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Natural products are an invaluable source for drug candidates. Currently, plasma metabolome has
suggested that compounds present in herbs may exert bioactivity. The present investigation employed
global metabolome analysis technology to explore the key target and action mechanism of scoparone,
a representative ingredient of Yinchenhao (Artemisia capillaris Thunb.). First, we applied different
databases for target prediction and focused on the potential targets of scoparone by network
pharmacology, which also theoretically characterizes the effectiveness of scoparone on molecular
docking. Among them, we selected the top predictions as the potential and crucial target. Then, non-
targeted metabolomics technology based on an advanced UPLC-MS instrument coupled with a robust
data processing platform was employed to characterize the metabolic profiling of alcoholic liver disease
(ALD) rats. Furthermore, the ingenuity pathway analysis platform was used for metabolic network
analysis, which mainly involved multiple-pathways, including tyrosine metabolism, glutathione
metabolism, and primary bile acid biosynthesis. Interestingly, as a core biomarker, dopaquinone is
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Moreover, the prediction also validated the target on a metabolic level. The present investigation
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Introduction

Natural products are indispensable candidates in current drug
discovery programs, which have inspired chemists and physi-
cians for millennia."” However, specific action mechanisms and
target locations appear to be the bottleneck for further devel-
opment of natural products. Therefore, novel strategies or
combined methodologies are required to decipher complex
systems. With the revolutionary development of analytical
instruments and the emergence of omics technology, much
more biological information can be excavated, which can
greatly accelerate exploration of the life sciences and can
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potential drug targets of natural products.

provide an expansive horizon for the interpretation of complex
systems. Among them, metabolomics technology was proposed
as a new strategy followed by genomics, transcriptomics, and
proteomics. It focuses on small molecule metabolites generated
with the expression of exclusive enzymatic protein. With
advanced and comprehensive data collection technology,
integrity and system phenotypic characterization could be
precisely obtained.>™® Moreover, a robust analysis platform
provides unparalleled technical support. With high throughput
and resolution, SYNAPT™-G2Si-HDMS possesses the latest
technology in ion mobility spectrometry performance, which
combined with the proprietary technology of T-wave™ and
Quantof can greatly improve the resolution and sensitivity into
40 000 and 10 000 dpi, respectively. Then, we applied Pro-
genesis QI software (Nonlinear Dynamics, 2014, version 1.0) for
alignment processing, peak picking, normalization, deconvo-
lution, identification and multivariate statistical analysis.
Increasing improvements in bioinformatics have provided
multiple opportunities to locate action targets and to determine
drug effects from rich databases and algorithmic resources.**
Yinchenhao possess an irreplaceable effect for the treatment of
liver disease or jaundice in the application of TCM. Therefore, it
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is necessary to investigate the active ingredient and to define the
mechanism of this medication. Based on the theory of plasma
pharmacochemistry and pharmacology, we focused on scopar-
one as the representative ingredient of Yinchenhao (Artemisia
capillaris Thunb.). Herein, we first applied a network pharma-
cology approach based on two independent machine learning
systems for the target prediction of scoparone. A constructed
platform, including UPLC-high definition mass spectrometry
metabolomics, a Progenesis QI and an IPA network data pro-
cessing system (Qiagen, Redwood City, http://www.qiagen.com/
ingenuity), were used for the comprehensive verification and
exploration of the metabolic network interaction (Fig. 1).

Materials and methods
Chemicals and reagents

Acetonitrile and methanol were obtained from Merck (Darm-
stadt, Germany); water was obtained from a Milli-Q Ultra-pure
water system (Millipore, Billerica, USA); formic acid was ob-
tained from Honeywell Company (Morristown, New Jersey,
USA); leucine enkephalin was purchased from Sigma-Aldrich
(St. Louis, MO, USA); alcohol was purchased from Beijing
Reagent Company (Beijing, China). Scoparone (purity 99%) was
purchased from Sichuan Provincial Institute for Food and Drug
Control (Sichuan, P. R. China). The ELISA kit for tyrosinase was
purchased from Shanghai Caiyou Co., Ltd, China.

Network Pharmacology Analysis

View Article Online

Paper

Chemical ingredient database building

Based on numerous studies reported earlier, the present explo-
ration focused on the representative ingredient of Yinchenhao
(Artemisia capillaris Thunb.), which is an authoritative herbal
medicine used for all types of liver diseases. After oral adminis-
tration, scoparone was detected as the major compound of Arte-
misia capillaris Thunb in plasma.**** Therefore, we concentrated
on the pharmacological effects and target organs of the potential
ingredient by network pharmacology.?>?*” The chemical structure
was obtained from Chemspider (http://www.chemspider.com/)
and saved as a mol2 file for target prediction.

