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ion fusion strategy based on
a regularized framework for identifying disease-
related microRNAs

Li Peng, ab Manman Peng,*a Bo Liao,a Qiu Xiao,a Wei Liu, c Guohua Huangd

and Keqin Lie

Abnormal microRNA (miRNA) expression can induce various complex human diseases. Thus, revealing the

underlying relationship between miRNA and human diseases contributes to the early diagnosis and

treatment of diseases. Utilizing a computational approach in selecting the most likely miRNA candidates

related to a given disease for further biological experimental validation can save time and manpower

costs. In this study, we propose a novel information fusion strategy called RLSSLP, which is based on

a regularized framework, for discovering the underlying associations between miRNAs and diseases.

RLSSLP integrates two submodels to construct effective prediction frameworks and quantify the

similarities between miRNAs and diseases by fully using multiple omics data, which include verified

associations, particularly miRNA–disease, miRNA–gene, and weighted gene–gene network associations.

The 10-fold cross-validation and case studies for lung cancer, hepatocellular carcinoma and breast

cancer indicate that RLSSLP performs well in predicting miRNA–disease interactions.
Introduction

MiRNAs are a set of small non-protein-coding RNAs and
approximately 22 nt long.1,2 MiRNAs are involved in many
crucial pathological and biological processes. Thus, abnormal
miRNA expression can induce various complex human diseases,
including cancer.3,4 Revealing the underlying relationships
between miRNA and human diseases contributes to the early
diagnosis and treatment of diseases. However, traditional
experimental methods for detecting disease-related miRNAs
require huge amounts of time and manpower. Utilizing
computational approaches in selecting miRNA candidates that
are likely related to a particular disease for further biological
experimental validation is more efficient than traditional
approaches and costs less.

In recent years, many efforts have been extensively exerted to
investigate the associations between miRNAs and diseases.
Some network-based methods that predict miRNA–disease
interactions are based on the hypothesis that similar miRNAs
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are likely to relate to similar diseases, and vice versa. Jiang et al.5

rst proposed a similarity-based approach that measures
miRNA functional similarity based on the common sets of their
associated target gene and identify disease-related miRNAs
based on hypergeometric distributions. Shi et al.6 investigated
the relationships of miRNA–target and disease–gene and con-
structed a bipartite network for discovering the miRNA regula-
tion of disease gene. However, due to the false-positive rate in
target predictions, the accuracy of the above methods is oen
negatively affected. Xuan et al.7 proposed a new method called
HDMP, which sorts the most likely miRNA candidates related to
diseases according to the weighted k most similar neighbor.
Chen et al.8 presented “RWRMDA: predicting novel human
microRNA–disease associations”, which is a predictive
approach wherein the algorithm of random walk with restart is
applied to construct a global network for capturing underlying
miRNA–disease associations. Li et al.9 presented a new
computational method based on the algorithm of matrix
completion to recover the associations score of each miRNA–
disease pair. However, these methods cannot be used to predict
diseases with no known related miRNAs.

Some classical machine learning methods were also utilized
for mining the relationship between miRNAs and diseases.
Jiang et al.10 advanced a computational approach based on
Näıve Bayes for discovering disease-associated miRNAs. Xu
et al.11 presented a method, which applied support vector
machine in distinguishing associated or nonassociated miRNAs
for particular diseases. However, one weakness of these
approaches is that the negative samples utilized in these
RSC Adv., 2017, 7, 44447–44455 | 44447
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machine-learning methods are practically hard to obtain
because veried nonassociations between miRNAs and diseases
cannot be found exactly in any existing database.

