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MicroRNAs (miRNAs) play important roles in the pathogenesis and development of many complex diseases.

The experimental confirmation of disease-related miRNAs is costly and time-consuming. An efficient and

accurate computational model for identifying potential miRNA–disease associations is a useful

supplement for experimental approaches. In this study, we develop a new method for measuring miRNA

and disease similarities, which are key issues in identifying miRNA–disease associations, based on

normalized mutual information. Subsequently, a network-based collaborative filtering recommendation

model, network-based collaborative filtering (NetCF), is proposed for predicting potential miRNA–

disease associations by integrating miRNA and disease similarities along with experimentally verified

miRNA–disease associations. Leave-one-out cross validation is implemented to evaluate the predicted

performance of NetCF. NetCF obtains a reliable AUC value of 0.8960, which is superior to other

competitive methods. Implementing NetCF to predict lung cancer and prostate cancer-related miRNAs,

94% of the top 50 predicted miRNAs of each cancer have been confirmed by other databases.
1. Introduction

MicroRNAs (miRNAs) are small non-coding RNA molecules
(�22 nt) that can regulate gene expression at the post-
transcriptional level.1 Accumulating evidence indicates that
miRNA mutations and dysregulations are closely related to
various human diseases,2 including cardiovascular diseases,3

schizophrenia,4 and cancer.5,6 Thus, identication of disease-
related miRNAs will be helpful in the diagnosis, treatment,
and prevention of diseases. Biological experiment methods
such as microarray proling and qRT-PCR can effectively
identify miRNA–disease associations. For instance, Manavalan
et al.7 conrmed miRs-10a, 21, 22, 29a, 93, 125b, 181, 200a,
200b, 200c, 205, and 222, which are associated with human
breast cancer cells by microarray proling. Some associations
between miRNAs and diseases have been reported over the last
few years. A number of researchers have constructed a miRNA–
disease association database by collecting data from experi-
ments that support human miRNAs and disease associations
from published studies. These databases include HMDD,8

miR2Disease,9 dbDEMC,10,11 and PhenomiR,12 which provide
ing, Hunan University, Changsha, Hunan
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, Icahn School of Medicine at Mount Sinai,
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a strong data basis for studying miRNAs. However, only a small
amount of miRNA–disease associations have been reported in
these databases. Due to the high cost and long time required for
the identication of disease-related miRNAs through biological
experimental methods, effective computational approaches for
predicting disease-related miRNAs received great attention.

Several computational models have been developed to infer
potential miRNA–disease associations. The aforementioned
methods can be divided into two categories: network-based
methods and machine-learning-based methods.13

The key problem of network-based methods is predicting
that miRNA–disease associations are similar to the calculation
among miRNAs and diseases over the networks. Some
approaches have been reported to measure miRNA and disease
similarities;14–16 Zou et al.17 reviewed the main similarity
computation methods. Based on the common assumption that
miRNAs are normally associated with phenotypically similar
diseases and vice versa, Jiang et al.18 constructed a functionally
related miRNA network and a human phenome-miRNAome
network to prioritize potential disease-related miRNAs.
However, the main limitation of this method is the high
number of false positives that are produced in the miRNA target
prediction step. To improve predicted performance, Jiang
et al.19 subsequently proposed a Naive Bayes model to infer
disease-related miRNAs by integrating multiple types of data
resources. Some researchers have successfully applied the
random walk algorithm to predict miRNA–disease associa-
tions.20–22 Based on global network similarity measures, Chen
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et al.21 constructed a miRNA–miRNA functional similarity
network and implemented Random Walk with Restart (RWR)
from known disease-related miRNA seed nodes to prioritize
potential disease-related miRNAs. By integrating disease–gene
associations, miRNA–mRNA interactions, and protein–protein
interactions, Shi et al.22 developed an improved method based
on RWR to predict disease-related miRNAs and achieved
a satisfactory performance with cross validation. Liu et al.20

recently constructed a heterogeneous network by connecting
disease and miRNA similarity subnetworks using known
miRNA–disease associations and extended RWR method to
infer potential miRNA–disease associations in the heteroge-
neous network. Although the RWR method presented good
performance in predicting miRNA–disease associations, it
cannot be implemented to diseases without any known asso-
ciated miRNA. A similarity-based method called network-
consistency-based inference (NetCBI) has been proposed by
Chen et al.23 to predict miRNA–disease associations. NetCBI can
predict disease-related miRNAs when diseases have no known
associated miRNA. However, the cross validation exhibited poor
performance. Xuan et al.24 presented a novel method (HDMP)
aer considering the local information of network, based on
weighted k where most similar neighbors predict disease-
related miRNAs. Cross validation and case studies of HDMP
indicate good predicted performance, but it does not work for
diseases without known related miRNAs. Furthermore, based
solely on gene expression proles, Zhao et al.25 presented
a computational framework to identify the cancer-related
miRNAs, and constructed a cancer–miRNA-pathway network,
which can help explain how miRNAs are involved in cancer.
Recently, Qin et al.26 proposed a method to predict disease-
associated miRNAs based on protein domains. The results on
real datasets demonstrate the effectiveness of the approach.

