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Simultaneous growth of different kinds of aligned GaN nanostructures (i.e., nanowires, needles, pyramids

and micro-rods) on a single substrate was firstly realized at a low temperature of 790 �C by naturally

changing the III/V ratio across the substrate via a coaxial pipeline configuration. The effects of substrate

distance and growth pressure on nanostructure growth were investigated. The morphology variation

from nanowires to micros-rods would be explained in terms of Ga species changing from the Ga

element to GaN molecule in a hot-wall reactor. This work is helpful for on chip integration of different

kinds of nanodevices on unusual substrates of low melting temperature.
1. Introduction

Semiconductor nanostructures, such as nanowires,1–3,12–15,24–29

needles,4–6 pyramids,7,8,16,38 rod/pillars,8,9,16–23 and trumpets,10,11

have wide applications in novel electronic devices. In compar-
ison with the nanowire structure,1–3,12–15,27,29 vertically aligned
needle, rod and pyramid structures, which have a nanoscale tip
and robust microscale-trunk, can bring advantages in single
nano-structure devices4–6 and optical coupling.10,11

Currently, metal–organic chemical vapor deposition
(MOCVD) is one of the most popular techniques for commer-
cialized GaN epitaxy. For MOCVD growth of GaN nano-
structures, there has two main methods, i.e., vapor–
liquid(solid)–solid growth with metal catalyst (VLS)1,2,12,13,24–27,29

and catalyst-free anisotropic-growth on patterned substrate (i.e.,
selective area growth (SAG)).7–9,16–23 However, for the nanowires
with high aspect ratio (length/diameter > 35), it is difficult to be
grown via SAG method7–9,16–18,22,23,39 without the use of high
silane ux18,20 or complex pulsed-growth mode.24 While, for the
micro-rods of low aspect ratio (i.e., microscale-trunk rods), there
is few report that they can be grown via VLS method.1,2,12,13,24–27,29

In other word, neither VLS nor SAG can be satisfactorily used for
growth of both nanowires and micro-rods.
nology, Faculty of Electronic Information

ty of Technology, Dalian 116024, China.

(ESI) available: S1–S2 Transmission
anowire and pyramid from sample A.
ular needle and hexagonal rod from
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Moreover, for different nanostructures, there exists large
difference in growth conditions (especially in the growth
temperature). Kuykendall et al.2 achieved nanowire arrays via
VLS at 780 �C. Tian et al.36 prepared micro-pyramids via SAG at
a high temperature about 1080 �C. Bae et al.37 investigated the
morphologies of micro-pyramids, and they found that micro-
pyramids with smooth sidewalls can only be grown at the
temperature higher than 900 �C. Rozhavskaya et al.3 reported
the growth of micro-rod arrays under 1040 �C. Thus, growth
temperature of these micro-structures prepared via SAG (950–
1175 �C)7–9,16–18,22,23 is much higher than that of nanowires
prepared via VLS (760–850 �C).1,2,12,13,24–27,29 Thus, it is still
a challenge to simultaneous growth of all these nanostructures
(including nanowires and micro-rods) under a favorable
condition.

In this paper, aligned GaN nanowires, needles, pyramids and
micro-rods can be grown simultaneously on a single substrate
at a constant temperature of 790 �C, by naturally changing the
V/III ratio across the substrate. The growth mechanism, which
induces the transformation between these nanostructures, was
also discussed.
2. Experiment

Growth of the GaN nanostructures was performed by using
a homemade hot-wall MOCVD system, in which the growth
parameters can be exibly tuned. As shown in Fig. 1(a), the
substrate distance (dened as the distance between the
substrate and the outlet of quartz coaxial pipeline) can be
changed. The coaxial pipeline contains an inner-tube (4 mm
i.d., 5 mm o.d.) and an outer-tube (7 mm i.d., 8 mm o.d.), which
is used for delivering TMGa and NH3 to the substrate, respec-
tively. This coaxial pipeline conguration results in a gradual
RSC Adv., 2017, 7, 50781–50785 | 50781
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Fig. 1 (a) Schematic diagram and (b) gas distributions of the coaxial
pipeline.