By incorporating experimentally veried miRNA–disease
associations and diverse similarity information based on miR-
NAs and diseases into a heterogeneous graph, Chen et al.12

advanced a novel approach named HGIMDA to infer underlying
relationship between miRNAs and diseases. You et al.13 pre-
sented a path-based prediction method, named PBMDA, which
applied depth-rst search algorithm in the integrated hetero-
geneous graph to capture the potential miRNA–disease associ-
ations. Chen et al.14 developed a new method named WBSMDA,
which predicted miRNA–disease interactions based on the
framework of within and between score. They also proposed
a computational approach named SDMMDA15 based on super-
disease and super miRNA to predict underlying miRNA–
disease interactions. “RBMMMDA: predicting multiple types of
disease-microRNA associations”, which proposed by Chen
et al.,16 is the rst model that can predict not only whether there
is a link between each miRNA and disease pairs, but also the
corresponding type of association.

Zou et al.17 presented a method called KATZ for predicting
miRNA–disease interactions. In this method, social network
analysis methods are adopted to construct miRNA–disease
association networks. However, although KATZ has excellent
performance, its capability to spare known associations is
relatively poor. Chen et al.18 presented a semi-supervised
approach, called RLSMDA, for exposing unknown miRNA–
disease interactions on the basis of regularized least squares.
Luo et al.19 utilized heterogeneous omics data and adopted
Kronecker regularized least-squares framework to identify
potential disease-related miRNAs. However, cross-validation
performance of these methods is not so good.

Overall, the aforementioned approaches have the following
limitations: some methods cannot predict diseases without
known related miRNAs, some methods require negative
samples that are practically hard to obtain, and exhibit
predictive performance that requires further improvement.

To overcome the above challenges, we proposed a novel
information fusion strategy called RLSSLP, which is based on
a regularized framework, for discovering underlying associa-
tions between miRNAs and diseases. RLSSLP comprehensively
measures the similarity for miRNAs and diseases by fully using
the multiple omics data, which include known miRNA–disease
interactions, gene–gene networks, and the experimentally veri-
ed association data of miRNA–gene from three different
databases. RLSSLP adopts the eigenvalue transformation tech-
nique to reduce computational time and memory requirement,
as well as utilizes integrated regularized framework based on
regularized least squares (RLS)18,19,29 and semi-supervised link
prediction (SLP)20,30 to prioritize disease-related miRNAs.

The main contributions of this study are as follows:
(1) RLSSLP does not need negative training samples, which

are practically hard to obtain.
(2) Various omics data can be fully utilized in RLSSLP and are

benecial for comprehensive evaluation of the similarities
between miRNAs and diseases. MiRNA–gene association data
44448 | RSC Adv., 2017, 7, 44447–44455
are obtained from three different experimentally veried data-
bases, which help reduce inuence of false-positive rate on the
performance of the miRNA–target prediction process.

(3) Eigenvalue transformation technique has been adopted
to reduce computational time and memory requirement for the
storage and calculation between the similarities matrices
during the Kronecker operation.

(4) Two submodels are combined in RLSSLP to enhance
predictive performance.

Materials and methods
Data preparation

The standard dataset used in our study include data on known
miRNA–disease associations, disease similarities, and relevant
information about miRNA similarities. MiRNA–disease associ-
ations are retrieved from HMDD v2.0.21 Aer duplicated asso-
ciations are ltered, the data contain 5424 experimentally
veried interactions, which consist of 495 miRNAs and 378
diseases. Disease directed acyclic graph (DAG), which is used to
calculate disease semantic similarities, is derived from the
MeSH database (available from: https://www.nlm.nih.gov/
mesh/). We obtain miRNA target genes from the miRTarBase
v4.5,22 TarBase v6.0,23 and miRecords v4.0 (ref. 24) to obtain
more accurate and comprehensive information. The probabi-
listic functional gene network is obtained from HumanNet25

(available from: http://www.functionalnet.org/humannet/).

Problem description

The problem can be regard as predicting novel interactions in
a miRNA–disease association network. Formally, Xm ¼
{m1,m2,.mnm} and Xd ¼ {d1,d2,.dnd} represent the sets of
miRNA and disease nodes, respectively. The known miRNA–
disease association network is characterized as nm � nd adja-
cency matrix pre. If miRNA i interacts with disease j, preij is 1;
otherwise, 0. In this study, we calculate the prediction score of
each unknown miRNA–disease pair though a computational
approach and recover the underlying association between
miRNAs and diseases.