Target prediction and ingredient-target docking with network
construction analysis

TCMID (http://www.megabionet.org/tcmid/) and TCMSP (http://
Isp.nwsuaf.edu.cn/index.php) were employed for target predic-
tion and we selected the consistent results by the distinct
machine learning systems. The structure view of the focused
proteins was downloaded from the PDB database (http://
www.resb.org/pdb/home/home.do). Then, we conducted
molecular docking with the visual tool.

Sample collection and preparation

Male Wistar rats were maintained within the Department of
Center for Drug Safety Evaluation and Research of Heilongjiang
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Fig.1 The comprehensive workflow of the investigation for target prediction and verification by the combination of metabolomics and network

pharmacology technology.
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University of Chinese Medicine. The study was approved by the
Ethical Committee of Heilongjiang University of Chinese
Medicine and was conducted according to the principles
expressed in the Declaration of Helsinki. Before treatment,
animals were acclimatized in metabolic cages for 1 week. They
had free access to food and water and were housed under
comfortable conditions of temperature (22 + 1 °C), humidity
(50 £ 5%) and a 12 h light/dark cycle. Then, 18 healthy rats were
selected randomly and divided into 3 groups: a control group,
an ALD group and a scoparone group. The ALD group and sco-
parone group rats were orally administrated a dose of 0.8 mL/
100 g mixture with 6% alcohol liquor and a high-fat diet (basal
feed : cholesterol : lard = 79% : 1% : 20%) for 12 consecutive
weeks. The control group received orally administered water at
the same dose once daily. In the 13th week, the scoparone group
was treated with 7 mg kg~ for seven days. The control and ALD
groups received orally administered 0.9% saline at the same
dose once daily. The experimental procedures were approved by
the Animal Care and Ethics Committee at Heilongjiang
University of Chinese Medicine and all experiments were per-
formed in accordance with the declaration of Helsinki.

Urine samples were collected daily from the metabolic cages
at ambient temperature throughout the entire procedure. They
were centrifuged at 13 000 rpm at 4 °C for 15 min to remove any
solid debris; the supernatants were stored frozen at —80 °C for
UPLC-Q/TOF-G2Si-HDMS analysis. To optimize and ensure the
stability and reproducibility of the UPLC-Q/TOF-G2Si-HDMS
system, we employed a quality control (QC) specimen from each
group, which contained information of all urine samples during
the entire process.

Urine metabolic profiling analysis

Chromatography. Urine sample separation was performed
on a Waters ACQUITY UPLC system with chromatographic
analysis MassLynx™ software (V4.1SCN901, Waters Corpora-
tion, Milford, USA). The separation was carried out on an
ACQUITY UPLC HSS T3 column, with a set column temperature
of 45 °C (100 mm x 2.1 mm, 1.8 um). The separation was
carried out with the optimal mobile phase, which consisted of
a linear gradient condition: (A) acetonitrile with 0.1% formic
acid and (B) water with 0.1% formic acid, and the flow rate was
set at 0.4 mL min . The gradient elution condition was: 1 to
10% A, 0-3min; 10 to 20% A, 3-5min; 20%-40% A, 5-8.5 min; 40
to 99% A, 8.5-9.5 min; maintaining 99% A at 9.5-11.5 min;
linearly decreasing from 99% to 1% A, 11.5-12 min,; held at 1%
A for 3 min for equilibration of the column. The sample injec-
tion volume was 3 pL.

Mass spectrometry. Advanced technologies SYNAPT™-G2Si-
High-definition mass spectrometry (Waters SYNAPT™, Waters
Corp, Manchester, England) was performed with an electro-
spray ion source to run all urine samples. The optimal param-
eters were as follows: capillary voltage was set at 3 kV and cone
voltage at 25 V. The desolvation gas flow rate was maintained at
600 L h™" and the cone gas flow was maintained at 60 L h™'. The
desolvation temperature was set at 300 °C and source temper-
ature at 110 °C. The scan time and inter-scan delay were set to
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0.3 s and 0.1 s, respectively. Full scan mode was used for MS
collection from m/z 50-1000. Leucine enkephalin was used as
the vital reference compound with a concentration of 0.2 ng
mL " under a flow rate of 100 pL. min~" ([M + H|" = 556.2771,
[M — H]” = 554.2615).