Table 1 Growth parameters of GaN samples

Sample

TMGa
[mmol
min�1]

NH3

[mmol
min�1]

Pressure
[Torr]

Substrate
distance
[mm]

A 100 8
B1 9 1.8 100 18
B2 200 18

Fig. 2 (a) The optical photograph and the SEM images of point (b) 1#,
(c) 2#, (d) 3#, (e) 4#, and (f) 5# of sample A.
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decrease of the III/V ratio from the center (point 1#) to the edge
of the substrate, while the other growth parameters can remain
the same across the substrate. Thus, the effect of III/V ratio on
nanostructure growth can be found out on a single substrate, by
carrying out only a single growth, which can eliminate the run
to run variation.

As listed in Table 1, three samples were grown at an opti-
mized temperature of 790 �C for 15 min. The ow rate of N2/
(5%)H2 gas used for carrying TMGa and NH3 precursors was 350
sccm and 150 sccm, respectively. (0001) sapphire wafer coated
with a 3 mm (0001) GaN-layer was employed as substrate. (2 nm)
Ni/(2 nm)Au catalyst layers were successively deposited on the
substrate by magnetron sputtering.
Fig. 3 (a) The optical photograph and the SEM images at point (b) 1#,
(c) 2# of sample B1.
3. Results
Sample A

Fig. 2(a) shows the optical photograph of sample A, which was
grown with a substrate distance of 8 mm. With such a short
distance, the mixture between TMGa and NH3 precursors was
far from homogeneous when they arriving the substrate, so the
III/V ratio can change greatly across the substrate. As shown in
Fig. 2(a), with moving from the center (point 1#) to the edge
(point 5#) of the growth region (indicated by the red circle) on
the substrate, the surface color changes from black (1#), yellow
(2#, 3#), to light yellow (4#, 5#). The black-disk (around point 1#)
is the region, which directly faces the inner-tube of the coaxial
pipeline (Fig. 1).

Fig. 2(b)–(f) show the scanning electron microscopy (SEM)
images of the ve points (1#–5#) of sample A, respectively. At
50782 | RSC Adv., 2017, 7, 50781–50785
point 1# (Fig. 2(b)), distorted large rods were observed with
white cap (indicated by an arrow), which could be induced by
excess supply of Ga species, because of extremely high III/V ratio
at the region of the black-disk. At point 2# (Fig. 2(c)), curve
needles (base diameter of�700 nm and length of�20 mm) were
observed without excess Ga at the tip. At point 3# (Fig. 2(d)),
oriented triangular nanowires with diameter of �200 nm and
length of �20 mm were observed. At point 4# (Fig. 2(e)), vertical
hexagonal pyramids with base diameter of �1.5 mm and length
of �4 mm were observed. At point 5# (Fig. 2(f)), vertical hexag-
onal micro-rods with trunk diameter of �0.7 mm and length of
�3 mm were observed. At the points outside the growth region,
nanostructures are very sparse due to lack of Ga species (i.e.,
extremely low III/V ratio). Thus, by simply decreasing the III/V
ratio across the substrate, the nanostructures of needles (2#),
nanowires (3#), pyramids (4#), or micro-rods (5#) can be ob-
tained respectively. As shown in the S1–S2 of the ESI,† the
growth directions of nanowire and pyramid are [10�10] and
[0001], respectively.
Sample B1

Fig. 3(a) shows the optical photograph of sample B1, which was
grown with an increased substrate distance of 18 mm. The
increased distance would enhance the mixture of TMGa and
NH3 precursors before they arrive the substrate, so more
This journal is © The Royal Society of Chemistry 2017
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Fig. 4 (a) The optical photograph and the SEM images at point (b) 1#,
(c) 2# of sample B2.

Fig. 5 The SEM images of the pillars (a) without NiAu droplet, or with
a NiAu droplet at the tip for an additional growth of (b) a branch, (c)
a polycrystal, and (d) a new pillar.
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uniform distribution of the nanostructures across the substrate
can be obtained. As shown in Fig. 3(a), only yellow-green color
was observed, and the color depth decreases slightly from the
center (point 1#) to the edge (point 2#) of the growth region.