Some researchers proposed machine-learning-based
methods to predict potential miRNA–disease associations.
To distinguish positive miRNA–disease from large-scale
negative miRNA–disease associations, Jiang et al.27 extracted
a set of features from each positive and negative microRNA–
disease association and trained a Support Vector Machine
(SVM) classier to predict novel miRNA–disease associations.
Based onmiRNA–disease heterogeneous network, Zeng et al.28

used a path-based measure named HeteSim,29 to calculate
relevance between objects in the heterogeneous network and
combined HeteSim scores with a machine learning method to
predict novel miRNA–disease associations. The challenge of
using machine-learning-based methods for predicting novel
miRNA–disease associations is the difficulty in obtaining
negative samples (a miRNA is not associated with a disease).
Given that limited trials do not provide enough evidence to
prove that miRNA is not associated with a disease, Chen
et al.30 proposed the Regularized Least Squares for miRNA–
disease Associations (RLSMDA) to prioritize potential
miRNA–disease associations without utilizing negative
samples. RLSMDA is a semi-supervised classication algo-
rithm that can predict associations for disease without any
associated miRNA.
44962 | RSC Adv., 2017, 7, 44961–44971
By analyzing the aforementioned methods, the existing
computation methods for predicting miRNA–disease associa-
tions are restricted by several limitations. First, some methods18

calculated miRNA similarities based on miRNA–mRNA data-
base, and would produce higher false positives in the miRNA
target prediction step. Second, some approaches21,23,24,30 calcu-
lated miRNA similarity based on the known miRNA–disease
associations and evaluated their predicted performance
through leave-one-out cross validation (LOOCV). The predicted
performance would be overestimated, given that the similarity
calculation has included the removal of the miRNA–disease
association when LOOCV is performed.13 Third, some
methods21,24 cannot be implemented to disease without any
known associated miRNA. Finally, some machine-learning-
based methods27,28 require negative samples to train classi-
ers; however, obtaining the negative samples is difficult.

To solve these complications, a network-based collaborative
ltering recommend algorithm (NetCF) is proposed to reveal
the potential associations betweenmiRNAs and diseases. NetCF
integrates miRNA and disease similarities along with the known
miRNA–disease associations to reveal potential miRNA–disease
associations. NetCF exhibits a clear advantage over other
methods, which involve various features, such as LOOCV, case
studies, global prediction for all diseases, prediction of disease
without any known related miRNA (isolated disease), and
prediction of miRNA with no associated disease (novel miRNA).

The main contributions of the paper are summarized as
follows.

(1) miRNA similarities are calculated by experimentally
verifying miRNA–mRNA interactions to eliminate false positives
of the miRNA-target.

(2) miRNA and disease similarities are not dependent on the
known miRNA–disease associations, so that LOOCV will not be
too high to estimate its predicted performance.

(3) NetCF integrates miRNA- and disease-similarity-based
recommendations to predict potential miRNA–disease associa-
tions. Therefore, when a disease is not related with any miRNA,
the association can be predicted by miRNA-similarity-based
recommendation. For the same reason, NetCF can also be
applied to predict novel miRNA.

(4) NetCF uses similarity information and known miRNA–
disease associations to infer potential miRNA–disease associa-
tions without requiring negative sample information.
2. Materials and methods

The owchart of NetCF and the calculation of the predictive
score between miRNA i and disease j are shown in Fig. 1.
2.1. Human miRNA–disease associations

The experimentally veried human miRNA–disease associa-
tions are downloaded from last updated HMDD database.8 We
perform the following operations on these associations. The
disease names are mapped to the disease MeSH description
(https://www.ncbi.nlm.nih.gov/mesh). Repeated associations
and several diseases without any MeSH descriptors or tree
This journal is © The Royal Society of Chemistry 2017
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Fig. 1 The flowchart of NetCF. NetCF calculates the association score between miRNA i and disease j is divided into three steps: (1) miRNA
similarities are calculated based on known miRNA–mRNA interactions. (2) The disease functional similarities are calculated based on the known
disease–mRNA interactions, and the disease semantic similarities are calculated based on disease MeSH tree structures, and then they are
integrated to obtain disease similarities. (3) Based on the similarity information between miRNA i and their neighbors and the association
information between the neighbors and disease j, the miRNA-similarity-based recommendation score between miRNA i and disease j is
calculated. Using a similar method to calculate the disease-similarity-based recommendation score, and then they were integrated to obtain the
final prediction score.
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numbers are removed. Moreover, the experimentally veried
disease-related genes from the DisGeNET database31 are used to
calculate disease similarity; thus, the disease names from the
DisGeNET database are also mapped to the MeSH description
and the diseases not found in the DisGeNET database are
removed. Aer this treatment, 5048 distinct high-quality
experimentally veried miRNA–disease associations are ob-
tained, including 475 miRNAs and 334 diseases. We use this
dataset as the benchmark dataset and variables nm and nd to
represent the number of miRNAs and diseases, respectively.
The adjacency matrix of miRNA–disease associations is denoted
by matrix AS, whereas the entity AS(i,j) in row i and column j is
1 if miRNA i is associated with disease j, and 0 otherwise.
This journal is © The Royal Society of Chemistry 2017
2.2. miRNA similarity measurement

The miRNA and disease similarities calculated based on known
miRNA–disease associations overestimate predicted perfor-
mance when cross validation is implemented. Based on the
assumption that miRNAs with similar functions tend to be
associated with similar target genes (mRNA), we presented the
measurement of the functional similarity of two miRNAs by
considering their related target genes. To eliminate false posi-
tive miRNA-target, miRNA similarities are calculated using
experimentally veried miRNA–mRNA interactions downloaded
from the miRTarBase database,32,33 Release 6.1. Let set
Tm

A ¼ {Tm
A(1),Tm

A(2),.,Tm
A(ma)} and set Tm

B ¼
RSC Adv., 2017, 7, 44961–44971 | 44963
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Fig. 2 The DAG graph of “Breast Neoplasms” and the semantic
contribution values of each node.

RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
Se

pt
em

be
r 

20
17

. D
ow

nl
oa

de
d 

on
 2

/3
/2

02
6 

4:
07

:5
0 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
{Tm
B(1),Tm

B(2),.,Tm
B(mb)} denote the target gene sets of miR-

NAs A and B, where variables ma and mb are the number of
target genes of miRNA A and B, respectively. The information
entropy of Tm

A is dened in eqn (1):(
H
�
Tm

A
� ¼ �

Xma

i¼1

p
�
Tm

AðiÞ�log2�p�Tm
AðiÞ��

p
�
Tm

AðiÞ� ¼ n
�
Tm

AðiÞ�
N

(1)

where N is the number of miRNA–mRNA interactions; n(Tm
A(i)) is

the number of the ith target gene of miRNA A in the miRNA–mRNA
set; p(Tm

A(i)) is the frequency of the ith target gene ofmiRNA A in the
miRNA–mRNA set; andH(Tm

A) is the information entropy ofTm
A.

The normalized mutual information (NMI) of Tm
A and Tm

B is
used to measure the functional similarity of miRNAs A and B:

MMðA;BÞ ¼ 2H
�
Tm

AXTm
B
�

H
�
Tm

A
�þH

�
Tm

B
� (2)

where H(Tm
A), H(Tm

B) and H(Tm
A X Tm

B) represent the infor-
mation entropy of Tm

A, Tm
B and the intersection set of Tm

A and
Tm

B, respectively. The functional similarity between two miR-
NAs is measured by eqn (2) according to their common target
genes and the information entropy of their respective target
gene sets; and it is standardized based on NMI. Matrix MM is
the functional similarity matrix, and MM(i,j) in row i and
column j represents the similarity between miRNAs i and j.

2.3. Disease similarity measurement

Disease similarity is composed of two parts: disease functional
and disease semantic similarities.

Based on the common assumption that two diseases with
similar functions are normally associated with similar target
genes, we also used the NMI of two disease-target gene sets to
measure their functional similarity. Experimentally-veried
disease–mRNA interactions are employed in this study and
downloaded from the DisGeNET database. We use sets Td

A ¼
{Td

A(1),Td
A(2),.,Td

A(da)} and Td
B ¼ {Td

B(1),Td
B(2),.,Td

B(db)} to
denote the target gene set of diseases A and B, where da and db
refer to the number of target genes of diseases A and B,
respectively. Similar to the miRNA function similarity calcula-
tion, the NMI of Td

A and Td
B is used to measure the functional

similarity between diseases A and B as follows:

DFðA;BÞ ¼ 2H
�
Td

AXTd
B
�

H
�
Td

A
�þH

�
Td

B
� (3)

where H(Td
A), H(Td

B) and H(Td
A X Td

B) represent the informa-
tion entropy of Td

A, Td
B and the intersection set of Td

A and Td
B,

respectively. The functional similarity between two diseases is
determined by their common target genes and the information
entropy of their respective target gene sets.

An improved form of Wang's method14 for disease semantic
similarity calculation is implemented in this paper. This method
calculates disease semantic similarity based on the hierarchical
structure of MeSH. A disease can be described as a directed
acyclic graph (DAG), in which the nodes represent diseases,
whereas the links represent the relationship between nodes. Let
44964 | RSC Adv., 2017, 7, 44961–44971
DAGd ¼ (d,Td,Ed) denote the DAG graph of disease d, where Td is
the node set (all ancestor nodes of disease d including disease
d itself) and Ed is the connected edge set. Wang's method denes
the semantic contribution of node t ˛ Td as follows:

DdðtÞ ¼
(
1 if t ¼ d

max
n
D�Dd

�
t0
�
|t0˛children of t

o
if tsd (4)

where D is the semantic contribution factor, and D¼ 0.5 is used
in their experiments. In this manner, the semantic contribution
of the disease term is dened by only considering the hierar-
chical structure of the DAG graph. For example, the DAG graph
of “Breast Neoplasms” and the semantic contribution (sc)
values of each node are shown in Fig. 2.