Data preprocessing and multivariate data analyses

The high resolution and high sensitivity performance of the
latest UPLC-G2Si-HDMS technology provides much more
signals for unknown icons. However, a series of intractability
emerged with the tremendous dataset. Therefore, metab-
olomics brings in chemometrics technology to handle this
problem. Before the multivariate data analysis, all the raw files
were imported into Progenesis QI software (Nonlinear
Dynamics, 2014, version 1.0) for data preprocessing, which
contained noise reduction, normalization and peak picking.
These necessary operations were performed with standardized
procedures for data optimization. Then, we employed multi-
variate analysis, which included principal component analysis
(PCA) and S-VIP plot of orthogonal partial least squares
discriminant analysis (OPLS-DA) for the metabolomics study.
High VIP value and furthest distance from the origin ions were
selected as the valuable metabolites. In addition, we used SPSS
software (Version 18.0 for Windows, IBM, Chicago, IL) for the
Student's ¢ test between control and ALD groups. The content of
the ions between the two groups was compared to filter the
difference. Combining VIP lists of OPLS-DA and the p value of
the ¢ test, a series of biomarkers were selected to be differences
in metabolites.

Identification of biomarkers

The high throughput metabolomics study presents a compre-
hensive and non-targeted profiling investigation of low molec-
ular mass metabolites. With the high performance of Ultra
Performance Liquid Chromatography, complex biological
samples get maximum separation within a few minutes.
However, there still existed large sets of the same molecule with
different ionization behaviors, including nine and ten types of
adduct ion forms in negative and positive ion mode, respec-
tively. Therefore, we used Progenesis QI software to remove
adducts from the compound by robust deconvolution perfor-
mance. Then, we employed tutorial data using the Human
Metabolome Database (HMDB) for identification within a few
minutes. As a result, we selected 24 ions as ALD biomarkers
through the above procedure.

Results
Target prediction using network pharmacology

In order to predict the target proteins of scoparone for the
treatment of liver disease, the present investigation employed
two different machine learning systems for the screening. We
selected the common prediction as the potential and vital target
for further exploration with the TCMID and TCMSP databases.
As a result, 331 targets were matched with target prediction, all
of which possess a high degree of compatibility for each
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comprehensive database search. Then, we imported the
network visualization tool for the intuitive analysis involved in
all the targets (Fig. 2). In total, there were 331 nodes for the
interaction between scoparone and targets. Among them,
tyrosinase was found to be the common prediction and had the
highest degree values from the scores listed in the prediction.

Pattern recognition analysis of metabolome

Massive metabolic profiling data were collected from the high
throughput technology of UPLC-ESI-G2Si-HDMS (Fig. 3A). Then,
they were preprocessed by the advanced and authoritative plat-
form of Progenesis QI, which possesses a robust full-scale
deconvolution for removing adducts from the compounds;
finally, a comprehensive multidimensional matrix was generated
(Fig. 3B and C), including RT, m/z, and peak height intensity for
pattern recognition analysis by EZinfo plug-ins. Combined with
chemometrics and statistical analysis, a series of interesting ions
were filtered by OPLS-DA and ¢ test. From the location of PCA
analysis, a clear separation was represented between the normal
group and ALD group, which suggests that significant changes
occurred on the metabolic level (Fig. 4A and B). The loading plot
and S-VIP plot were employed for the visualization and screening
of different metabolites (Fig. 5C-F). These small molecule
metabolites were vital elements for the contribution of groups.
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Metabolic pathways and function analysis

The metabolomics investigation identified 24 ions as the
biomarkers of ALD, which combined UPLC-ESI-G2Si-HDMS with
Progenesis QI technology (ESI Table 11). For the macroscopical
metabolic network analysis, we employed the IPA data processing
platform (Qiagen, Redwood City, http:\\www.qiagen.com/
ingenuity) and MetaboAnalyst 3.0 (http://www.
metaboanalyst.ca/MetaboAnalyst/faces/home.xhtml) for compre-
hensive analysis of the present metabolimics data, which
primarily involved taurine and hypotaurine metabolism, cate-
cholamine biosynthesis, cysteine and methionine metabolism,
tryptophan metabolism, glutathione metabolism, vitamin B6
metabolism, pantothenate and coA biosynthesis, phenylalanine
and tyrosine metabolism, folate and pterine biosynthesis, protein
biosynthesis, glycine, serine and threonine metabolism, and bile
acid biosynthesis (Fig. 5B). Besides, IPA analysis provided the
canonical pathways, diseases and biofunctions, which integrated
the expression as a heat map or histogram visually (Fig. 5A and C).