Fig. 3(b) and (c) shows the SEM images of sample B1. At
point 1# (Fig. 3(b)), oriented triangular needles with base
diameter of �5 mm and length of �40 mm were observed. At
point 2# (Fig. 3(c)), vertical hexagonal micro-rods with trunk
diameter of �2.6 mm and length of �8 mmwere observed. Thus,
by decreasing the III/V ratio across the substrate, the nano-
structures can change from triangular needles (1#) to hexag-
onal micro-rods (2#). This trend of morphology transformation
is similar with that observed in sample A. As shown in the S3–S4
of the ESI,† the growth directions of needle and micro-rod are
[10�10] and [0001], respectively, which are conrmed by XRD
measurement (S6 of the ESI†).
Sample B2

Fig. 4(a) shows the optical photograph of sample B2, which was
also grown with a substrate distance of 18 mm. While the
growth pressure was increased from 100 Torr to 200 Torr, which
would further enhance the mixture of TMGa and NH3. As shown
in Fig. 4(a), the surface color is uniform inside the growth
region.

Fig. 4 shows the SEM images of sample B2, and vertical
hexagonal micro-rods with an average trunk diameter of �3 mm
were observed across the growth region. With moving from the
center (point 1#) to the edge (point 2#) of the growth region, the
length of micro-rods decreases from �40 mm (Fig. 4(b)) to �15
mm (Fig. 4(c)). In contrast with sample A and B1, there is no
obvious morphology variation across the growth region, due to
the enhanced mixture of the precursors via increasing the
substrate distance and growth pressure.
Fig. 6 The growth mechanism schematic of nanowires and micro-
rods.
4. Discussion

As shown in Fig. 5, NiAu droplet tends to leave the tip of the rod
(Fig. 5(a)), otherwise the droplet would initiate a new growth of
a branch (Fig. 5(b)), a polycrystalline structure (Fig. 5(c)) or
a new rod (Fig. 5(d)) at the tip. According to previous report,7 the
at (0001) top surface will gradually shrink with the expanding
of {1102} sidewall facets. When the top surface becomes too
small to support the NiAu droplet, the droplet would slide to the
This journal is © The Royal Society of Chemistry 2017
sidewall. Thus, except the initial stage of nucleation, the NiAu
droplet should be not indispensable during the following
growth. Moreover, for the nanowires (Fig. 2(d)) and needles
(Fig. 3(b)), there is no droplet observed. It can be concluded that
the Ni/Au droplet would function as providing nucleation site
rather than catalyst.15,24–26,29

As shown in Fig. 4, the GaN hexagonal micro-rods have
a similar morphology with previously reported GaN rods,7–9,16

which were grown via SAG. Thus, the growth of micro-rods
would have similar mechanism with SAG. In this case, NiAu
would promote the pyrolysis of NH3 at a relatively low growth
temperature (790 �C), which is helpful for direct growth of
nanodevices on unusual substrates of low melting tempera-
ture.30–35 While, the growth of nanowires (Fig. 2(d)) would have
similar mechanism with VLS, because the nanowires have
a high aspect ratio of �100, which can not be realized by using
normal SAG.7–9,16–18,20,22,23

The underlying growth mechanism in this case would be
neither pure VLS1,2,12,13,24–27,29 nor pure SAG,7–9,16–18,22,23 because of
the factors: (1) for VLS, metal droplet can normally be observed
at the tip of nanowires, but in our case there is no droplet at the
tip of nanowires (Fig. 2(d)) or needles (Fig. 3(b)); (2) for SAG,
RSC Adv., 2017, 7, 50781–50785 | 50783
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metal catalyst is needless, but in our case the nanostructures
can not grow without NiAu (not shown).