The importance of the disease term itself is considered; for
example, disease terms “liver neoplasms” and “neoplasms” are
specically described as “liver neoplasms”, such that its
semantic contribution value should be greater than the contri-
bution value of “neoplasms.” We use information content (IC)
to measure the importance of the disease term itself:

IC(t) ¼ �log2(p(t)) (5)

where p(t) is the frequency of disease term t in the MeSH disease
term set. Evidently, the larger the p(t) is, the more common
description of disease t is and the smaller the semantic
contribution value of disease t is. In this paper, the MeSH
disease term set is downloaded from the MeSH homepage
(2017 MeSH les), which contains 57 840 disease tree numbers
with their corresponding disease terms. The semantic contri-
bution value of disease t is obtained by integrating Dd(t) and
IC(t) as Cd(t) ¼ Dd(t) � IC(t). The semantic similarity of diseases
A and B can be calculated by their shared ancestors as follows:

DSðA;BÞ ¼

X
t˛ðTAXTBÞ

ðCAðtÞ þ CBðtÞÞX
t˛TA

ðCAðtÞÞ þ
X
t˛TB

ðCBðtÞÞ
(6)

Finally, the similarity between diseases A and B is calculated
by integrating disease functional and disease semantic simi-
larities as follows:
This journal is © The Royal Society of Chemistry 2017
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DD(A,B) ¼ aDF(A,B) + (1 � a)DS(A,B) (7)

where a ˛ [0,1] is the weight coefficient used to indicate the
importance of disease functional and semantic similarities. In
our experiments, we regard the two parts are equally important;
thus, a set to 0.5. Matrix DD is the similarity matrix and DD(i,j)
in row i and column j represents the similarity between diseases
i and j.
Fig. 3 Performance comparisons of NetCF, Liu's method, NetCBI,
RLSMDA, and KATZMDA in terms of ROC curves and AUCs based on
LOOCV.

Fig. 4 The parameters effects on NetCF.
2.4. NetCF

Collaborative ltering (CF) algorithm is one of the most
important techniques used by recommender systems,34 and it
has enjoyed tremendous success in e-business, marketing,
and other personalized recommendation services. CF algo-
rithm generates recommendations or predictions based on
observed preferences.35 In this study, by integrating the
miRNA similarity, disease similarity, and known miRNA–
disease association networks, a NetCF recommendation
model is proposed to predict potential miRNA–disease asso-
ciations. NetCF is implemented in three steps as follows: (1)
miRNA-similarity-based recommendation score calculation;
(2) disease-similarity-based recommendation score calcula-
tion; (3) and the calculation of nal predictor score of
potential miRNA–disease associations by integrating the
results of steps (1) and (2).

The detailed implementation procedure of NetCF for calcu-
lating the predictor score between miRNA i and disease j is as
follows.

First, based on the similarity information between miRNA i
and their neighbors and the association information between
the neighbors and disease j, the miRNA-similarity-based
recommendation score between miRNA i and disease j is
calculated. Evidently, if the similarity between a neighbor and
miRNA i is extremely small, then the contribution of the
neighbor can be ignored. The miRNA-similarity-based recom-
mendation score according to the n most similar neighbors of
miRNA i is calculated as follows:

RSmði; jÞ ¼ 1

n

Xn

k¼1

MMði; kÞ �ASðk; jÞ (8)

where MM(i,k) is the similarity value between the kth most
similar neighbor of miRNA i and miRNA k, and AS(k,j) is the
association information between the kth most similar neighbor
of miRNA i and disease j. In our experiments, the value of
parameter n is 10% of the miRNA number (nm/10). Matrix RSm
is the miRNA-similarity-based recommendation score matrix,
and RSm(i,j) in row i and column j represents the miRNA-
similarity-based recommendation score between miRNA i and
disease j.

Second, the disease-similarity-based recommendation score
between miRNA i and disease j is calculated based on the
similarity information between disease j and their neighbors
and the association information between the neighbors and
miRNA i. For the same reason, the disease-similarity-based
recommendation score is calculated by the m most similar
neighbors of disease j as follows:
This journal is © The Royal Society of Chemistry 2017
RSdði; jÞ ¼ 1

m

Xm
k¼1

ASði; kÞ �DDðk; jÞ (9)

where DD(k,j) is the similarity value between the kth most similar
neighbor of disease k and disease j, and AS(i,k) is the association
information between the kth most similar neighbor of disease j
and miRNA i. In our experiments, the value of parameter m is
10% of the disease number (nd/10). Matrix RSd is the disease-
similarity-based recommendation score matrix, and RSd(i,j) in
row i and column j represents the disease-similarity-based
recommendation score between miRNA i and disease j.

Finally, miRNA- and disease-similarity-based recommenda-
tion scores are integrated as the nal recommendation score of
miRNA i and disease j as follows:

RS(i,j) ¼ bRSm(i,j) + (1 � b)RSd(i,j) (10)

where RSm(i,j) and RSd(i,j) are the miRNA-based and the
disease-similarity-based recommendation scores between
RSC Adv., 2017, 7, 44961–44971 | 44965
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Table 1 The top 50 potential lung cancer-related miRNAs predicted
by NetCF, 47 of them were confirmed by dbDEMC and PhenomiR
databases