Effects of scoparone against ALD

From the box plot and heat map analysis of the three groups,
a remarkable inverse trend emerged from the ALD group to the
control group after intervention by scoparone (Fig. 6A and B).
Further, with the deep exploration of metabolic pathway
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Fig.2 Differentindependent machine learning systems for target prediction of scoparone based on a network pharmacology approach. (@) The
supplied ligand for the different target prediction systems. (@) The optimal receptor from different molecule-docking methods. (@) All the

targets from the different machine learning systems.
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analysis, we focused on the potential biomarkers associated
with ALD, all of which possess a high VIP value among the
groups (Fig. 6C). Content monitoring and upstream analysis
support the unknown and vital information about ALD.
Notably, scoparone possesses an evident hepatoprotective effect
through adjusting the disturbed metabolism pathways such as
taurine and hypotaurine metabolism, catecholamine biosyn-
thesis, cysteine and methionine metabolism, tryptophan
metabolism, glutathione metabolism, vitamin B6 metabolism,
pantothenate and CoA biosynthesis, tyrosine metabolism, and
phenylalanine and tyrosine metabolism.

Integration passway analysis

After the non-targeted metabolomic investigation, we identified
24 potential biomarkers associated with ALD. Then, an inge-
nuity pathway analysis omics-platform was used for the explo-
ration of up and downstream pathways. Among them, we
focused on a core biomarker, which was directly associated with

51074 | RSC Adv., 2017, 7, 51069-51078

the prediction of network pharmacology. Briefly, as the
common and most matched target of different machine
learning systems, tyrosinase possesses optimal molecular
docking for scoparone. The former proved a potential rela-
tionship with liver disease and scoparone could have to restrain
the activity of tyrosinase [EC1.14.18.1] to impede the anabolism
from tyrosine to dopaquinone by metabolomic and network
pharmacology analysis. Besides, the former report about “the
treatment of scoparone on Yanghuang syndrome” has a similar
conclusion, which focused on the core metabolite of phenyl-
pyruvic acid.”® From “phenylalanine, tyrosine and tryptophan
biosynthesis” pathway analysis, we found that the present
investigation has two enzymes directly associated with phenyl-
pyruvic acid and tyrosine. They both have vital functions in the
diagnosis of liver disease, such as tyrosine aminotransferase
and aspartate aminotransferase. Finally, we employed visuali-
zation tools and molecular docking software to simulate and
represent the combination of receptor and ligand (Fig. 7).

This journal is © The Royal Society of Chemistry 2017
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Fig. 6 The content variation of the top 24 significant features from the metabolic markers among different groups. The box plot of the content
of 24 ALD biomarkers among control, ALD and scoparone groups (A); the heat map analysis for the visual presentation of the obvious metabolic
phenotype (B); the VIP contribution of the ALD biomarkers for the differential expression among groups (C).

The target verification using ELISA kit

For deep exploration and target verification of the prediction by
network pharmacology and associated metabolites analysis, we
employed an ELISA kit for the focused investigation of tyrosi-
nase from serum. An evident callback trend was represented in
the activity assay of tyrosinase (ESI Fig. 11), which suggested
that scoparone possesses a favorable inhibitory effect on the
regulation of tyrosinase.

Discussion

Natural products are indispensable candidates in current drug
discovery programs, which have inspired chemists and physi-
cians for millennia. There are a number of successful approved
drugs such as artemisinin, morphine and paclitaxel, which have
widely influenced human health.>® However, despite these past
triumphs, the progression from natural product research to
academic lab chemosynthesis is inefficient due to blind

This journal is © The Royal Society of Chemistry 2017

screenings of large collections. Recent years have witnessed
considerable advances in the exploration of natural compounds
due to improvements in isolation, characterization and mech-
anism investigation. Besides, the reasonable and efficient
approach is necessary for the evolvement of natural products.
Scoparone, isolated from Yinchenhao (Artemisia capillaris
Thunb.), possesses remarkable effects on anti-inflammatory
analgesic, hypolipidemic, anticoagulant, and asthma. Based
on the previous studies, we have focused on the target investi-
gation from the established integration analysis combined with
metabolomics and network pharmacology technology.’>? A
series of latest technologies, including a UPLC-Q/TOF-G2Si-
HDMS instrument coupled with a robust Progenesis QI data-
processing system and IPA omics-platform, were employed to
handle the program. Then, we verified the target expression
with an ELISA kit.