Disease similarity calculation

Accumulating ndings show that miRNAs with similar func-
tions tend to regulate similar diseases. In this work, the method
for estimating disease semantic similarities was based on the
strategy of Wang et al.26

In MeSH database, diseases can be expressed into a DAG.
Formally, disease i can be denoted as DAG(i) ¼ (i,Ti,Ei), where Ti
is the disease set containing i itself and all its ancestors, and Ei
represents the sets of corresponding links of disease i. The
semantic contribution of ancestor node t to disease i is as
follows:(

DiðiÞ ¼ 1

DiðtÞ ¼ max
n
D�Di

�
t0
���t0˛children of t

o
if tsi:

(1)

where, D is the semantic contribution factor, and according to
Wang et al., the value of D is 0.5.
This journal is © The Royal Society of Chemistry 2017
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The semantic similarity score between disease i and j is
denoted as follows:

SDði; jÞ ¼

X
t˛TiXTj

�
DiðtÞ þDjðtÞ

�
X
t˛TðiÞ

DiðtÞ þ
X
t˛TðjÞ

DjðtÞ
(2)

where,
X
t˛TðiÞ

DiðtÞ and
X
t˛TðjÞ

DjðtÞ are the semantic value of

disease i and disease j, respectively. As shown in eqn (2), the two
diseases share a common part of DAG, the semantic similarity
score is high, and the two diseases are increasingly similar.
MiRNA similarity calculation

The more the two miRNAs share target genes, the more similar
they are. In this work, we measure the similarities for miRNA
according to an experimentally validated miRNA–target gene
relationship and probabilistic functional gene network.

First, we extract the common miRNA–target gene set from
three experimentally valid databases mentioned above. The
gene–gene relationship network can be acquired from
HumanNet, in which the closeness of the link between each
pair of genes is measured by associated log-likelihood scores.
SL(ei,ej)stands for the associated log-likelihood scores between
genes ei and ej. Second, we normalize SL(ei,ej) and obtain the
normalized similarity SLnorm

(ei,ej) between genes ei and ej as
follows:

SLnorm

�
ei; ej

� ¼ SL

�
ei; ej

�� SLmin

SLmax
� SLmin

(3)

where, SLmax
and SLmin

indicate the maximum and minimum log-
likelihood scores in HumanNet, respectively. If a functional
linkage exists between genes ei and ej, then the functional
similarity SG(ei,ej) between gene ei and gene ej is SLnorm

(ei,ej).
Otherwise, it defaults to 0. In addition, when i¼ j, the similarity
score is 1.

The similarity between genes et and gene set E ¼ {et1,-
et2,.etk} is provided as follows:

Sðet;EÞ ¼ max
1# i# k

ðSGðet; eiÞÞ (4)

Finally, basing on a best matching average (BMA)
strategy,27,28 we calculate the functional similarity between
miRNAs i and j according to common genes.

SMði; jÞ ¼

X
1# i# jE1 j

Sðeti;E2Þ þ
X

1# i# jE2 j
S
�
etj ;E1

�
jE1j þ jE2j (5)

where, E1 and E2 represent the gene set related to miRNA i and j,
respectively.
Methods for miRNA–disease interaction prediction

In our study, we apply an information fusion strategy and
combine RLS and SLP to establish a prediction model. The
overall owchart of RLSSLP is shown in Fig. 1.
This journal is © The Royal Society of Chemistry 2017
Part 1: RLS model for uncovering miRNA–disease interac-
tion. RLS is an effective supervised learning algorithm, which
can achieve good performance if an appropriate kernel has been
selected. To uncover the potential associations between
miRNA–diseases, the objective function of RLS can be dened
as follows (notice that, vec(pre1) is the vectorization operation of
matrix pre1):

min
c˛R

1

2l
kvecðpre1Þ � Sck22 þ

l

2
cTSc (6)

