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The chemical potentials of components in nano-phases determine the equilibrium of nano-materials. In

this paper the difference between the equilibrium of a nano-phase and the equilibrium of an analogous

macro-phase under the same constraints is called a “nano-effect”. Historically the first paper to describe

the nano-effect was published by Kelvin (1871), claiming that it is due to the increased curvature of the

nano-phase. This approach forms the basis of the Kelvin paradigm, still widely used in chemistry, biology

and materials science (but not in physics). The Kelvin paradigm is the basis of the Kelvin equation, the

Gibbs–Thomson equation and the Ostwald–Freundlich equation for the vapor pressure, melting point

and solubility of nano-phases, respectively. The Kelvin paradigm is also successful in the interpretation of

more complex phenomena, such as capillary condensation. However, the Kelvin paradigm predicts no

nano-effect for not curved nano-phases, such as crystals and thin films, contradicting experimental

facts. Moreover, it wrongly predicts that a cubic (or any other crystal-shaped) nano-droplet is more

stable than a spherical nano-droplet of the same volume (this contradiction is shown here for the first

time). In addition to its positive features, these and other shortcomings of the Kelvin paradigm call for

a paradigm shift. A new paradigm is presented in this paper, claiming that the nano-effect is due to the

increased specific surface area of the nano-phase. Chemical potentials of components in multi-

component phases are derived in this paper within this new paradigm. These equations are extended for

nano-phases in multi-phase situations, such as liquids confined within nano-capillaries, or nano-sized

sessile drops attached to flat solid substrates. The new paradigm leads to similar results compared to the

Kelvin paradigm for the case of capillary condensation into capillaries (this is because the specific surface

area of a cylindrical wall is the same as the curvature of the spherical phase: 2/r). However, the new

paradigm is able to provide meaningful solutions also for problems, not tractable by the Kelvin equation,

such as the case of crystals and thin films having no curvature.
1. Introduction

The steady development of nano-technologies1–17 requires
a solid theoretical basis and clear techniques to calculate the
equilibrium of nano-systems. Nano-systems contain at least one
phase with at least one of its dimensions below 100 nm. Phase
equilibria, and thus all properties of such systems are functions
of the nano-dimensions. Similarly to macro-systems, the equi-
librium in nano-systems is also calculable through the chemical
potentials of the components.18–32 Therefore, the knowledge of
accurate equations describing the chemical potential of
components in nano-phases is of primary importance.
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Unfortunately, this subject is far from being clear today, despite
its 146 years history. The goal of this paper is to review the
subject and to offer a new solution to this old problem.

For brevity, the expression “nano-effect” will be used in this
paper, meaning the difference between the equilibrium of
a nano-phase and the equilibrium of an analogous macro-phase
under the same constraints. Examples of nano-effect include
the increased vapor pressure around a liquid nano-droplet,
a solid nano-crystal or a solid thin lm, an increased solu-
bility of a nano-crystal, a nano-droplet or a thin lm in a solu-
tion, a decreased (or sometimes increased) melting point of
a nano-crystal and a thin solid lm inside or outside capillaries,
a decreased vapor pressure above the liquid conned in well
wetted capillaries and in nano-bubbles, etc. A successful para-
digm should be able to explain all these phenomena not only in
qualitative, but also in a quantitative way.

Historically the rst equation on nano-equilibria was due to
Kelvin (W. Thomson, 1871), who claimed that the increased
vapor pressure around a liquid nano-droplet is due to its
RSC Adv., 2017, 7, 41241–41253 | 41241

http://crossmark.crossref.org/dialog/?doi=10.1039/c7ra07911g&domain=pdf&date_stamp=2017-08-23
http://orcid.org/0000-0003-4419-142X
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7ra07911g
https://pubs.rsc.org/en/journals/journal/RA
https://pubs.rsc.org/en/journals/journal/RA?issueid=RA007065


RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
A

ug
us

t 2
01

7.
 D

ow
nl

oa
de

d 
on

 7
/2

8/
20

25
 8

:5
2:

34
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
increased curvature.33 This very rst attempt to describe equi-
librium in nano-systems is still in use today. Adamson34 even
calls the Kelvin equation one of the three fundamental equa-
tions of surface science (the other two being the Laplace equa-
tion35 and the Gibbs adsorption equation36). The Kelvin
equation is a basis to form a current paradigm (called here the
“Kelvin paradigm”) for equilibrium of nano-materials. This
paradigm is followed in chemistry,34,37–45 biology,46–49 materials
science50–67 and even in microelectronics.68 The Kelvin equation
was extended later to describe the size dependence of the
melting point and the solubility of the nano-particles. The size
dependence of the melting point is described by the so-called
Gibbs–Thomson equation, derived not by Gibbs, rather by J. J.
Thomson,69 while the size dependence of solubility was
described by the so-called Freundlich–Ostwald equation, origi-
nally derived by Ostwald70 and corrected later by Freundlich71 to
bring it to agreement with the Kelvin paradigm. The success of
the Kelvin paradigm is due to the fact that it describes well the
equilibrium of curved uid nano-systems, including nano-
droplets and liquids conned in nano-capillaries.34,72–76

Although the Kelvin equation does not predict any nano-
effect for not curved phases such as crystals and thin lms,
this situation was partly “resolved” by treating crystals as
spheres of inscribed radius within cubes.34 The limit of such
a “exible” interpretation of a curvature was reached when the
behavior of thin lms was studied, as it is really hard to inscribe
a sphere within a thin lm. This is the main reason why the
Kelvin paradigm and its analogues are not used in physics
(another reason is that physics developed independently of
chemistry).

In addition to the problem describing equilibrium of non-
curved nano-phases, the Kelvin paradigm has further hidden
aws, discussed in the present paper. All this is an indication
that the general validity of the Kelvin paradigm can be ques-
tioned. This is not surprising, as the science on equilibrium of
nano-materials should have been created as an extension of the
science on equilibrium of macro-materials. However, the Kelvin
equation was published in 1871,33 before Gibbs published in
1875–1878 his monumental work on the equilibrium of
heterogeneous (macroscopic) substances.36 In his work, Gibbs
added a surface term to his bulk Gibbs energy term, as we call it
today. Later in this paper it will be shown that the new paradigm
is based on this part of Gibbs' work. Looking at the publication
dates above, one can ask why Gibbs did not correct the Kelvin
equation similarly as it is offered here? At this point let us
mention that Gibbs actually referred to the Kelvin equation in
his work, but did not comment on it. One possible explanation
is that Gibbs did not want to enter into an open conict with an
elder and well (much better than himself at the time) estab-
lished fellow-scientist. A second explanation is that Gibbs might
have supposed that what is written by him is obvious, anyway. If
any, it was Gibbs' most important mistake: supposing that
whatever was written by him was so obvious to all of his readers.