The growth mechanism schematic of the nanostructures was
shown in Fig. 6. It is clear that the morphology variation from
nanowire to micro-rod (Fig. 2) was mainly resulted from the
decreasing of III/V ratio across the substrate. The III/V ratio was
relatively high at center region, Ga element dominates and
results in nanowire growth. When the III/V ratio is gradually
decreased and the transport distance of Ga species is increased,
the Ga species tends to react with NH3 and form GaNmolecules
in gas ambient due to the hot-wall reactor. Thus, there is
a different growth mechanism, which includes: (1) the Ni/Au
would play the role of providing nucleation site rather than
catalyst; (2) the hot-wall MOCVD reactor enhances the pre-
reaction between TMGa and NH3 in gas ambient, which
produces the species of GaN molecule besides the Ga element;
(3) the ratio between Ga element and GaN molecule is decided
by the transport distance of Ga species; (4) Ga element domi-
nates at center region and results in nanowire growth, while
GaN molecule dominates at edge region and results in micro-
rod growth. In-depth analysis will be carried out in our future
study.

Fig. 7(a) shown the diameter distribution of sample A, B1
and B2. For sample A, the diameter is not continuously
decreasing with III/V ratio decreasing from the center to the
edge of the substrate. While for sample B1 and B2, the diameter
was continuously decreasing with III/V ratio decreasing. The
different variation trend of nanostructure diameter could be
attributed to the difference of growth mechanisms. It can be
seen from Fig. 2 that the nanostructure of sample A grown from
position 1# to position 3# was nanowire which has similar
mechanismwith VLS, while from position 4# to 5#, pyramid and
micro-rod were observed, which have similar mechanism with
SAG. So for the nanostructures grown under the same mecha-
nism, the diameter decreased with decreasing III/V ratio from
the center to the edge of the substrate. Fig. 7(b) shown the
height distribution of three samples. For sample A, with
decreasing III/V ratio, the height is decreasing except for the
Fig. 7 The (a) diameter and (b) height distributions of sample A, B1 and
B2 at different positions of the substrate.

50784 | RSC Adv., 2017, 7, 50781–50785
position 1# where distorted large rods are observed. The short
large rods are induced by very high III/V ratio and the lacking
of N element for growth. For sample B1 and sample B2 (needles
and micro-rods), the height has the same trend of change with
localized III/V ration. In a word, both the height and diameter
can be controlled by changing III/V ratio.

5. Conclusions

Different kinds of aligned GaN nanostructures (i.e., nanowires,
needles and micro-rods) can be simultaneously grown on
a single substrate, by naturally changing the III/V ratio across
the substrate. The morphology variation from nanowires to
micro-rods would be resulted from that the Ga species arriving
at the substrate changes from Ga element to GaN molecule.
Growth of these nanostructures on a single substrate at
a temperature of 790 �C, which is much lower than that of SAG,
is helpful for on chip integration of different kinds of nano-
devices on unusual substrates of low melting temperature.
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M. Bähr, G. Lilienkamp, W. Daum, M. Seibt, M. Straßburg,
H. H. Wehmann and A. Waag, Phys. Status Solidi A, 2015,
212, 2830–2836.

19 C. Tessarek, S. Figge, A. Gust, M. Heilmann, C. Dieker,
E. Spiecker and S. Christiansen, J. Phys. D: Appl. Phys.,
2014, 47, 394008.

20 R. Koester, J. S. Hwang, C. Durand, D. L. S. Dang and
J. Eymery, Nanotechnology, 2010, 21, 015602.

21 X. J. Chen, B. Gayral, D. Sam-Giao, C. Bougerol, C. Durand
and J. Eymery, Appl. Phys. Lett., 2011, 99, 251910.

22 C. G. Tu, C. Y. Su, C. H. Liao, C. Hsieh, Y. F. Yao, H. T. Chen,
C. H. Lin, C. M. Weng, Y. W. Kiang and C. C. Yang,
Nanotechnology, 2016, 27, 025303.

23 B. O. Juna, S. Y. Bae, S. Y. Kim, S. Lee, J. Y. Lee, D. S. Lee,
Y. Kato, Y. Honda and H. Amano, Nano Energy, 2015, 11,
294–303.
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