In this study, l is a regularization parameter. Kernel matrix S
is dened as S ¼ SM 5 SD, which represents the Kronecker
product of miRNA similarity matrix SM and disease similarity
matrix SD. Through the derivative of c, the optimal solution of c
is c ¼ (S + sI)�1vec(pre), where s ¼ lI. I is the identity matrix.
The prediction association score matrix pre1 is calculated as
follows:

vecðpre1Þ ¼ Sc ¼ SðS þ sIÞ�1vecðpre1Þ (7)

Part 2: SLP model for uncovering miRNA–disease interac-
tions. Basing on the SLP algorithm,20 in which two similar
nodes are assumed to share the same link strength, we obtain
the objective function for miRNA–disease association predic-
tion as follows:

min
pre

s

2
vecðpre2ÞTLvecðpre2Þ þ

1

2
kvecðpre2Þ � vecðpre2Þk22 (8)

where, the rst term denotes that the prediction score ½pre�i;j
and ½pre�l;m for the two pairs (for instance, the association
between miRNA i–disease j and miRNA l–disease m) should be
close to each other if some signicant similarities between the
two pairs are present. The second term is a regularization term
and represents the loss function that ts the prediction matrix
pre2 to known miRNA–disease association matrix pre2. Param-
eter s represents the regularization parameter to balance the
two terms. The Laplacian matrix L is denoted as L ¼ I � SM 5

SD. Specically, L can be denoted as

L ¼ I �
�
DM

�1
2SMDM

�1
2

�
5
�
DD

�1
2SDDD

�1
2

�
(9)

where, DM and DD are the diagonal matrices in which their

diagonal elements are ½DM�ii ¼
X
j

½SM�ij and ½DD�ii ¼
X
j

½SD�ij,

respectively.
Therefore, the prediction score matrix pre2 is calculated as

follows:

vecðpre2Þ ¼ ðsLþ IÞ�1vecðpre2Þ (10)
Information fusion strategy (RLSSLP)

In general, we can directly use conjugate gradient-based
method30 to solve eqn (7) and (10). However, an unavoidable
limitation exists due to the large memory requirements and
computational time for storing the matrices, which include SM,
RSC Adv., 2017, 7, 44447–44455 | 44449
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Fig. 1 The overall flowchart of RLSSLP.
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SD, pre1 and pre2 during the Kronecker operation. Therefore, we
perform the eigenvalue transformation technique31 to improve
the calculation efficiency and further extend its application on
large-size miRNA–disease association network.

Step 1: improving RLS with eigenvalue transformation. Let
SM ¼ RMLR

T
M and SD ¼ RDLR

T
D be the Eigen decompositions of

matrix SM and SD. Then the kernel matrix S in RLS model can be
denoted as S ¼ SM 5 SD ¼ RLRT, where R ¼ RM 5 RD and L ¼
LM 5 LD. Based on the property of Kronecker product, we can
transform eqn (7) into:

vecðpre1Þ ¼ SðS þ sIÞ�1vecðpre1Þ ¼ RLðRþ sIÞ�1RTvecðpre1Þ
¼ RZRTvecðpre1Þ

(11)

where, Z is a diagonal matrix and its diagonal elements are [Z]ii
¼ li/(li + s); li is an eigenvalue of S. We apply a simple eigen-
value transformation as f(li) ¼ li

a and replace li with li
a in eqn

(11). Therefore, we can rewrite the new prediction score matrix
pre1 aer eigenvalue transformation:

vecðpre1Þ ¼ RZRTvecðpre1Þ (12)

where, �Z is a diagonal matrix and its diagonal elements are [�Z]ii
¼ li

a/(li
a + s).
44450 | RSC Adv., 2017, 7, 44447–44455
Step 2: improving SLP with eigenvalue transformation. We
use �S ¼ �RL�RT as the Eigen decomposition of matrix �S for SLP.
Then eqn (10) can be rewritten as:

vecðpre2Þ ¼ ððsþ 1ÞI � sSÞvecðpre2Þ ¼ RZR
T
vecðpre2Þ (13)

where Z is a diagonal matrix and its diagonal elements are [Z]ii
¼ 1/(1 + s � sli) and li is an eigenvalue of �S.