Recently an alternative approach was partly developed on the
equilibrium of nano-systems. This new paradigm claims that
the nano-effect is due to the increased specic surface area of
a nano-phase.77–79 This new approach treats successfully the
41242 | RSC Adv., 2017, 7, 41241–41253
problems of one-component not curved nano-phases, such as
nano-crystals and thin lms, without any need to draw articial
inscribed spheres into them. It should be mentioned that the
same approach was rst used by Ostwald70 (who not only
translated Gibbs into the German language, but also “inter-
preted” his writings and got a Nobel prize in chemistry in 1909).
Unfortunately, the Ostwald equation was soon “corrected” by
Freundlich71 from the Gibbs-type equation to the Kelvin-type
equation, and thus the original Ostwald approach is lost/
forgotten. Now it is time to correct it back.

It is also important to realize that the new paradigm has
been developed only partly; today it can tackle only the simplest
one-component and two-phase problems. The goal of this paper
is to ll this knowledge gap and to extend the ability of the new
paradigm to describe the equilibrium of nano-materials in
multi-component and multi-phase nano-systems. The subject
will be put into a wider historical perspective in this paper: the
general framework of equilibrium of nano-materials and the
Kelvin paradigm will be also discussed in details.
2. The general framework for the
equilibrium of nano-systems

Before we start let us state that the surface term to the chemical
potential will have a signicant effect only if at least one of the
sizes of the phase is below 100 nm. On the other hand, if the size
of the phase is below 1 nm or so, the meaning of the phase
becomes questionable. Therefore, all the equations which
follow will be valid only for those phases, which have at least
one of their dimensions below 100 nm, but have all of their
dimensions above 1 nm.
2.1. The chemical potential

The condition of equilibrium of heterogeneous substances
including nano-phases is formally the same as given by Gibbs
for macro-phases:36

mi(a) ¼ mi(b) (1)

where mi(a) (J mol�1) is the chemical potential of component i in
phase a, mi(b) (J mol�1) is the same for phase b. For component i
in a nano-phase a the chemical potential is written in all papers
as:

mi(a) ¼ mbi(a) + z$Vm,i(a)$sa/b (2)

where mbi(a) (J mol�1) is the bulk chemical potential of compo-
nent i in phase a, while the second term is responsible for the
surface effect, with Vm,i(a) (m

3 mol�1) the partial molar volume
of component i in phase a, sa/b (J m�2) the surface tension
(interfacial energy) between nano-phase a and the surrounding
phase b, z (1/m) is a size- and shape dependent constant of
a positive value, being different for eachmodel discussed in this
paper. In the historical Kelvin paradigm z ¼ 2/r for a sphere of
radius r. Simple examples of how to apply eqn (1) and (2) are
shown in ESI A.†
This journal is © The Royal Society of Chemistry 2017
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As follows from the unit of parameter z, it is inversely
proportional to the characteristic size of the phase (radius for
a sphere or a cylinder, side length of a cube, thickness of a thin
lm, etc.). For free standing phases (such as a spherical liquid
droplet levitating in a vapor phase) parameter z is only size- and
shape-dependent. However, for more difficult situations, such
as a nano-sized liquid sessile droplet attached to a solid slab,
parameter z will also depend on the contact angle of the liquid
on the solid slab. Different approaches existing in the literature
differ in how this parameter z is interpreted, dened and
calculated. The goal of this paper is to derive proper expressions
for parameter z for free standing nano-phases and also for
nano-phases attached to other phases.
2.2. The integral molar Gibbs energy of a nano-phase

Now, let us derive the integral molar Gibbs energy of a nano-
phase a using the following generally valid equation:

Gm;a ¼
X
i

xiðaÞ$miðaÞ (3a)

where Gm,a (J mol�1) is the integral molar total Gibbs energy of
phase a, xi(a) (dimensionless) is the molar ratio of component i
in phase a. Now, let us substitute eqn (2) into eqn (3a):

Gm,a ¼ Gb
m,a + z$Vm,a$sa/b (3b)

where Gb
m,a (J mol�1) is the integral molar bulk Gibbs energy of

phase a, written as:

Gb
m;a ¼

X
i

xiðaÞ$m
b
iðaÞ (3c)

and Vm,a (m3 mol�1) is the integral molar volume of phase a,
written as:

Vm;a ¼
X
i

xiðaÞ$Vm;iðaÞ (3d)

The integral molar Gibbs energy of phase a written by (eqn
(3b)) takes into account the surface effect, similarly to the
original equation of Gibbs, written for the absolute Gibbs
energy of phase a as:36

Ga ¼ Gb
a + Aa$sa/b (4)

where Ga (J) is the integral absolute (not molar) total Gibbs
energy of phase a, Gb

a (J) is the integral absolute (not molar) bulk
Gibbs energy of phase a, Aa (m

2) is the surface area of phase a.
When the original equation of Gibbs (4) is converted into the
molar Gibbs energy of eqn (3b), the surface area term (m2) of
eqn (4) is replaced by the molar volume term (m3 mol�1)
multiplied by the geometric parameter z (1/m).
2.3. The chemical potential of a one-component nano-phase

As a rst simplest approach let us apply eqn (4) of Gibbs for
a one-component phase:

Go
i(a) ¼ Go,b

i(a) + Aa$s
o
i(a)/b (4a)
This journal is © The Royal Society of Chemistry 2017
where Go
a (J) is the standard integral absolute (not molar) total

Gibbs energy of pure component i in phase a, Go,b
i(a) (J) is the

standard integral absolute (not molar) bulk Gibbs energy of
pure component i in phase a, soi(a)/b (J m

�2) the surface tension
(interfacial energy) between nano-phase a made of pure
component i and the surrounding phase b. The standard
chemical potential of a pure component in a one-component
phase is simply obtained by dividing the standard integral
absolute Gibbs energy of the phase by the amount of matter
within this phase, the same being true also for the bulk
quantity:

mo
iðaÞ ¼

Go
iðaÞ

niðaÞ
(4b)

m
o;b
iðaÞ ¼

Go;b
iðaÞ

niðaÞ
(4c)