Dopaquinone, also known as o-dopaquinone, is a metabolite
of 1-DOPA and a precursor of melanin, which is also directly
derived from tyrosine by tyrosinase [EC1.14.18.1]. From the
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Fig. 7 Tyrosinase as the potential anti-ALD target from the molecule
docking of scoparone using visual tools.

comprehensive analysis of tyrosine metabolism (Fig. 8A), we
focused on tyrosine aminotransferase [EC2.6.1.5] and aspartate
transaminase [EC2.6.1.1]. Both were proven to be necessary
factors in the metabolism of hepatocyte. In particular, aspartate
transaminase has a special purpose for clinical examination. The
abnormal tyrosine aminotransferase activity could also cause
tyrosinemia, which is also a serious condition. With accurate
detection, we found that the content of dopaquinone was
significantly increased in the ALD group and this could reflect the
metabolic disturbance of the above enzymes. Moreover, the rise
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of dopamine could also cause the synthesis of melanin (Fig. 8B),
and then lead to liver dysfunction. After the treatment with sco-
parone, dopaquinone recovered to a normal level, demonstrating
that scoparone has a specific function in the regulation of dop-
aquinone. Above all, as the common and optimal receptor of
different machine learning systems by network pharmacology,
tyrosinase possesses the optimal molecular docking for scopar-
one and this vital physiological process was verified by the high
throughput metabolomics study.

Taurine is the important constituent of bile, which participates
in primary bile acid biosynthesis and is the precursor compound
of taurocholate. The latter possesses a vital element for lipid
absorption and the present processes also afford the main phys-
iological performance of liver function. In this study, we found
that the level of taurine was significantly lower compared with the
normal group, which suggested that the metabolism of the above
metabolites may be inordinate. Following treatment with sco-
parone, taurine recovered to a normal level, indicating that bile
metabolism was partially relieved.

Citric acid is an important intermediate product of the TCA
cycle (citrate cycle), which is directly associated with 20 key
pathways, including alanine, aspartate and glutamate metabo-
lism, glyoxylate and dicarboxylate metabolism, and carbon
fixation pathways in prokaryotes. A metabolism disorder of TCA
cycle would directly influence the conversion of basic nutrients.
It is well known that ALD patients often suffer from energy
dysmetabolism and have to be given aminosol for energy
supplement. The present investigation found that the content
of citric acid in ALD group is significantly lower compared to
control group, which is favorably consistent with its clinical
features and could provide a better understanding of ALD.
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Fig. 8 The comprehensive metabolic network from the target focused analysis of ALD biomarkers. Scoparone regulates the marker metabolite
of putative effects and the relationship from L-tyrosine to dopaquinone by TYR (Tyrosinase) based on KEGG database analysis (A); the relationship

between melanin and dopaquinone from the IPA omics-platform (B).
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Conclusion

Natural products possess a dominant status in of drug discovery.
It also supplies abundant candidate compounds for the strate-
gies of new drug research and development. However, the
targets and mechanisms of numerous effective natural products
or compounds remain poorly understood. Herein, we presented
a novel program for the discovery of potential drug targets.
Based on the systematic literature study, scoparone was chosen
as the representative ingredient of Yinchenhao (Artemisia capil-
laris Thunb.), which is a famous herbal medicine for the treat-
ment of liver disease. The present investigation combined
metabolomic and network pharmacology technology to focus on
the target exploration for scoparone. After non-targeted meta-
bolic pathway analysis and different molecule-docking systems,
an optimal target of scoparone was identified based on theo-
retical data and metabolic datasets. Interestingly, the biggest
highlight of the present investigation is that one of the core
biomarkers of the metabolomic study, dopaquinone, was
directly related with target prediction of network pharmacology
with tyrosinase and finally resulted in a series of disturbances
associated with liver injury. Moreover, the prediction also vali-
dated the target on a metabolic level. Besides, we prepared
a series of robust platforms for metabolic pathway analysis,
including Progenesis QI and IPA tools. Above all, the present
study provides a novel strategy for the exploration of natural
products and we believe that this optimal combination and
multi-technological approach will greatly speed up discovery and
characterization of potential drug targets.
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