Similar to RLS, aer the transformation of the eigenvalue,
the new prediction matrix pre2 in SLP is as follows:

vecðpre2Þ ¼ RZR
T
vecðpre2Þ (14)

where, [�Z]ii ¼ 1/(1 + s � sli
a) is a diagonal matrix and its

diagonal elements are [�Z]ii ¼ 1/(1 + s � sli
a).
Step3: combining the two submodels

Finally, we combine the new prediction score matrix pre1 and
pre2 aer the eigenvalue transformation. The prediction matrix
is obtained as follows:

vecðpreÞ ¼ 1

2
ðvecðpre1Þ þ vecðpre2ÞÞ (15)
This journal is © The Royal Society of Chemistry 2017
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The more miRNA i strongly associates with disease j, the
higher the corresponding prediction score preij is.

The eigen decompositions of similarity matrix SM and SD are
one of the key technique in this paper to efficiently compute the
inverse matrix on the eqn (6) and (8) that involves Kronecker
operators. By applying this technique, the time complexity of
the RLS sub-model is reduced from O((nm � nd)

3) to O((nm)
3 +

(nd)
3), in which nm and nd represent the number of miRNAs and

diseases, respectively. Moreover, the time complexity of the SLP
sub-model is O((nm)

3 + (nd)
3 + nm$nd), more detail can be found

from ref. 14. Thus, the total time complexity is O((nm)
3 + (nd)

3 +
nm$nd).
Fig. 2 ROC curve and average AUC value of RLSSLP in different situa-
tions. (1) RLSSLP after information fusion strategy, (2) RLS only, (3) SLP only.
Results
Performance evaluation of RLSSLP

In this section, we implement a 10-fold cross-validation on the
standard dataset to evaluate the performance of RLSSLP and
other compared methods. In the experiment, both known and
unknown miRNA–disease interactions are randomly divided
into 10 subsets of equal sizes. In each repetition of the method,
one subset of known miRNA–disease interactions and one of
unknown interactions are selected (their scores in the adjacency
matrix pre were set to 0) as test sets. We use the remaining nine
subsets as training sets to recover the prediction score matrix.
The value of area under the curve (AUC receiver operating
characteristic (ROC)) is used as the main quantitative index for
performance evaluation.

Basing on the RLS and SLP models, we apply information
fusion strategy and eigenvalue transformation technique to
construct a global prediction framework to uncover potential
miRNA–disease interactions. We evaluate the predictive
performance of RLSSLP by considering the following aspects:
(1) RLSSLP with information fusion strategy and eigenvalue
transformation technique, (2) RLSSLP with RLSmodel only, and
(3) RLSSLP with SLP model only. The ROC curves and average
AUC values of RLSSLP at different situations mentioned above
are displayed in Fig. 2.

As illustrated in Fig. 1, RLSSLP exhibited desirable predictive
performance and achieved an AUC value of 0.9265. The AUC
values for the RLSmodel and SLPmodels are 0.8992 and 0.8735,
respectively. The RLSSLP framework of the combined infor-
mation increases the AUC value, which is 2.73% and 5.30%
higher compare with those of the RLS and SLP models,
respectively. Evidently, the information fusion strategy and
eigenvalue transformation technique enhance the predictive
ability of RLSSLP.
Fig. 3 The effect of parameters a on the RLSSLP.
Effect of parameter on RLSSLP performance