Thus, dividing eqn (4a) by the amount of matter within this
phase, the following is obtained:

mo
iðaÞ ¼ m

o;b
iðaÞ þ

Aa

niðaÞ
$so

iðaÞ=b (4d)

The amount of matter can be written as the ratio of the
volume (Va, m

3) and the molar volume (Vom,i(a), m
3 mol�1) of the

phase:

niðaÞ ¼ Va

Vo
m;iðaÞ

(4e)

Now, let us dene the specic surface area of the phase (Asp,a,
m�1) as the ratio of its surface area to its volume:

Asp;ah
Aa

Va

(4f)

Substituting eqn (4e) into eqn (4d) and taking into account
eqn (4f), the following nal equation is obtained for the
standard chemical potential of a one-component nano-
phase:

moi(a) ¼ mo,bi(a) + Asp,a$V
o
m,i(a)$s

o
i(a)/b (4g)

According to eqn (4g), the standard chemical potential
of a one-component nano-phase is proportional to the
specic surface area of the phase. Comparing eqn (2)
and (4g), parameter z for the free standing one-component
nano-phase is identical to the specic surface area of the
phase:

z ¼ Asp,a (4h)

The same result of eqn (4g) was achieved by the author
before77–79 for 1-component and 2-phase situations. This paper
is devoted to the extension of eqn (4h) to multi-component and
multi-phase situations.
RSC Adv., 2017, 7, 41241–41253 | 41243

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7ra07911g


RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
A

ug
us

t 2
01

7.
 D

ow
nl

oa
de

d 
on

 7
/2

8/
20

25
 8

:5
2:

34
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
2.4. A validity test for models on equilibrium of
nano-materials

The molar Gibbs energy of the system, containing a nano-phase
is generally written as:

Gm ¼
X
a

ya$Gm;a (5)

where ya (dimensionless) is the phase ratio of phase a. For
a one-phase system: Gm ¼ Gm,a. According to the most basic
principle of chemical thermodynamics, the system will gain
equilibrium in such of its possible states, which provides
a minimum value for Gm, or for Gm,a for a one-phase system.36

As follows from eqn (3b), for a given phase a of given compo-
sition, pressure, temperature, size and given surrounding phase
b, all properties (Gb

m,a, Vm,a, sa/b) are xed except parameter z,
which is also shape dependent. Thus, the equilibrium shape of
a phase will be the one with a minimum z value for given
volume. According to the well-known experimental evidence,
a nano-droplet (in the absence of gravity and other phases
except the equilibrium vapor phase) prefers a spherical shape.
This particular test will be performed for all models to check
whether a given model predicts an equilibrium spherical shape
for a nano-droplet, or not. Surprisingly, it will turn out that the
Kelvin paradigm does not pass this elementary test.

3. The approach based on the
curvature of the nano-phase (the
Kelvin paradigm)
3.1. The derivation of the key equations for the Kelvin
paradigm

The chemical potential is usually written using the following
three terms:

mi(a) ¼ Ub
i(a) + p$Vm,i(a) � T$Sb

i(a) (6a)

where Ub
i(a) (J mol�1) is the partial molar inner energy of

component i in bulk phase a, p (Pa) is the outside pressure
(¼one of the state parameters), T (K) is the absolute temperature
(¼the second state parameters), Sbi(a) (J mol�1 K�1) is the partial
molar entropy of component i in bulk phase a. If the
surrounding of phase a is under the standard pressure of po and
if phase a is curved from outside (such as a small sphere), then
the pressure inside this phase is written by the Laplace
equation:35

pin ¼ po þ sa=b$

�
1

r1
þ 1

r2

�
(6b)

where r1 (m) and r2 (m) are the two principal radii of curvature
of phase a. Now, let us substitute the inner pressure of eqn (6b)
into eqn (6a) to replace the state parameter p:

miðaÞ ¼ mb
iðaÞ þ

�
1

r1
þ 1

r2

�
$Vm;iðaÞ$sa=b (6c)

where the chemical potential of the bulk is written as:

mb
iðaÞ ¼ Ub

iðaÞ þ po$Vm;iðaÞ � T$Sb
iðaÞ (6d)
41244 | RSC Adv., 2017, 7, 41241–41253
Comparing eqn (2) and (6c) the requested equation for param-
eter z:

z ¼ 1

r1
þ 1

r2
(6e)

Eqn (2) and (6e) form the basis of the Kelvin paradigm. Using
these equations, the classical Kelvin, Ostwald–Freundlich and
Gibbs–Thomson equations are derived for spherical nano-
phases (see ESI A†). When phase a is a sphere of radius r,
then r1 ¼ r2 ¼ r and thus parameter z of the general eqn (2)
equals: z¼ 2/r. When phase a is a cylinder of radius r then r1¼ r,
r2 ¼N and thus parameter z of the general eqn (2) equals: z¼ 1/r.
The curvature can also have a negative sign, for example for
a liquid meniscus within a well wetted solid capillary, or within
a bubble. The curvature of the spherical cap at the end of the
liquid cylinder within a cylindrical solid capillary is written as:

z ¼ �2$cos Q

r
; (6f)

where r (m) is the radius of a cylinder, Q (degree) is the contact
angle of the liquid on the inner wall of the cylindrical capillary.
To add to confusion let us mention that in some works coeffi-
cient 2 in eqn (6f) is replaced by coefficient 1,39,43 referring to the
fact that the curvature of the cylinder is not 2/r, rather 1/r.

