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Mechanical milling of commercial ZnO and SnO, was used to produce a ZnO/SnO, composite with a high
density of surface defects; in particular, zinc interstitials (Zn;) and oxygen vacancies (Vo). To determine the
impact of surface defects on photocatalytic activity, the relative concentration ratio of bulk defects to
surface defects was modified by annealing at 400 and 700 °C. The possible application of the ZnO/SnO,
composite as a natural sunlight and UV-light driven photocatalyst was revealed via de-colorization of
methylene blue. In both cases the ZnO/SnO, composite exhibited enhanced photocatalytic activity as
compared to the pristine ZnO. In order to investigate the origin of the enhancement, the pristine metal
oxides and composites were characterized using a variety of techniques, including X-ray diffraction
(XRD), Raman and Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron
microscopy (FESEM), laser diffraction particle size analysis, Brunauer—Emmett—Teller, UV-Vis diffuse
reflectance and photoluminescence spectroscopy. High-resolution transmission electron microscopy
(HRTEM) and elemental mapping analyses were used to reveal the presence of SnO, nanocrystallites on
the surface of larger ZnO particles. The enhanced photocatalytic activity of the composite can be

attributed to the synergetic effect of the surface defects and the ZnO/SnO, heterojunction particles,
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1. Introduction

Over the past four decades, since Fujishima and Honda re-
ported the photoelectrolysis of water using a TiO, as photo-
anode,' numerous efforts have been made by environmental
and materials scientists to develop highly efficient semi-
conductor photocatalysts for degradation of organic and bio-
logical pollutants in water under light irradiation.>® The main
advantage of photocatalytical disinfection, purification or
remediation of drinking and wastewater is a complete miner-
alization of pollutants to inorganic salts, water and carbon
dioxide, without any trace of secondary pollution.* Metal oxides
such as ZnO, TiO,, Sn0,, Fe,03, V,0s, and so on, are recognized
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under illumination of either UV or sunlight.

as useful materials to initiate photoreaction due to their high
photoactivity and photostability, good chemical and biological
inertness, inexpensiveness and easy production.*® Due to the
wide band gap energy, in the range of 3.3-3.6 eV, these metal
oxides can be activated by UV light only, while they are non-
efficient under visible range of sunlight or indoor light irradi-
ation.®” According to the World Meteorological Organization,
the outer atmosphere of the Earth receives approximately
1367 W m > of insolation,® promoting sunlight as a renewable,
free and clean energy source. Solar irradiation which comes to
the Earth is spread over ultraviolet, visible and infrared
frequency range, where UV-light makes no more than 3-5%,
while visible light makes about 45% of the total amount. Thus,
to use solar energy for initiating of photocatalytic or photo-
electrolytic reaction it is necessary to modify the metal oxides to
be photo-active under visible light irradiation or to increase
activity under UV light.® To modify the optical absorption and to
improve the sunlight photonic activity of the metal oxides
different approaches have been developed, such as: the incor-
poration of transition metal ions into the crystal structure,
sensitization of the particles’ surface, hydrogenation, the
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incorporation of crystalline defects in metal oxide semi-
conductors in the form of vacancies and interstitials, etc.'***
Mechanical activation is recognized as an attractive approach to
introduce point defects on a surface or into the crystal structure
of metal oxides,'> consequently improving the visible light
absorption. However, a wide practical application of photo-
catalysts, even with enhanced visible light absorption, is
hindered by the fast recombination of the photogenerated
electron-hole pairs.’*'” It has been revealed that the recombi-
nation of photogenerated electron-hole can be efficiently
reduced by application of a heterojunction structure;'® where
the heterojunction structure represents combination of at least
two semiconductors with different band gap energies, enabling
a better charge separation. Heterojunction composites such as
Zn0O/Sn0,, TiO,/Sn0O,, ZnO/Ti0,/Sn0O,, SnO,/Fe,0;, etc., have
been developed, showing improved photocatalytic efficiency.”