Rank miRNA Evidences

1 hsa-mir-16 dbDEMC,
PhenomiR

2 hsa-mir-195 dbDEMC,
PhenomiR

3 hsa-mir-429 dbDEMC
4 hsa-mir-15a dbDEMC,

PhenomiR
5 hsa-mir-451a dbDEMC
6 hsa-mir-141 dbDEMC,

PhenomiR
7 hsa-mir-106b dbDEMC,

PhenomiR
8 hsa-mir-449a PhenomiR
9 hsa-mir-193b dbDEMC,

PhenomiR
10 hsa-mir-302d PhenomiR
11 hsa-mir-383 PhenomiR
12 hsa-mir-20b dbDEMC,

PhenomiR
13 hsa-mir-194 dbDEMC,

PhenomiR
14 hsa-mir-130a dbDEMC,

PhenomiR
15 hsa-mir-151a dbDEMC
16 hsa-mir-99a dbDEMC,

PhenomiR
17 hsa-mir-296 dbDEMC,

PhenomiR
18 hsa-mir-320a dbDEMC,

PhenomiR
19 hsa-mir-215 PhenomiR
20 hsa-mir-378a dbDEMC
21 hsa-mir-15b dbDEMC,

PhenomiR
22 hsa-mir-153 dbDEMC,

PhenomiR
23 hsa-mir-328 dbDEMC,

PhenomiR
24 hsa-mir-149 dbDEMC,

PhenomiR
25 hsa-mir-302c PhenomiR
26 hsa-mir-130b dbDEMC,

PhenomiR
27 hsa-mir-122 PhenomiR
28 hsa-mir-302a PhenomiR
29 hsa-mir-449b PhenomiR
30 hsa-mir-10a dbDEMC,

PhenomiR
31 hsa-mir-152 dbDEMC,

PhenomiR
32 hsa-mir-147 dbDEMC
33 hsa-mir-302b PhenomiR
34 hsa-mir-204 dbDEMC,

PhenomiR
35 hsa-mir-181d dbDEMC,

PhenomiR
36 hsa-mir-139 dbDEMC,

PhenomiR
37 hsa-mir-372 PhenomiR
38 hsa-mir-196b dbDEMC,

PhenomiR

Table 1 (Contd. )

Rank miRNA Evidences

39 hsa-mir-423 dbDEMC,
PhenomiR

40 hsa-mir-148b dbDEMC,
PhenomiR

41 hsa-mir-520g Unconrmed
42 hsa-mir-615 dbDEMC
43 hsa-mir-151b dbDEMC
44 hsa-mir-373 PhenomiR
45 hsa-mir-452 dbDEMC,

PhenomiR
46 hsa-mir-367 PhenomiR
47 hsa-mir-630 Unconrmed
48 hsa-mir-324 dbDEMC,

PhenomiR
49 hsa-mir-519c Unconrmed
50 hsa-mir-625 dbDEMC
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miRNA i and disease j, respectively. Parameter b ˛ [0,1] is the
integrated parameter used to indicate the importance of RSm(i,j)
and RSd(i,j). In our experiments, parameter b is set tob ¼ nm/
(nm + nd) balance the numbers of miRNAs and diseases.
Matrix RS is the nal recommendation score matrix, and RS(i,j)
in row i and column j represents the nal recommendation
score between miRNA i and disease j.
3. Results
3.1. Performance evaluation

The predicted performance of NetCF is compared with the other
four state-of-the-art computational models, i.e., Liu's method,20

NetCBI,23 RLSMDA,30 and KATZ.36

Using our proposed similarity computation method to
measure the similarity of miRNA and disease, LOOCV is
implemented on the benchmark dataset; and receiver operating
characteristic (ROC) curve and the area under ROC curve (AUC)
are adopted to evaluate the predicted performance of NetCF and
comparison methods. The four parameters of NetCF are set to
a ¼ 0.5, b ¼ nm/(nm + nd), n ¼ 47, and m ¼ 33. Optimal
parameters are selected for Liu's method, NetCBI, RLSMDA,
and KATZ as described in their literatures. The ROC curves of
NetCF and comparison methods are plotted in Fig. 3, and the
AUC values are indicated in the legends.

The AUC value of NetCF is 0.8960, whereas those of Liu's
method, NetCBI, RLSMDA, and KATZ are 0.7974, 0.8105, 0.8406,
and 0.8315, respectively. All methods obtained a reliable AUC value
when LOOCV is implemented on the benchmark dataset, which
proves the rationality of ourmiRNA and disease similaritymeasure.

Evidently, NetCF shows better predicted performance
compared with Liu's method, NetCBI, RLSMDA, and KATZ.
3.2. Parameters effects

The value of D is set to 0.5 according to the suggestion in
author's.14 The parameter n represents the number of the most
similar neighbors of the query miRNA, and 10% of the number
This journal is © The Royal Society of Chemistry 2017
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Table 2 The top 50 potential prostate cancer-related miRNAs pre-
dicted by NetCF, 47 of them were confirmed by dbDEMC and Phe-
nomiR databases