Whichever is the right numerical coefficient in eqn (6f), it
indeed provides a negative curvature for well wetting liquids (Q
< 90�). This makes the Kelvin paradigm very versatile as it can
predict accurately both the increase and the decrease of the
chemical potential within curved nano-phases. Eqn (6f) is also
the basis to interpret capillary condensation.
3.2. The list of reasons why the Kelvin paradigm is not
acceptable

Although the derivation of eqn (6e) is perfect mathematically,
this equation and the following Kelvin paradigm are connected
with the following contradictions:

i. Eqn (6e) was derived by substituting the inner pressure to
replace the state parameter (¼the outside pressure), which is
theoretically incorrect,

ii. when eqn (6e) is derived, it is done from the under-
standing that the inner pressure within the nano-phase is
higher than the outer pressure around this phase, and so it
seems to lead to higher activity (escaping tendency, aer Lewis)
of the components of this nano-phase. However, this increased
activity is compensated by the same Laplace pressure by which
it was created, as the vector of the Laplace pressure points
perpendicular to the curved surface from outside towards inside
of the nano-phase (this is how the inner phase of higher pres-
sure is in mechanical equilibrium with an outer phase of lower
pressure). Thus, the extra activity inside the nano-phase is also
compensated by the Laplace pressure, thus it has no inuence
outside the nano-phase, i.e. it cannot lead to increased vapor
pressure, or to increased solubility in any outer phase.

iii. Eqn (6e) predicts that any nano-phase surrounded by at
(not curved) planes (such as crystals, or thin lms) has no nano-
effect; however, this prediction contradicts the experimental
This journal is © The Royal Society of Chemistry 2017
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observations. Particularly, it follows that for a nano-phase of
given volume, a cube (or any other not curved phase such as
a thin lm) has a lower integral Gibbs energy compared to
a sphere, so a liquid droplet would prefer a crystal shape, such
as a cube or thin lm: this is certainly non-sense and contra-
dicts experimental observations. This contradiction proves
further that eqn (6e) is wrong. At this point let me mention that
one can consider the atoms/molecules along the edges or the
corners of the cube to provide the missing curvature for the
cube. However, it is not the curvature of the cubic phase, it is
rather the curvature of the atoms/molecules. Furthermore, if
the curvature of the atoms/molecules is taken into account to
calculate the nano-effect, then this effect would be size-
independent, as small and large cubes have equally small
atoms/molecules. This conclusion on the size-independent
nano-effect also contradicts experimental facts.

iv. The curvature effect is actually used in another aspect of
chemical thermodynamics: already Gibbs,36 and later Tolman80

showed that the surface tension of small curved phases is
curvature dependent. Using the same effect twice is not
reasonable.

v. The curvature induced interfacial (Laplace) pressure can
be derived from the interfacial term of the Gibbs energy,81,82 so it
is not reasonable to substitute this effect back into the same
Gibbs energy (chemical potential) again, while forgetting at the
same time about the surface term of the Gibbs energy (see eqn
(4)), as was done when eqn (6e) was derived,

vi. the equilibrium size of the nano-particle as follows from
eqn (6e) for a spherical nano-nucleus coincides with the critical
size of the nucleus; however, the later corresponds to the
maximum of the Gibbs energy and not to its minimum (as we
expect for an equilibrium size). Thus, eqn (6e) contradicts the
nucleation theory of Gibbs (for details see ref. 79).

vii. Eqn (6e) is principally different from eqn (4h) obtained
for a one-component case. This principal difference between
a one-component and multi-component phases shows that
something must be wrong. As nothing is wrong (to our opinion)
with eqn (4h) then (6e) must be wrong.

Based on the above seven reasons, the validity of the Kelvin
paradigm is under question. Thus, it is subject to the paradigm
shi, supposing that a new and better paradigm is developed.
4. A possible approach, based on the
definition of the chemical potential

The chemical potential of component i in a macroscopic phase
a is dened as:36

miðaÞh

�
dGa

dniðaÞ

�
p;T ;njðaÞ

(7a)

where Ga (J) is the absolute (not molar) total Gibbs energy of
phase a, including also component i, ni(a) (mol) is the amount of
component i in phase a, nj(a) (mol) is the amount of any other
component j in phase a. As follows from eqn (7a), the derivative
should be taken at constant values of all state parameters except
the amount of matter of the component in question, i.e. at
This journal is © The Royal Society of Chemistry 2017
constant outside pressure, at constant temperature and at
constant amount of matter of other components. The conse-
quences of eqn (7a) under these constraints are described
elsewhere.83–85 However, as follows from eqn (4), the Gibbs
energy of a nano-phase is also dependent on the surface area of
the phase, i.e. the surface area is also a state parameter for
a nano-phase. Therefore, the chemical potential of a component
in a nano-phase should be dened as:

miðaÞh

�
dGa

dniðaÞ

�
p;T ;njðaÞ ;Aa

(7b)

If eqn (4) is substituted into eqn (7b), the following equation
is obtained:

miðaÞ ¼ mb
iðaÞ þ Aa$

�
dsa=b

dniðaÞ

�
p;T ;njðaÞ ;Aa

(7c)

From comparison of eqn (2) and (7c) one can obtain the
expression for parameter z:

z ¼ Aa

Vm;iðaÞ$sa=b

$

�
dsa=b

dniðaÞ

�
p;T ;njðaÞ ;Aa

(7d)

Let us note that ni(a)¼ na$xi(a) (where xi(a) is the mole fraction
of component i in phase a) and so: dni(a) ¼ na$dxi(a). Also
remember that (see eqn (4e)): na ¼ Va/Vm,a. Substituting these
equations into eqn (7d) and taking into account eqn (4f), the
following equation is found:

z ¼ Asp;a$
Vm;a

Vm;iðaÞ
$

�
d ln sa=b

dxiðaÞ

�
p;T ;njðaÞ ;Aa

(7e)

As follows from eqn (7e), parameter z is proportional to the
specic surface area of the phase, which is in agreement with
eqn (4h), obtained above for one-component phases. The value
of Vm,a/Vm,i(a) of eqn (7e) is around unity. However, different
components of the solution can have different values and even
different signs of (d ln sa/b/dxi(a))p,T,nj(a),Aa

of eqn (7e) leading to
different signs of parameter z. On the other hand, parameter z is
expected to have only positive values. The possible negative
value of parameter z proves that eqn (7b) is not a proper basis to
derive the chemical potential for nano-phases and so this
approach is not considered here further.
5. The approach based on the specific
surface area of nano-phases (the new
paradigm)
5.1. Derivation of the key equation for the new paradigm

Let us re-write the classical eqn (4) of Gibbs for a multi-
component nano-phase in a somewhat different form:

Ga ¼
X
i

niðaÞ$m
b
iðaÞ þ Aa$sa=b (8a)
RSC Adv., 2017, 7, 41241–41253 | 41245
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Table 1 The number of sides, the equations for specific surface areas
of nano-phases of different simple shapes and the ratio of it to that of
a sphere of equal volume

Description of the
nano-phase a

Number
of sides Asp,a

Asp,a/
Asp,sphere

Sphere of radius r N 3/r 1.000
Tetrahedron of side length a 4 14.70/a 1.490
Cube of side length a 6 6/a 1.241
Octahedron of side length a 8 7.348/a 1.183
Dodecahedron of side length a 12 2.694/a 1.098
Icosahedron of side length a 20 3.970/a 1.065
Nano-sheet of thickness t 2 2/t Undened

