the density functional theory (DFT) was performed to obtain the precise dissociation energy of \(\text{C}_3\text{F}_7\text{CN} \) at different temperatures. This theory is widely used in the study of chemical reaction mechanisms, and can describe any given chemical system with high accuracy.

The spin unrestricted DFT calculation in the current study was performed based on the Dmol 3 module of the Materials studio 8.0. The meta-generalized approximation (mGGA) method treated by M06L functions is used to describe the exchange-correlation energy. This local density functional does well for predicting geometries and vibrational frequencies and gives great performance for a combination of main-group thermochemistry and thermochemical kinetics. The double numerical atomic orbital augmented by d-polarization (DNP) is used as the basis set. Geometry optimizations were performed with the following convergence parameters: (1) energy convergence tolerance of \(1.0 \times 10^{-5} \text{ Ha} \), (2) maximum force of 0.002 Ha Å\(^{-1}\), and (3) maximum displacement of 0.005 Å. It should be pointed that spin contamination (unrestricted DFT is much less affected by it than unrestricted Hartree–Fock theory) and wave function unstability may occur in spin unrestricted calculation. The self-consistent-field (SCF) solution stability is checked to ensure the accuracy of calculation results.

The enthalpy correction is presented as follows to obtain the precise energy of the system at a given temperature:

\[\Delta E = \sum (E_{\text{product}} + \Delta E_{\text{product}}) - \sum (E_{\text{reactant}} + \Delta E_{\text{reactant}}), \]

(2)

where \(E_{\text{product}} \) and \(E_{\text{reactant}} \) correspond to the energy of the product and reactant, respectively, at 0 K and \(\Delta E_{\text{product}} \) and \(\Delta E_{\text{reactant}} \) correspond to the correcting values of the enthalpy of product and reactant, respectively, at a given temperature.

3 Results and discussion

3.1 Decomposition of the pure \(\text{C}_3\text{F}_7\text{CN} \)

3.1.1 Decomposition process and main reaction paths. The three main types of discharges in electrical equipment are the corona (partial discharge), arc, and spark discharges, wherein the corona and arc discharges are the most common. The maximum temperature in the central region of the corona discharge is in the range of 700–1200 K and the highest temperature in the arc discharge region can reach 12 000 K. The current study analyzed the decomposition mechanism of \(\text{C}_3\text{F}_7\text{CN} \) and its gas mixture at different temperatures to clarify the particle composition and product change. It should be noted that the time scale of ReaxFF MD simulation is normally limited to several dozens of nanoseconds due to the computational cost. Hence, we enhance the temperatures to accelerate the simulation process to allow reactions can be observed.

First, the multi-molecular ReaxFF molecular dynamic simulations of \(\text{C}_3\text{F}_7\text{CN} \) were performed and demonstrated that the \(\text{C}_3\text{F}_7\text{CN} \) molecule began to decompose at 1900 K. Fig. 3 shows the time evolution of the major species of the \(\text{C}_3\text{F}_7\text{CN} \) decomposition at 1900 K. Table 1 shows the generation time of the major species and corresponding decomposition pathways.

At 1900 K, the \(\text{C}_3\text{F}_7\text{CN} \) decomposition mainly produces free radicals, such as \(\text{CF}_3, \text{C}_3\text{F}_7, \text{CN}, \text{CNF}, \text{CF}_2, \text{CF}, \text{CF}_2\text{CFCN} (\text{C}_3\text{NF}_4) \), and 5. It is important to note that some free radicals, such as
CN, are harmful free radicals and could produce toxic molecules. The content and toxicity of the decomposition products of C₃F₇CN need further test study before engineering application.