Parameters s and a are introduced in the RLSSLP method.
Parameter s is the regularization parameter for the RLS and SLP
models and balances the rst and second terms in each regu-
larization framework. Parameter a is an eigenvalue exponent
and inuences the improvement performance attributed to the
application of the eigenvalue transformation technique. In this
study, we set s to 0.05 for the RLS model and 0.01 for SLP model
This journal is © The Royal Society of Chemistry 2017
in a noninformative manner according to a previous study.32 To
explore the inuence of parameter a on predictive performance,
we x regularization parameter s and vary the value of a from
0 to 2 with an interval of 0.1 in the 10-fold cross-validation
experiments. Fig. 3 shows the average AUC obtained from
RLSSLP at different values of a. When we set the value of a from
0 to 2, the AUC value uctuates between 0.6987 and 0.9450.
When a ¼ 1.3, RLSSLP has an optimal AUC value. More
remarkably, when a ¼ 1, the algorithm is equal to the original
algorithm without applying the eigenvalue transformation
technique.
Comparison with other methods

To the best of our knowledge, RWRMDA, RLSMDA, KATZ,
HDMP, and KRLSM are the representative computer methods
for the prediction of miRNA–disease associations. Given that
RWRMDA and HDMP cannot predict diseases with no related
miRNAs, we compared RLSSLP with RLSMDA, KATZ, and
KRLSM.

We implement a 10-fold cross-validation for RLSSLP and
three other methods. The optimal parameters of RLSMDA,
KATZ, and KRLSM are selected as described in literature. The
ROC curves and AUC values of the four methods are shown in
Fig. 4. The average AUC values of RLSSLP, RLSMDA, KATZ, and
KRLSM are 0.9250, 0.8547, 0.9081, and 0.8324, respectively.
RSC Adv., 2017, 7, 44447–44455 | 44451
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Fig. 4 Comparison among RLSSLP, RLSMDA, KATZ, and KRLSM with
respect to their ROC curves and average AUC values obtained through
the 10-fold cross-validation.

Table 1 Top 20 potential lung cancer-related miRNAs predicted by
RLSSLP and their confirmed interactions. Seventeen of the top 20
miRNA candidates related to lung neoplasms have been verified on
dbDEMC and miRCancer databases

Rank miRNA name Evidences

1 hsa-mir-708 dbDEMC
2 hsa-mir-149 dbDEMC
3 hsa-mir-625 dbDEMC
4 hsa-mir-429 miRCancer, dbDEMC
5 hsa-mir-296 Unconrmed
6 hsa-mir-302b miRCancer, dbDEMC
7 hsa-mir-520b dbDEMC
8 hsa-mir-92b dbDEMC
9 hsa-mir-193b dbDEMC
10 hsa-mir-378a Unconrmed
11 hsa-mir-20b dbDEMC
12 hsa-mir-204 dbDEMC
13 hsa-mir-302c dbDEMC
14 hsa-mir-151a Unconrmed
15 hsa-mir-345 dbDEMC
16 hsa-mir-367 dbDEMC
17 hsa-mir-302d dbDEMC
18 hsa-mir-99a dbDEMC
19 hsa-mir-139 dbDEMC
20 hsa-mir-211 dbDEMC
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RLSSLP has the best prediction result, and its average AUC value
is increased and is 7.03%, 1.69%, and 9.26% higher than the
other three approaches. The comparison results demonstrate
that RLSSLP performs better than RLSMDA, KATZ, and KRLSM
during the 10-fold cross-validation.
Table 2 Top 20 potential hepatocellular carcinoma-related miRNAs
predicted by RLSSLP and their confirmed interactions. All of the top 20
miRNA candidates related to hepatocellular carcinoma have been
verified on dbDEMC and miRCancer databases