([1)
A long wire/cylinder with
radius rcap

1 2/rcap Undeneda

A long nano-tube with inner
and outer radii ri and ro

2 2/ri + 2/ro Undened
([1)

a When the end walls of the cylinder are neglected, a cylinder seems to
provide smaller specic surface area compared to the sphere of the
same volume, but for a 3-dimensional cylinder (with its end walls)
this is never the case.
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Now, let us express Aa from eqn (4f) and let us substitute this
equation into eqn (8a):

Ga ¼
X
i

niðaÞ$m
b
iðaÞ þ Asp;a$Va$sa=b (8b)

The absolute volume of the nano-phase can be written as:

Va ¼
X
i

niðaÞ$Vm;iðaÞ (8c)

Now, let us substitute eqn (8c) into eqn (8b) and note that the
number of moles is a common multiplicator of both terms in
the right hand side:

Ga ¼
X
i

niðaÞ$
h
mb
iðaÞ þ Asp;a$Vm;iðaÞ$sa=b

i
(8d)

On the other hand, the following equation is also valid, by
denition:36

Ga ¼
X
i

niðaÞ$miðaÞ (8e)

Comparing eqn (8d) and (e), the following equation is ob-
tained for the chemical potential of component i in a free
standing nano-phase a:

mi(a) ¼ mbi(a) + Asp,a$Vm,i(a)$sa/b (8f)

From the comparison of eqn (2) and (8f), the nal equation is
obtained for parameter z for free standing nano-phases:

z ¼ Asp,a (8g)

One can see that eqn (4h) and (8g) are identical, so our result
for parameter z is identical for one-component and multi-
component phases. Thus, although eqn (8f) is obtained using
an independent derivation, it is a natural and logical extension
of eqn (4g) from a one-component system to multi-component
systems. In other words, eqn (4g) is a boundary case of
a more general eqn (8f). Eqn (8f) is practically more useful
compared to the equations of the Kelvin paradigm, because it
provides some nano-effect not only for nano-phases surrounded
by curved surfaces, but also for nano-phases surrounded by at
(not curved) surfaces, such as crystals and thin lms. This
approach is also free from the failure of the Kelvin approach, as
it predicts that liquid droplets will gain spherical shapes (and
not cubic shapes, as predicted by the Kelvin approach – see
above). This is because a sphere provides a minimum specic
surface area among all 3-dimensional bodies of the same
volume (see also Table 1).

Eqn (8f) is also in agreement with a wide-spread interpreta-
tion of why nano-phases have size-dependent properties: it is
because the ratio of their surface atoms/molecules among all
atoms/molecules within the nano-phase is signicant and var-
ies with the size of the nano-phase. As this surface ratio of
atoms/molecules is proportional to the specic surface area of
41246 | RSC Adv., 2017, 7, 41241–41253
the phase (see ESI B† and eqn (9)), it is reasonable that the
surface term of the chemical potential is also proportional to
the same physical quantity.

xs ¼ Asp;a$
Vm;a

ua

; (9)

where xs (dimensionless) is themolar ratio of the surface atoms/
molecules among its all atoms/molecules, ua (m

2 mol�1) is the
molar surface area of phase a.
5.2. Application of the new paradigm to free standing
nano-phases

For free standing nano-phases eqn (8f) can be coupled with the
equations of ESI A† to obtain expressions for phase equilibria.

In Table 1, equations for the specic surface areas of
different simple shapes of free standing nano-phases are
summarized (“free standing” means here that a given phase is
fully surrounded only by one macroscopic phase, usually
a vapor phase, or a macroscopic liquid or solid phase). In the
last column of Table 1 the ratio of the specic surface area of the
given phase to that of a sphere of the same volume is shown. As
follows from this comparison, the specic surface area of all
polyhedra are larger than that of a sphere, but these values
gradually approach the specic surface area of a sphere of the
same volume as the number of sides of the polyhedron
increases. This is because a sphere can be considered as
a polyhedron with innite number of sides.

In Table 2 equations for vapor pressure, solubility and
melting point of different free standing nano-phases are
collected. For this purpose, equations of Table 1 are substituted
into eqn (8g), and the result is substituted into eqn (A1b), (A2c),
(A3c) of ESI A.† These equations are similar (although not
identical) to the equations of the Kelvin paradigm for the curved
phases. These equations are also similar (although not
This journal is © The Royal Society of Chemistry 2017
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Table 2 Equations for vapor pressure, solubility and melting point of free standing nano-phases of different shapes (derived using eqn (A1b),
(A2c), (A3c), (8g) and Table 1)

Shape of the phasea
ln
�
pi

pNi

�
¼ ln

 
xiðlÞ
xN
iðlÞ

!
¼

Tm,i � TNm,i¼

Sphere 3$Vm;iðlÞ$sl=v
r$R$T

3$Vm;iðsÞ$ss=l
r$R$T

�3$Vm;iðsÞ$ss=l
r$DmS

o
i

Tetrahedron 14:70$Vm;iðlÞ$sl=v
a$R$T

14:70$Vm;iðsÞ$ss=l
a$R$T

�14:70$Vm;iðsÞ$ss=l
a$DmS

o
i

Cube 6$Vm;iðlÞ$sl=v
a$R$T

6$Vm;iðsÞ$ss=l
a$R$T

�6$Vm;iðsÞ$ss=l
a$DmS

o
i

Octahedron 7:348$Vm;iðlÞ$sl=v
a$R$T

7:348$Vm;iðsÞ$ss=l
a$R$T

�7:348$Vm;iðsÞ$ss=l
a$DmS

o
i

Dodecahedron 2:694$Vm;iðlÞ$sl=v
a$R$T

2:694$Vm;iðsÞ$ss=l
a$R$T

�2:694$Vm;iðsÞ$ss=l
a$DmS

o
i

Icosahedron 3:970$Vm;iðlÞ$sl=v
a$R$T

3:970$Vm;iðsÞ$ss=l
a$R$T

�3:970$Vm;iðsÞ$ss=l
a$DmS

o
i

Nano-sheetb 2$Vm;iðlÞ$sl=v
t$R$T

2$Vm;iðsÞ$ss=l
t$R$T

2$Vm;iðsÞ$ss=l
t$DmS

o
i

Long wire/cylinder 2$Vm;iðlÞ$sl=v
rcap$R$T

2$Vm;iðsÞ$ss=l
rcap$R$T

�2$Vm;iðsÞ$ss=l
rcap$DmS

o
i

Long nano-tubeb Vm;iðlÞ$sl=v
R$T

�
2

ri
þ 2

ro

�
Vm;iðsÞ$ss=l

R$T

�
2

ri
þ 2

ro

� �Vm;iðsÞ$ss=l
DmS

o
i

�
2

ri
þ 2

ro

�
a The sphere is characterized by its radius r, the thin lm by its thickness t, the long cylinder by its radius rcap, the long tube with its inner and outer
radii ri and ro, other bodies by their side lengths a.