C₃F₇CN began to decompose at 615 ps, thereby producing CF₃CFCN and CF₃. This reaction path is required to absorb 72.67 kcal mol⁻¹. Another decomposing path began at 702.5 ps, thereby producing C₃F₇ and CN and needs to absorb 101.33 kcal mol⁻¹. In addition, the decomposition of CF₃CFCN is at 685.625 ps, thereby generating CF₃, CF, and CN. CF₃ can further decompose to CF₂ and F by absorbing 79.04 kcal mol⁻¹, CF can further decompose to C and F by absorbing 121.23 kcal mol⁻¹. CF₄ is one of the stable decomposition products, which is formed by CF₃ and F and releases −107.64 kcal mol⁻¹. In addition, the DFT calculation results show that the energy required for path A is lower than that for path B, which means that path A is more likely to occur than path B. And the ReaxFF-MD results show that the number of generated CF₃ increases rapidly during 700–1000 ps, which indicates the results of ReaxFF are consistent with DFT calculations and the performance of ReaxFF is reliable.

3.1.2 Effect of temperature on the decomposition process.

To further analyze the influence of temperature on the decomposition process of C₃F₇CN, the molecular dynamic simulation of the C₃F₇CN system was performed at five temperature zones, that is, 1900 K, 2000 K, 2100 K, 2200 K, and 2400 K, for a total simulation time of 1000 ps.

Fig. 4 shows the time evolution of the potential energy between 1900 K and 2400 K. The potential energy of the system increases during the reaction process at different temperatures,

<table>
<thead>
<tr>
<th>Major species</th>
<th>Generation time (ps)</th>
<th>Reaction</th>
<th>ΔE (kcal mol⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₃NF₄, CF₃</td>
<td>615</td>
<td>A</td>
<td>C₃F₇CN → CF₃ + CF₃CFCN 72.67</td>
</tr>
<tr>
<td>C₃F₇</td>
<td>702.5</td>
<td>B</td>
<td>C₃F₇CN → C₃F₇ + CN 101.33</td>
</tr>
<tr>
<td>C₃F₅N</td>
<td>—</td>
<td>C</td>
<td>C₃F₅CN → (CF₃)₅CCN + F 89.17</td>
</tr>
<tr>
<td>CN, CF</td>
<td>685.625</td>
<td>D</td>
<td>CF₃CFCN → CF₃ + CF + CN 174.66</td>
</tr>
<tr>
<td>CF₃, F</td>
<td>748.125</td>
<td>E</td>
<td>CF₃ → CF₂ + F 79.04</td>
</tr>
<tr>
<td>CNF</td>
<td>748.125</td>
<td>F</td>
<td>CN + F → CNF −118.48</td>
</tr>
<tr>
<td>CF₄</td>
<td>845.625</td>
<td>G</td>
<td>CF₄ + F → CF₄ 107.64</td>
</tr>
<tr>
<td>C</td>
<td>—</td>
<td>H</td>
<td>CF → C + F 121.23</td>
</tr>
</tbody>
</table>

* T = 1900 K, at mGGA-M06L level with ZPE and enthalpy corrections.
thereby indicating that the entire decomposition process of $\text{C}_3\text{F}_7\text{CN}$ needs to absorb energy. The growth rate of the potential energy is evidently accelerated with the increase of temperature, indicating that the increase of the ambient temperature will lead to the accelerated decomposition of $\text{C}_3\text{F}_7\text{CN}$. When the ambient temperature reaches 2400 K, the growth rate of the

Fig. 7 Time evolution of the major species between 1900 K and 2400 K ($\text{C}_3\text{F}_7\text{CN}$ system).
To further analyze the effect of temperature on the decomposition of C\textsubscript{3}F\textsubscript{7}CN, the enthalpy of the main reaction paths in the temperature range of 300–3000 K is calculated based on DFT (see Fig. 6). As the temperature increases, the reaction enthalpy of paths A, B, D, and E decreases, that is, the temperature increase is favorable for the reaction progress. The enthalpy change of path D is the most evident, thereby indicating that the increase of temperature has a significant effect on the decomposition of CF\textsubscript{3}CFCN. The reaction enthalpy change of paths C and H is not significantly with increasing temperature. Paths F and G are exothermic reaction processes and the energy released decreases as the temperature increases.