Rank miRNA name Evidences

1 hsa-mir-185 miRCancer, dbDEMC
2 hsa-mir-302d dbDEMC
3 hsa-mir-135b dbDEMC
4 hsa-mir-520h dbDEMC
5 hsa-mir-302a dbDEMC
6 hsa-mir-429 miRCancer, dbDEMC
7 hsa-mir-367 miRCancer, dbDEMC
8 hsa-mir-204 miRCancer, dbDEMC
9 hsa-mir-638 miRCancer, dbDEMC
10 hsa-mir-708 miRCancer
11 hsa-mir-149 miRCancer, dbDEMC
12 hsa-mir-215 miRCancer, dbDEMC
13 hsa-mir-331 miRCancer, dbDEMC
14 hsa-mir-625 miRCancer
15 hsa-mir-186 dbDEMC
16 hsa-mir-371a miRCancer, dbDEMC
17 hsa-mir-211 miRCancer, dbDEMC
18 hsa-mir-95 miRCancer, dbDEMC
19 hsa-mir-194 miRCancer, dbDEMC
20 hsa-mir-30e miRCancer, dbDEMC
Case studies

Few miRNAs play a crucial regulatory role in various human
cancers. Case studies for breast, hepatocellular carcinoma
(HCC), and lung cancer were implemented to evaluate the
capability of RLSSLP to discover disease-related miRNA candi-
dates. All the known miRNA–diseases interactions in the stan-
dard dataset were assigned as training sets, and the remaining
unknown interactions served as testing sets. The predictive
disease-related miRNAs were conrmed by public databases
dbDEMC33 and miRCancer.34

Lung cancer is one of the primary cancers that kill thousands
of people annually. Early diagnosis and intervention can
improve the low survival rate of patients with lung cancer. Many
researchers reported that miRNAs, such as let-7e, mir-21, mir-
25, mir-223, and mir-486, are potential premonitory
biomarkers for lung cancer.35 In particular, Mir-145 inhibits
tumor cell proliferation and is known to act as a tumor
suppressor. Meanwhile, miRNA-192, miRNA-200c, and mir-21
are overexpressed during the progression of lung neoplasms.36

The top 20 potential miRNA candidates associated with lung
cancer and predicted by RLSSLP are listed in Table 1. Of these
candidates, 17 are veried by the dbDEMC and miRCancer
databases to be associated with lung neoplasms. Meanwhile,
three are not veried on these two databases, although we nd
that mir-296 suppresses cell viability in lung cancer37 (PMID:
26549165).

Meanwhile, HCC is the most common form of liver cancer.
Analyzing miRNA expression data in cancerous liver tissues and
normal tissues may facilitate the discovery of novel miRNA
44452 | RSC Adv., 2017, 7, 44447–44455
biomarkers and may assist the early detection of HCC cancer
state. For instance, the expression levels of mir-125a, let-7e, mir-
99b, and mir-195 are lower in HCC neoplasm tissues compared
with those in normal liver tissues.38 Mir-92, mir-20, mir-100,
mir-10a, mir-122, and mir-222 are more overexpressed in HCC
tumor tissues compared with those in nontumor liver tissues.39

The top 20 potential HCC-related miRNAs predicted by RLSSLP
and their conrmed interactions are listed in Table 2. All these
This journal is © The Royal Society of Chemistry 2017
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miRNA candidates are associated with HCC. The associations
are veried in the dbDEMC and miRCancer databases.

Breast cancer is another type of cancer that seriously affects
people's health, especially women. Few miRNAs are involved in
the regulation of some critical processes in breast cancer
Table 3 Top 20 potential breast neoplasms-relatedmiRNAs predicted
by RLSSLP and their confirmed interactions. Eighteen of the top 20
miRNA candidates related to breast neoplasms have been verified on
dbDEMC and miRCancer databases