b For simplicity the same phase is supposed on both sides of the nano-sheet and inside/outside of
the nano-tube.
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identical) to the equations of the Kelvin paradigm, if the crystals
are replaced by inscribed spheres. The equations provided in
Table 2 for thin solid lms are missing from the subjects
covered by the Kelvin paradigm due to the difficulty to replace
a thin solid lm by an inscribed sphere.

It should be noted that in a given nano-system usually a large
amount of similar, but not identical nano-phases are present.
This dispersity of nano-phases can be handled, if the minimum,
average and maximum sizes of the nano-phase are known and
correspondingly the maximum, average and minimum chem-
ical potentials are calculated through their specic surface
areas. This feature will denitely lead to uncertainty in nano-
thermodynamics, but this uncertainty is an inherent property
of the nano-system and is not a consequence of the present
model.
5.3. Extension of the new paradigm to multi-phase
situations

So far, the new paradigm was worked out only for free standing
nano-phases, i.e. for 2-phase systems. However, the Kelvin
paradigm is also able to explain more complex phenomena,
such as capillary condensation, involving more than two pha-
ses. Herewith the new paradigm is extended to treat these more
complex problems.

To calculate phase equilibria for nano-phases attached to
other phases, eqn (8f) should be modied. For this purpose,
a third term should be added to eqn (8f) as:
This journal is © The Royal Society of Chemistry 2017
miðaÞ ¼ mb
iðaÞ þ Asp;a$Vm;iðaÞ$sa=b þ Vm;iðaÞ$

Gatt � Gfs

Va

(10)

where Gatt (J) is the absolute (not molar) Gibbs energy of phase,
attached to some other phases (i.e. being in a multi-phase
situation), while Gfs (J) is the absolute (not molar) Gibbs
energy of free-standing phase, not attached to any other phase
except the fully surrounding vapor (or other) phase (i.e. being in
a 2-phase situation). As follows from eqn (10), the chemical
potentials of components will be different within the same
nano-phase, if this nano-phase is surrounded by different
phases, i.e. if it is involved in different multi-phase situations.

5.3.1. The case of nano-sized liquid sessile drops. First, let
us derive an equation for the chemical potential of a component
within a nano-sized liquid sessile drop. The starting state is
a free standing spherical liquid nano-drop of radius r, with
a specic surface area of 3/r. Let this nano-drop touch a at
surface of a macroscopic solid phase, and form a sessile nano-
drop. This nano-sized sessile droplet will form a spherical cap of
radius rc and contact angle of Q on the solid slab. The volumes
of the free standing spherical nano-drop and that of the sessile
nano-drop should be equal:

4

3
$p$r3 ¼ 1

3
$p$rc

3$
�
2� 3$cos Qþ cos3 Q

�
(11a)

The total interfacial energy (Gfs, J) of the system containing
a free standing spherical nano-droplet and a free standing solid
slab is written as:
RSC Adv., 2017, 7, 41241–41253 | 41247
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Gfs ¼ 4$p$r2$slv + Ao
sv$ssv (11b)

where Aosv (m
2) is the surface area of the free standing solid slab,

ssv (J m�2) is the surface energy of the solid slab. The total
interfacial energy (Gatt, J) of the system containing a nano-
droplet attached to a at surface of the same solid slab as
above, is written as:

Gatt ¼ Alv$slv + (Ao
sv � Asl)$ssv + Asl$ssl (11c)

where Alv (m2) is the liquid/vapor surface area of the sessile
nano-droplet, attached to the solid slab, Asl (m

2) is the common
solid–liquid interfacial area of the sessile nano-droplet and the
solid slab, ssl (J m

�2) is the solid/liquid interfacial energy. The
interfacial areas of the sessile nano-drop can be expressed from
the geometry of the spherical cap of radius rc:

Alv ¼ 2$rc
2$p$(1 � cos Q) (11d)

Asl ¼ rc
2$p$(1 � cos2 Q) (11e)

Now, let us express rc from eqn (11a), substitute this
expression into eqn (11d) and (e), and substitute the resulting
expressions together with eqn (11c) into eqn (10), taking into
account the le-hand side of eqn (11a) for Va and also the Young
equation (slv$cos Q ¼ ssv � ssl). The nal equation for the
chemical potential of a component within a sessile nano-drop
follows as:

miðl;sessileÞ ¼ mb
iðlÞ þ

3

r
$Vm;iðlÞ$slv$

�
2� 3$cos Qþ cos3 Q

4

�1=3

(11f)

where r is the radius of the free standing nano-drop, with the
volume of the sessile nano-drop being equal to the volume of
this free standing spherical nano-drop, while 3/r is the specic
surface area of the latter: Asp,a ¼ 3/r (see Table 1). For compar-
ison, the chemical potential of a component in a free standing
spherical droplet can be found by substituting this latter
expression into eqn (8f):

miðlÞ ¼ mb
iðlÞ þ

3

r
$Vm;iðlÞ$slv (11g)

Comparing eqn (11f) and (g) one can see that the expression
of the chemical potential within a sessile drop is very similar to
that within a free standing droplet, the only difference being the
correcting parenthesis at the end of eqn (11f). Naturally, eqn
(11f) simplies back to eqn (11g) at Q ¼ 180�, which is
a reasonable boundary condition for eqn (11f). Another
boundary condition of eqn (11f) is that at Q ¼ 0� the expression
in parenthesis of eqn (11f) becomes nil, and so the chemical
potential of components in a perfectly wetting nano-droplet
becomes identical to the bulk chemical potential of the same
component (mi(l,sessile) ¼ mbi(l)). It means that the solid slab
perfectly wetted by the nano-droplet perfectly stabilizes the
nano-droplet (as much as if it was a macro-phase).