3.1.3 Intermediates and main products

Fig. 7 illustrates the time evolution of the major species of C\textsubscript{3}F\textsubscript{7}CN decomposition over the temperature range from 1900 K to 2400 K. Fig. 8 shows the maximum number of produced species. The statistical results in Fig. 7 shows that the amount of C\textsubscript{3}F\textsubscript{7}, CN, CNF, CF\textsubscript{3}, CF\textsubscript{2}, CF, CF\textsubscript{3}CFCN(C\textsubscript{3}NF\textsubscript{4}), F, and other free radicals and CF\textsubscript{3} produced by the decomposition of C\textsubscript{3}F\textsubscript{7}CN increased with the increase of temperature.

The statistical results in Fig. 8 show that the content of CF\textsubscript{3} at each temperature is the highest among all the products, while the contents of CF\textsubscript{2}, CN, CNF, and F are similar. The contents of C\textsubscript{3}F\textsubscript{7}, C\textsubscript{3}NF\textsubscript{4}, and C\textsubscript{4}NF\textsubscript{6} are lower compared with those of other products. C\textsubscript{4}NF\textsubscript{6} is generated by the dissociation of the F atom in the C\textsubscript{3}F\textsubscript{7}CN molecule from the central C atom (C\textsubscript{2} atom as shown in Fig. 1), thereby requiring the absorption of 89.17 kcal mol-1. In addition, a few small stable molecules, such as CF\textsubscript{4} and C\textsubscript{3}F\textsubscript{8}, are found during the simulation. The generation rate of CF\textsubscript{4} in the time range of 600–1000 ps at 2400 K increased and the amount of CF\textsubscript{3} and F during the time range reduced (as shown in Fig. 7). Given that the generation path of CF\textsubscript{4} (path G in Table 1) is exothermic, the gradual growth of the overall potential energy of the system is actually due to the large amount of CF\textsubscript{4} produced.

3.2 Decomposition of the C\textsubscript{3}F\textsubscript{7}CN/CO\textsubscript{2} mixture

3.2.1 Effect of temperature on the decomposition process

In order to obtain the decomposition properties of the insulating medium in a practical application condition, the
decomposition characteristics of C$_3$F$_7$CN/CO$_2$ gas mixture over the temperature range from 2000 K to 3000 K were discussed. Fig. 9 shows the time evolution of the potential energy of the C$_3$F$_7$CN/CO$_2$ gas mixture system. Fig. 10 provides the decomposition amount of C$_3$F$_7$CN.

The potential energy of the system shows an increasing trend in the range of 2200–3000 K. When the ambient temperature is above 2400 K, the potential energy of the system increases. When the ambient temperature is 2000 K, the potential energy of the system does not change substantially, thereby exhibiting a relationship with the decomposition degree when C$_3$F$_7$CN is low. The decomposition rate of C$_3$F$_7$CN is accelerated with the increase of temperature, thereby showing consistency with the conclusion of the pure C$_3$F$_7$CN system.

3.2.2 Intermediates and main products. Fig. 11 describes the time evolution of the major decomposition species of C$_3$F$_7$CN over the temperature range from 2000 K to 3000 K. Fig. 12 presents the maximum number of produced species. Fig. 13 final decomposition amount of C$_3$F$_7$CN at different temperatures.
Similar to the pure C₃F₇CN system, the content of the major decomposition products shows an increasing trend with the increase of temperature. The content of CF₃ in the products is the highest at each temperature. When the temperature is below 2800 K, the yields of CN, CNF, CF, and F are similar. When the temperature is above 2800 K, the content of F in the system increases. A new decomposition of products, namely, CO, is produced due to the addition of CO₂. The decomposition of CO₂ accelerated at temperatures over 2600 K and 40 mole-
cules of CO are produced at 3000 K. In the C₃F₇CN/CO₂ system, the yield of CF₄ reduces. Only 12 CF₄ molecules were produced at 3000 K at the end of the simulation, which is lower than that of the pure C₃F₇CN system. In addition, the generation rate of CF₃ and F after 800 ps at 3000 K slowed down, which is related to the formation of CF₄.