Rank miRNA name Evidences

1 hsa-mir-186 dbDEMC
2 hsa-mir-330 dbDEMC
3 hsa-mir-130a miRCancer, dbDEMC
4 hsa-mir-185 miRCancer, dbDEMC
5 hsa-mir-449a dbDEMC
6 hsa-mir-99a dbDEMC
7 hsa-mir-106a miRCancer, dbDEMC
8 hsa-mir-95 dbDEMC
9 hsa-mir-142 Unconrmed
10 hsa-mir-449b dbDEMC
11 hsa-mir-650 dbDEMC
12 hsa-mir-574 miRCancer
13 hsa-mir-98 miRCancer, dbDEMC
14 hsa-mir-376a dbDEMC
15 hsa-mir-130b dbDEMC
16 hsa-mir-381 miRCancer, dbDEMC
17 hsa-mir-32 dbDEMC
18 hsa-mir-99b dbDEMC
19 hsa-mir-542 Unconrmed
20 hsa-mir-487b dbDEMC

Fig. 5 Network of top 40 miRNA candidates predicted by RLSSLP to be r
lung cancer.

This journal is © The Royal Society of Chemistry 2017
progression, such as proliferation and apoptosis of breast
neoplasm cell. For instance, mir-99a, mir-24, mir-101, mir-152,
mir96, and the let-7 family are involved in the development of
breast cancer.40,41 The top 20 potential breast neoplasm-related
miRNAs predicted by RLSSLP and their conrmed interactions
are listed in Table 3. Among these candidates, 18 were veried
on dbDEMC and miRCancer databases, and only 2 miRNAs
were unconrmed. However, ref. 42 (PMID: 26657485) proved
that mir-142 inhibits the invasiveness of human breast
neoplasm cell. In addition, ref. 43 (PMID: 28121348) investi-
gated that mir-542 regulates the proliferation and invasion of
breast tumor cell.

Finally, we implement another experiment on an isolated
disease (diseases without known related miRNAs) to demon-
strate the strength of our method. We remove known veried
miRNAs related to three diseases discussed above and predict
potential miRNA candidates associated with a particular
disease by only using similarity information and associations of
other diseases. Consequently, the average AUC value of RLSSLP
for the prediction of isolated diseases is 0.8175. Fig. 5 displays
the predicted results of breast cancer, colonic cancer, and lung
cancer.

The results of these case studies further illustrate that
RLSSLP exhibits good performance in identifying underlying
disease-related miRNAs.

Discussion

In this study, we have presented a novel information fusion
strategy called RLSSLP, which is based on regularized
elated to isolated diseases, namely, breast cancer, colonic cancer, and

RSC Adv., 2017, 7, 44447–44455 | 44453
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framework, for discovering underlying associations between
miRNAs and diseases. RLSSLP can predict isolated diseases and
does not require negative training samples. The results of the
10-fold cross-validation and case studies for lung cancer, HCC,
and breast cancer indicate that RLSSLP performs well in pre-
dicting miRNA–disease interactions. The AUC value obtained
through cross-validation also demonstrated that RLSSLP
performs better compared with other state-of-art approaches.

The favorable performance of RLSSLP can be mainly attrib-
uted to the following aspects. First, RLSSLP is a comprehensive
prediction approach, which fuses various omics data that
include the veried associations of miRNA–diseases, miRNAs–
gene, and weighted gene–gene network. Second, RLSSLP
combines two submodels to construct a more effective predic-
tion framework for predicting miRNA–disease associations.
Third, in RLSSLP, eigenvalue transformation technique can be
used to improve the efficiency of the calculations.

Inevitably, the current version of RLSSLP has limitations.
First, a more comprehensive similarity measurement for eval-
uating similarities for miRNAs and diseases can be adopted in
the algorithm to improve the performance of RLSSLP. Second,
the optimal value of parameter a can be obtained in a more
satisfactory way. Finally, in RLSSLP, miRNA similarity
measurement is based on miRNA-target associations. The
number of known veried miRNA-target associations affects the
prediction accuracy. The more the number of experimental
validated miRNA targets, the more accurate the prediction is.
Hence, the performance of the RLSSLP could be improved by
obtaining more miRNA-target associations in the future.
Nevertheless, RLSSLP exhibited good performance and can thus
be considered a useful bioinformatics tool for biomedical
research.
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