Comparing eqn (2) and (11f), the following expression is
obtained for parameter z for the nano-sized sessile droplet:
41248 | RSC Adv., 2017, 7, 41241–41253
zsessile-drop ¼ 3

r
$

�
2� 3$cos Qþ cos3 Q

4

�1=3

(11h)

It is important to underline that even in this complex 3-
phase situation the chemical potential is proportional to the
specic surface area of the nano-droplet, although corrected by
a complex expression containing the contact angle.

Now, let us substitute eqn (11h) into eqn (A1b)† to get the
equilibrium vapor pressure of component i above a nano-sized
sessile droplet:

piðsessileÞ ¼ pNi $exp

"
3$Vm;iðlÞ$sl=v

r$R$T
$

�
2� 3$cos Qþ cos3 Q

4

�1=3
#

(11i)

The dimensionless ratio
piðsessileÞ

pNi
is shown in Fig. 1 as func-

tion of the contact angle of the sessile drop on the solid slab. It
shows a steady increase of the vapor pressure above a nano-
sized sessile droplet with increasing its contact angle, which
is a reasonable result. For the sessile drop perfectly wetting the
slab: pi(sessile) ¼ pNi .

5.3.2. The case of liquids conned in long cylindrical nano-
capillaries. Let us consider a porous body with N empty cylin-
drical nano-capillaries of length h and inner radii rcap. Let us
also consider the same amount and shape and size of free-
standing liquid nano-cylinders. Their surface area and volume
are written as:

A ¼ Asv ¼ Alv ¼ N$2$p$rcap$h (12a)

Vl ¼ Vpore ¼ N$p$rcap
2$h (12b)

For long cylinders the specic surface area:

Asp;lv ¼ 2

rcap
(12c)

The total surface Gibbs energy of the free standing liquid
nano-cylinders and that of the porous body with the empty
nano-cylinders is written as:

Gfs ¼ A$(slv + ssv) (12d)

The total surface Gibbs energy of the system with the liquid
fully lling the nano-capillaries in the porous body is written as:

Gatt ¼ A$ssl (12e)

Let us substitute eqn (12a) into eqn (12d) and (e). Further, let
us substitute the resulting equations, together with eqn (12b)
and (c) into eqn (10), taking into account the Young equation
(slv$cos Q ¼ ssv � ssl). Finally, the chemical potential of
a component in a liquid, conned within long nano-capillaries
of radius rcap follows as:
This journal is © The Royal Society of Chemistry 2017
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Fig. 1 The dimensionless ratio of the equilibrium vapor pressure above the nano-sized liquid sessile droplet to the equilibrium vapor pressure
above a large droplet as function of its contact angle on a large solid slab (the value at Q ¼ 180� corresponds also to the free standing droplet;
parameters: Vm,i(l) ¼ 18 cm3 mol�1, sl/v ¼ 72 mN m�1, r ¼ 2 nm, T ¼ 300 K).
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miðl-capillaryÞ ymb
iðlÞ �

2

rcap
$Vm;iðlÞ$slv$cos Q (12f)

From the comparison of eqn (2) and (12f) the expression for
parameter z is obtained as:

zl-capillary y � 2$cos Q

rcap
(12g)

Let us mention that the expression 2/rcap in eqn (12g) is the
specic surface area of the nano-capillary (see eqn (12c)). Thus,
even in this complex 3-phase situation the chemical potential is
proportional to the specic surface area of the cylindrical
capillaries, although corrected by a complex expression con-
taining the contact angle. Let us also mention that eqn (12g) is
the same as eqn (6f), which followed from the Kelvin equation.
Thus, the Kelvin paradigm and the new paradigm provide
identical results for some of the problems. It is good news for
a new paradigm, as in this particular case the validity of the
Kelvin equation was experimentally validated.72–76 This coinci-
dence is due to the fact that the curvature of the sphere and the
specic surface area of the cylindrical wall is described by the
same expression 2/r (if r denotes both the radius of the sphere
and the radius of the cylinder).

Now, let us substitute eqn (12g) into eqn (A1b)† to get the
equilibrium vapor pressure of component i above a liquid,
conned within long nano-capillaries:

piðcapillaryÞ y pNi $exp

�
� 2$Vm;iðlÞ$sl=v

rcap$R$T
$cos Q

�
(12h)

The dimensionless ratio
piðcapillaryÞ

pNi
is shown in Fig. 2 as

function of the contact angle. It shows the stabilization of the
liquid within well wetted capillaries (Q < 90�) and de-
This journal is © The Royal Society of Chemistry 2017
stabilization of the liquid within poorly wetted capillaries
(Q > 90�). The behavior of the liquid within neutrally wetted
capillaries (Q ¼ 90�) is the same as that of the macro-liquid.
Fig. 2 is in agreement with the well-known experimental
fact that capillary condensation takes place only at Q < 90�.
Eqn (12h) and Fig. 2 are identical to the results obtainable
using the Kelvin paradigm, at least, if coefficient 2 of eqn
(12h) is not corrected to coefficient 1, as explained in ref. 39
and 43. This coincidence is due again to the fact that the
curvature of the sphere and the specic surface area of the
cylindrical wall is described by the same expression 2/r (if r
denotes both the radius of the sphere and the radius of the
cylinder).

5.3.3. The case of a liquid in vicinity of a nano-bubble.
Now, let us consider two, identical cylindrical capillaries in
a vapor phase. Suppose that a perfectly wetting (Q ¼ 0�) liquid
condensates into these capillaries and the menisci of the
condensed liquid reach the ends of the capillaries. If these
two capillaries are turned towards each other, a spherical
nano-bubble is formed between the two liquid nano-
cylinders. The radius rbub of this nano-bubble will be the
same as that of the inner radius of the capillary. The equi-
librium vapor pressure within this spherical nano-bubble can
be written by eqn (12h) if Q ¼ 0� and if rcap ¼ rbub are
substituted into it:

piðcapillaryÞ y pNi $exp

�
� 2$Vm;iðlÞ$sl=v

rbub$R$T

�
(13a)

If eqn (13a) is coupled with eqn (A1b),† parameter z can be
obtained for the liquid phase in the vicinity of the nano-bubble
as:

zl-bubble ¼ � 2

rbub
(13b)
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Fig. 2 The dimensionless ratio of the equilibrium vapor pressure above the liquid confined in long, cylindrical capillaries to the equilibrium vapor
pressure above a large droplet as function of its contact angle on inner walls of the capillaries (the value at Q ¼ 0� corresponds also to the nano-
bubble of the same radius as the capillary; parameters: Vm,i(l) ¼ 18 cm3 mol�1, sl/v ¼ 72 mN m�1, rcap ¼ 2 nm, T ¼ 300 K).

RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
A

ug
us

t 2
01

7.
 D

ow
nl

oa
de

d 
on

 7
/2

8/
20

25
 8

:5
2:

34
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
Although this result is derived from the new paradigm, it is in
full agreement with the Kelvin paradigm.34,43 Again, this coin-
cidence is due to the fact that the curvature of the sphere and
the specic surface area of the cylindrical wall is described by
the same expression 2/r (if r denotes both the radius of the
sphere and the radius of the cylinder).
6. Discussion

The most important result of this paper is that the new para-
digm (¼the nano-effect is due to the increased specic surface
area of the nano-phase) is extended to multi-component nano-
solutions and also to multi-phase situations including nano-
phases. The new paradigm is found applicable and successful
in all cases, where the Kelvin paradigm (¼the nano-effect is due
to the increased curvature of the nano-phase) was applicable
and successful. However, the new paradigm is successful also in
areas, where the Kelvin paradigm provided a practical failure (or
when it was pushed to draw articial inscribed spheres): this is
the equilibrium of nano-crystals and thin lms. Moreover, the
new paradigm is free of those contradictions (see above), which
lead to the criticism of the Kelvin paradigm.

Summarizing the above, the present author thinks that the
new paradigm is ready to replace the Kelvin paradigm. This
paradigm shi, however, will not happen by the publication of
this paper. Many further discussions are ahead before the
community can accept or reject this new paradigm.86
7. Conclusions

1. The chemical potential of component i in a nano-phase a is
generally written as:

mi(a) ¼ mbi(a) + z$Vm,i(a)$sa/b (2)
41250 | RSC Adv., 2017, 7, 41241–41253
2. The molar Gibbs energy of a nano-phase a is generally
written as:

Gm,a ¼ Gb
m,a + z$Vm,a$sa/b (3b)

3. Following Kelvin, parameter z of eqn (2) and (3b) is derived
as the curvature of the nano-phase, using the Laplace pressure.
This result is found wrong for many different reasons (see
above). Thus, the Kelvin paradigm should be replaced by a new
paradigm.

4. The application of the formal denition of chemical
potential under proper constraints does not lead to a meaning-
ful result in this case, as the constancy of the surface area (as
a new state parameter for nano-phases) should be guaranteed
when the derivative of the Gibbs energy is taken as function of
the amount of matter of the component in question.

5. Parameter z of eqn (2) and (3b) is derived here as the
specic surface area for free standing one-component and
multi-component nano-phases:

z ¼ Asp,a (8g)

6. A general method is developed here to derive equations for
parameter z for nano-phases in multi-phase situations. The
following expression is obtained for a nano-sized sessile drop,
attached to a solid slab with a contact angle of Q:

zsessile-drop ¼ 3

r
$

�
2� 3$cos Qþ cos3 Q

4

�1=3

(11i)

where r is the radius of the free standing spherical nano-drop,
with the volume of the sessile nano-drop being equal to its
volume, 3/r is the specic surface area of the free-standing
nano-droplet. As a second example, the following expression
is obtained for a liquid phase, conned within long cylindrical
capillaries, wetted by the liquid with a contact angle of Q:
This journal is © The Royal Society of Chemistry 2017
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zl-capillary y � 2$cos Q

rcap
(12g)

where rcap is the radius of the cylindrical nano-capillary, 2/rcap
being its specic surface area. As a third example, the following
expression is obtained for a liquid phase in the vicinity of the
nano-bubble of radius rbub:

zl-bubble ¼ � 2

rbub
(13b)

As a result, the chemical potentials of components will be
different within the same nano-phase, if this nano-phase is
surrounded by different phases, i.e. if it is involved in different
multi-phase situations. This is demonstrated here by the
differences in eqn (11i), (12g) and (13b). Eqn (12g) and (13b) are
the same in the framework of the Kelvin paradigm and in the
framework of this new paradigm. This is because te curvature of
a sphere coincides with the specic surface area of a cylinder
wall.

7. Summarizing: the new paradigm states that nano-effects
are due to the increased specic surface areas of the nano-
phases. The new paradigm offers a theoretically coherent
method to describe multi-component and multi-phase equi-
libria of nano-materials in all areas covered and by the Kelvin
paradigm and beyond. Thus, the new paradigm is ready to
replace the Kelvin paradigm.

8. It should be noted that the present model does not take
into account the size-dependence of various physico-chemical
properties of nano-phases, such as the size dependence of
surface tension, etc. These effects should be added to the major
effect connected with specic interfacial area, considered here
in details.
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2 E. Varga, P. Pusztai, A. Oszkó, K. Baán, A. Erd}ohelyi, Z. Kónya
and J. Kiss, Stability and temperature-induced
agglomeration of Rh nanoparticles supported by CeO2,
Langmuir, 2016, 32, 2761–2770.

3 E. Tombacz, R. Turcu, V. Socoliuc and L. Vekas, Magnetic
iron oxide nanoparticles: recent trends in design and
This journal is © The Royal Society of Chemistry 2017
synthesis of magnetoresponsive nanosystems, Biochem.
Biophys. Res. Commun., 2015, 468, 442–453.

4 E. Alber, N. Cotolan, N. Nagy, G. Safran, G. Szabo,
L. M. Muresan and Z. Horvolgyi, Mesoporous silica
coatings with improved corrosion protection properties,
Microporous Mesoporous Mater., 2015, 206, 102–113.

5 Z. Wei, J. H. Yang, J. Zhou, F. Xu, M. Zrinyi, P. H. Dussault,
Y. Osada and Y. M. Chen, Self healing gels based on
constitutional dynamic chemistry and their potential
applications, Chem. Soc. Rev., 2014, 43, 8114–8131.

6 A. Majzik, V. Hornok, N. Varga, R. Tabajdi and I. Dekany,
Functionalized gold nanoparticles for 2-napthol binding
and their uorescence properties, Colloids Surf., A, 2015,
481, 244–251.

7 G. Levai, M. Godzsák, T. I. Török, J. Hakl, V. Takáts, A. Csik,
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