3.2.3 Effect of CO₂ on the decomposition process. Fig. 13 shows the final decomposition amount of C₃F₇CN in C₃F₇CN and C₃F₇CN/CO₂ system at the same temperature. The decomposition amount of C₃F₇CN in the C₃F₇CN/CO₂ gas mixture system is lower than that in the pure C₃F₇CN system at the same temperature. For example, the decomposition amount in the pure C₃F₇CN system is 96 at 2400 K, whereas that of the C₃F₇CN/CO₂ gas mixture system is 58. The addition of the buffer gas CO₂ can effectively inhibit the decomposition of C₃F₇CN.

Table 2 shows that the final amount of the decomposition products in the C₃F₇CN/CO₂ gas mixture system is lower than that in the pure C₃F₇CN system at the same temperature. Moreover, the addition of CO₂ inhibits the formation of CF₃ and C, thereby making it difficult for the system to precipitate carbon and produce products with relatively poor insulation properties. This result is beneficial to protect the insulation properties of the system.

Therefore, the C₃F₇CN/CO₂ gas mixture is relatively suitable for using as a gas-insulated medium relative to pure C₃F₇CN. The mechanism of the action of CO₂ over C₃F₇CN to avoid its decomposition process in function of temperature needs further study.

4 Conclusion
This study analyzed the decomposition characteristics of C₃F₇CN and its gas mixture based on ReaxFF-MD method and density functional theory. The main decomposition pathways, reaction enthalpy, and the composition of the main decomposition products of C₃F₇CN at different temperatures were revealed. The decomposition characteristics of C₃F₇CN and C₃F₇CN/CO₂ gas mixture were compared and analyzed. The decomposition of C₃F₇CN mainly produces CF₃, C₃F₇, CN, CNF, CF₂, CF, F, and other free radicals and a few molecular products, such as CF₄ and C₃F₈. The decomposition rate of C₃F₇CN and generation rate of the products increase with the increase of ambient temperature. The C₃F₇CN/CO₂ gas mixture has more excellent decomposition characteristics than that of pure C₃F₇CN at the same condition, which is relatively suitable for use as a gas-insulated medium in electrical equipment.

Conflicts of interest
There are no conflicts to declare.

Acknowledgements
The current work is supported by the science and technology project of China Southern Power Grid (No. CSGTRC-K163010)

References
1 A. Beroual and A. Haddad, Recent Advances in the Quest for a New Insulation Gas with a Low Impact on the Environment to Replace Sulfur Hexafluoride (SF₆) Gas in High-Voltage Power Network Applications, Energies, 2017, 10(8), 1216.

7 J. G. Owens, Greenhouse gas emission reductions through use of a sustainable alternative to SF₆, IEEE Electrical Insulation Conference (EIC), Montréal, Canada, 2016, pp. 535–538.

8 Y. Kieffel, Characteristics of g3-an alternative to SF₆, IEEE International Conference on Dielectrics (ICD), Montpellier, France, 2016, vol. 2, pp. 880–884.

14 J. Zhang, Y. Si, C. Leng, et al., Molecular dynamics simulation of Al–SiO₂ sandwich nanostructure melting and low-temperature energetic reaction behavior, RSC Adv., 2016, 6(64), 59313–59318.

16 D. Hong, L. Liu, Y. Huang, et al., Chemical effect of H₂O on CH₄ oxidation during combustion in O₂/H₂O environments, Energy Fuels, 2016, 30(10), 8491–8498.