Rank miRNA Evidences

1 hsa-mir-18a dbDEMC,
PhenomiR

2 hsa-mir-155 PhenomiR
3 hsa-mir-429 Unconrmed
4 hsa-mir-9 dbDEMC,

PhenomiR
5 hsa-mir-19b dbDEMC,

PhenomiR
6 hsa-mir-19a dbDEMC,

PhenomiR
7 hsa-mir-181a dbDEMC,

PhenomiR
8 hsa-mir-196a dbDEMC,

PhenomiR
9 hsa-mir-29c dbDEMC,

PhenomiR
10 hsa-mir-10b PhenomiR
11 hsa-mir-138 PhenomiR
12 hsa-mir-24 dbDEMC,

PhenomiR
13 hsa-mir-7 dbDEMC,

PhenomiR
14 hsa-mir-210 dbDEMC,

PhenomiR
15 hsa-mir-150 PhenomiR
16 hsa-mir-451a dbDEMC
17 hsa-let-7e dbDEMC,

PhenomiR
18 hsa-mir-30a dbDEMC,

PhenomiR
19 hsa-mir-125a dbDEMC,

PhenomiR
20 hsa-mir-149 dbDEMC,

PhenomiR
21 hsa-mir-103a dbDEMC
22 hsa-let-7g dbDEMC,

PhenomiR
23 hsa-mir-192 dbDEMC
24 hsa-mir-186 dbDEMC,

PhenomiR
25 hsa-mir-140 dbDEMC
26 hsa-mir-20b dbDEMC
27 hsa-mir-302d PhenomiR
28 hsa-mir-128 dbDEMC,

PhenomiR
29 hsa-mir-328 dbDEMC,

PhenomiR
30 hsa-mir-215 dbDEMC,

PhenomiR
31 hsa-mir-383 dbDEMC,

PhenomiR
32 hsa-mir-26b dbDEMC,

PhenomiR
33 hsa-mir-302a PhenomiR
34 hsa-let-7f dbDEMC,

PhenomiR
35 hsa-mir-181d dbDEMC
36 hsa-mir-142 PhenomiR
37 hsa-mir-449b Unconrmed
38 hsa-mir-197 dbDEMC,

PhenomiR

Table 2 (Contd. )

Rank miRNA Evidences

39 hsa-mir-10a dbDEMC,
PhenomiR

40 hsa-mir-302b PhenomiR
41 hsa-mir-615 dbDEMC
42 hsa-mir-365a dbDEMC
43 hsa-mir-92b Unconrmed
44 hsa-mir-139 dbDEMC,

PhenomiR
45 hsa-mir-423 dbDEMC,

PhenomiR
46 hsa-mir-212 dbDEMC,

PhenomiR
47 hsa-mir-137 PhenomiR
48 hsa-mir-181c dbDEMC,

PhenomiR
49 hsa-mir-497 dbDEMC,

PhenomiR
50 hsa-mir-302c PhenomiR

This journal is © The Royal Society of Chemistry 2017
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of miRNAs is empirically set. The parameterm is set in the same
way. In this section, we mainly discuss the inuence of the
weight coefficient a and the integrated parameter b on the
predictive performance of NetCF. To evaluate the effects of the
integrated parameter b, the other parameters are xed (a ¼ 0.5,
D ¼ 0.5, n ¼ 47, and m ¼ 33), and the value of parameter
b changes from 0.1 to 0.9. Then, according to the optimal
b value, the effects of parameter a on NetCF are tested in the
same way. The results are shown in Fig. 4. When the parameter
a varies from 0.1 to 0.9, the range of AUCs is 0.8927 to 0.8970;
and when the parameter b varies from 0.1 to 0.9, the range of
AUCs is 0.8732 to 0.8970. Therefore, NetCF is not sensitive to
these two parameters. And for the integrated parameter b, we do
not want to be too focused on miRNA- or disease-similarity-
based recommendation score. In the experiment we set b ¼
nm/(nm + nd), and the other parameters are set to a ¼ 0.5, D ¼
0.5, n ¼ 47, and m ¼ 33.
3.3. Case study

A large number of researchers have indicated that miRNA plays
an important role in the development of various forms of cancer
from different perspectives. To further evaluate the predicted
performance of NetCF for predicting potential disease-related
miRNAs, lung and prostate cancers are chosen as case
studies. All known associations are used as training set, and
recommendation scores are calculated using NetCF. The
unknown associations of each disease are ranked according to
their recommendation scores, and the top 50 are selected for
further validation. The predicted results are veried based on
the recently updated dbDEMC10 and PhenomiR12 databases. To
explore aberrantly expressed miRNAs in different cancers, the
dbDEMC database is used as different experimental designs
and data sources. To obtain reliable results, we only chose the
results of the experimental conditions “cancer vs. normal” and
the data from TCGA (The Cancer Genome Atlas, https://
RSC Adv., 2017, 7, 44961–44971 | 44967
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Table 3 The top 50 potential lung cancer-related miRNAs predicted
by NetCFwith removed all known lung cancer–miRNA associations, all
of them were confirmed based on the dbDEMC and PhenomiR
databases

Rank miRNA Evidences

1 hsa-mir-16 dbDEMC,
PhenomiR

2 hsa-mir-15a dbDEMC,
PhenomiR

3 hsa-mir-195 dbDEMC,
PhenomiR

4 hsa-mir-141 dbDEMC,
PhenomiR

5 hsa-mir-151a dbDEMC
6 hsa-mir-130a dbDEMC,

PhenomiR
7 hsa-mir-302b PhenomiR
8 hsa-mir-106b dbDEMC,

PhenomiR
9 hsa-mir-429 dbDEMC
10 hsa-mir-296 dbDEMC,

PhenomiR
11 hsa-mir-122 PhenomiR
12 hsa-mir-451a dbDEMC
13 hsa-mir-99a dbDEMC,

PhenomiR
14 hsa-mir-193b dbDEMC,

PhenomiR
15 hsa-mir-708 dbDEMC
16 hsa-mir-378a dbDEMC
17 hsa-mir-302c PhenomiR
18 hsa-mir-152 dbDEMC,

PhenomiR
19 hsa-mir-625 dbDEMC
20 hsa-mir-204 dbDEMC,

PhenomiR
21 hsa-mir-15b dbDEMC,

PhenomiR
22 hsa-mir-149 dbDEMC,

PhenomiR
23 hsa-mir-328 dbDEMC,

PhenomiR
24 hsa-mir-20b dbDEMC,

PhenomiR
25 hsa-mir-129 dbDEMC,

PhenomiR
26 hsa-mir-139 dbDEMC,

PhenomiR
27 hsa-mir-302a PhenomiR
28 hsa-mir-194 dbDEMC,

PhenomiR
29 hsa-mir-10a dbDEMC,

PhenomiR
30 hsa-mir-320a dbDEMC,

PhenomiR
31 hsa-mir-449a PhenomiR
32 hsa-mir-302d PhenomiR
33 hsa-mir-196b dbDEMC,

PhenomiR
34 hsa-mir-148b dbDEMC,

PhenomiR
35 hsa-mir-215 PhenomiR
36 hsa-mir-151b dbDEMC
37 hsa-mir-99b dbDEMC,

PhenomiR

Table 3 (Contd. )

Rank miRNA Evidences

38 hsa-mir-452 dbDEMC,
PhenomiR

39 hsa-mir-367 PhenomiR
40 hsa-mir-342 dbDEMC,

PhenomiR
41 hsa-mir-373 PhenomiR
42 hsa-mir-345 dbDEMC,

PhenomiR
43 hsa-mir-449b PhenomiR
44 hsa-mir-339 dbDEMC,

PhenomiR
45 hsa-mir-425 dbDEMC,

PhenomiR
46 hsa-mir-23b dbDEMC,

PhenomiR
47 hsa-mir-130b dbDEMC,

PhenomiR
48 hsa-mir-211 PhenomiR
49 hsa-mir-92b PhenomiR
50 hsa-mir-181d dbDEMC,

PhenomiR
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cancergenome.nih.gov/). By collecting data from published
studies, the PhenomiR database provides information on
differentially regulated miRNA expression in diseases and other
biological processes. The top 50 potential lung cancer- and
prostate cancer-related miRNAs predicted by NetCF and the
conrmation by the dbDEMC and PhenomiR databases are
listed in Tables 1 and 2.

The high mortality rate of lung cancer makes it the most
common cause of cancer-related death in men and second in
women.37 Many researchers have demonstrated that miRNA
dysregulation is associated with lung cancer, and in the
benchmark dataset, 128 lung cancer-related miRNAs are veri-
ed by biological experiments. Unknown lung cancer-related
miRNAs are predicted by NetCF. Among the top 50 predicted
miRNAs, 47 of them are conrmed by the dbDEMC and Phe-
nomiR databases; and only 3 miRNAs (hsa-mir-520g, hsa-mir-
630 and hsa-mir-519c, ranked 41st, 47th and 49th, respectively)
are not conrmed. The conrmation of the top 40 predictions is
particularly gratifying. Moreover, Cao et al.38 reported that has-
mir-630 inhibits cell proliferation of lung cancer by targeting
cell-cycle kinase 7 (CDC7); and Cha et al.39 identied has-mir-
519c as a tumor suppressor involved in lung cancer progression.

Prostate cancer is the most common cancer in males in 84
countries,37 occurring more commonly in the developed world.

Biological experiments have demonstrated several important
associations between prostate cancer and dysregulation of
miRNAs. NetCF is implemented to predict potential prostate
cancer-related miRNAs. Of the top 50 predicted miRNAs, 47 are
conrmed based on the dbDEMC and PhenomiR databases;
and only 3 miRNAs (hsa-mir-429, hsa-mir-449b and hsa-mir-
92b, ranked third, 37th and 43rd, respectively) are not found in
the two databases. Further literature search demonstrated that
hsa-mir-429 inhibits cell proliferation by targeting p27Kip1 in
human prostate cancer cells.40
This journal is © The Royal Society of Chemistry 2017
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Table 4 The top 50 potential prostate cancer-related miRNAs pre-
dicted by NetCF with removed all known prostate cancer–miRNA
associations, 48 of them were confirmed based on the dbDEMC and
PhenomiR databases

Rank miRNA Evidences

1 hsa-mir-18a dbDEMC,
PhenomiR

2 hsa-mir-155 PhenomiR
3 hsa-mir-19a dbDEMC,

PhenomiR
4 hsa-mir-9 dbDEMC,

PhenomiR
5 hsa-mir-10b PhenomiR
6 hsa-mir-210 dbDEMC,

PhenomiR
7 hsa-mir-19b dbDEMC,

PhenomiR
8 hsa-mir-181a dbDEMC,

PhenomiR
9 hsa-mir-7 dbDEMC,

PhenomiR
10 hsa-mir-138 PhenomiR
11 hsa-mir-196a dbDEMC,

PhenomiR
12 hsa-mir-24 dbDEMC,

PhenomiR
13 hsa-mir-142 PhenomiR
14 hsa-mir-29c dbDEMC,

PhenomiR
15 hsa-mir-30a dbDEMC,

PhenomiR
16 hsa-mir-125a dbDEMC,

PhenomiR
17 hsa-mir-302b PhenomiR
18 hsa-mir-199b dbDEMC,

PhenomiR
19 hsa-let-7i dbDEMC,

PhenomiR
20 hsa-let-7g dbDEMC,

PhenomiR
21 hsa-let-7e dbDEMC,

PhenomiR
22 hsa-mir-499a Unconrmed
23 hsa-mir-150 PhenomiR
24 hsa-mir-429 Unconrmed
25 hsa-mir-135a dbDEMC,

PhenomiR
26 hsa-let-7f dbDEMC,

PhenomiR
27 hsa-mir-451a dbDEMC
28 hsa-mir-192 dbDEMC
29 hsa-mir-302c PhenomiR
30 hsa-mir-18b dbDEMC
31 hsa-mir-139 dbDEMC,

PhenomiR
32 hsa-mir-103a dbDEMC
33 hsa-mir-625 dbDEMC
34 hsa-mir-140 dbDEMC
35 hsa-mir-20b dbDEMC
36 hsa-mir-215 dbDEMC,

PhenomiR
37 hsa-mir-128 dbDEMC,

PhenomiR
38 hsa-mir-129 dbDEMC,

PhenomiR

Table 4 (Contd. )

Rank miRNA Evidences

39 hsa-mir-137 PhenomiR
40 hsa-mir-302a PhenomiR
41 hsa-mir-10a dbDEMC,

PhenomiR
42 hsa-mir-149 dbDEMC,

PhenomiR
43 hsa-mir-26b dbDEMC,

PhenomiR
44 hsa-mir-328 dbDEMC,

PhenomiR
45 hsa-mir-497 dbDEMC,

PhenomiR
46 hsa-mir-30b dbDEMC,

PhenomiR
47 hsa-mir-302d PhenomiR
48 hsa-mir-542 dbDEMC
49 hsa-mir-342 dbDEMC,

PhenomiR
50 hsa-mir-338 dbDEMC,

PhenomiR

This journal is © The Royal Society of Chemistry 2017
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3.4. Application of NetCF to predict isolated disease-related
miRNAs

An isolated disease refers to a disease without any known
associated miRNA. To further evaluate the predicted perfor-
mance of NetCF for predicting isolated disease-related miRNAs,
the recommended scores of potential associations are calcu-
lated by removing all known associations related to predicted
disease. In other words, we only use the similarity information
and known associations of other diseases to predict isolated
disease-related miRNAs. Isolated disease-related miRNAs
prediction is implemented for lung and prostate cancers with
the top 50 potential miRNAs are listed in Tables 3 and 4,
respectively. For lung cancer, all top 50 predicted miRNAs are
conrmed based on the dbDEMC and PhenomiR databases. For
prostate cancer, only 2 miRNAs (hsa-mir-499a and hsa-mir-429,
ranked 22nd and 24th) of top 50 predicted results are not found
in the two databases; and hsa-mir-429 is conrmed to be
associated with prostate cancer by recently published litera-
ture.40 Acording to the above description, NetCF exhibits good
performance for predicting potential miRNA–disease associa-
tions and isolated disease-related miRNAs.

4. Conclusions

Accumulative evidence has indicated that miRNAs play impor-
tant roles in the pathogenesis and development of many
complex diseases. The identication of novel disease-associated
miRNAs is an important task in biomedical research, and it is
benecial for an in-depth understanding of disease mecha-
nisms at the miRNA level. As a useful supplement to experi-
mental studies, using computational approaches to identify
disease-related miRNAs is benecial in detecting the func-
tions of miRNA biomarker for disease diagnosis, treatment, and
prevention.
RSC Adv., 2017, 7, 44961–44971 | 44969
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In this work, we develop a newmethod for measuringmiRNA
and disease similarities based on normalized mutual informa-
tion. This method combines disease associated genes and
disease DAG graphs to calculate disease similarity; and it
calculates miRNA similarity based on miRNA–mRNA interac-
tions. Given that no known association information is used in
the similarity computation process, LOOCV does not over-
estimate the predicted performance. We then proposed NetCF
for predicting new miRNA–disease associations by integrating
miRNA and disease similarities with known miRNA–disease
associations. Reliable AUC values for all comparable methods
demonstrated that our proposed similarity computation
method is reasonable and feasible. The AUC value of NetCF is
superior to the other comparable methods, which indicates that
NetCF has reliable predicted performance. Case studies further
demonstrated the good predicted performance of NetCF for
predicting potential and isolated disease-related miRNAs.

Even with the favorable results obtained using our method,
this study reveals certain limitations. First, miRNA pair simi-
larity is calculated based on the known common target genes
because known miRNA–mRNA are scarce; thus, the similarities
of many miRNA pairs are 0. The problem will be addressed
considering that miRNA-target genes are increasingly recog-
nized. In our future work, we will integrate more miRNA-related
data to further improve the miRNA similarity measure. Second,
future work should consider parameter optimization. For
example, for the numbers of miRNA's neighbors and disease's
neighbors, we separately choose 10% of the numbers of miR-
NAs and diseases based on experiments. This selection works
well in our dataset, but not necessarily for other datasets.
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