A number of studies have confirmed that ZnO/SnO, nano-
structured composites exhibit improved photocatalytic activity,
high conversion efficiency of solar cell, gas sensing and electric
properties, due to the formation of nano-heterojunctions.*>*
Many ZnO/SnO, heterojunctions can be easily formed in
composites during a synthesis procedure due to similar crystal
growth habit of ZnO and SnO,." Besides better charge separa-
tion and reduced number of exciton recombination, the
substitution of Zn** ions for Sn*" would results in surface
modification and formation of more oxygen vacancies in order
to compensate the positive charge.

ZnO/Sn0O, photocatalysts have been synthesized by various
techniques: hydrothermally,"”**** solvothermally,” by co-
precipitation,” by sol-gel procedure,” mechanochemically,*
etc. Moreover, core-shell ZnO/SnO, nanoneedle particles were
prepared by two-step procedure, including hydrothermal pro-
cessing and a coating.” It have been shown that the photo-
catalytic properties of ZnO/SnO, composites are highly related
to the particle size and shape, crystal structure, proportions
between the metal oxides and so on.

Most of methods for synthesis of ZnO/SnO, composites
include chemical reactions, often requiring very stringent
control in various processing parameters, followed by annealing
at elevated temperatures, together with a low production yield.
The goal of our research was large-scale preparation of photo-
catalysts highly reactive under illumination of both UV and
sunlight. We choose to modify commercial zinc oxide powder
due to its band gap at the edge of ultraviolet part of the spec-
trum and high potential to be red-shifted, enabling use of
a broader spectrum of sunlight. A mechanical milling was
employed for processing of the photocatalyst particles since it
enables introduction of surface defects which could promote
red-shift of the band gap, what's more, surface defects could
reduce the recombination of photogenerated electrons and
holes. Small amount of commercial SnO, powder (17 wt%) was
added to the ZnO powder to form ZnO/SnO, composite with
heterojunction particles, thereby to more delay the recombi-
nation of photogenerated carriers through efficient charge
separation based on different band gap energies. Here we report
results of a systematical study of structural, morphological,
textural and optical properties of the commercial ZnO and SnO,
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powders as the ingredients, and composite made of them via
simple mechanical milling. The photocatalytic activity of the
samples was revealed through de-colorization of methylene
blue under illumination of: (1) natural sunlight, and (2) UV
lamp. The origin of the photocatalytic activity was discussed.

2. Experimental

2.1. Synthesis of ZnO/SnO, photocatalysts

ZnO/Sn0, composite was prepared by high-energy ball milling
of commercial metal oxide powders. Analytically grade ZnO
(99%, Sigma-Aldrich) and SnO, (>99%, Kemika, Zagreb)
powders in a 0.9:0.1 molar ratio (83 wt% :17 wt%) were
mechanically treated during 2 h in planetary ball mill (Across
International PQ-NO4) with stainless steel vessels (100 ml) and
balls (& 5 mm). The balls to powder weight ratio was 10 : 1. The
angular velocity of the vessels was 400 rpm. To prevent reag-
glomeration of broken oxide particles during processing, high-
energy milling was done in an inert NaCl matrix resulting in the
formation of a composite powder consisting of oxide grains
embedded within a salt matrix. To remove the NaCl matrix, the
obtained powder was rinsed five times with distilled water and
subsequently two times with absolute ethanol; each time
suspension was centrifuged at 5000 rpm for 5 min. The rinsed
powder was air dried in an oven at 60 °C for 24 h.

In order to vary the relative concentration ratio of bulk
defects to surface defects, ZnO/SnO, composite was annealed at
400 and 700 °C. Annealing was done in a tube furnace in an air
atmosphere, with a heating rate of 10° min~"' and a dwell time
of 2 h. The annealing temperatures were chosen from a ther-
mogravimetric and differential thermal analysis (TG-DTA) of
ZnO/Sn0O, composite. The analysis was determined by simul-
taneous TG-DTA (Setsys, SETARAM Instrumentation, Caluire,
France) in the temperature range between 25 and 1000 °C under
the air flow of 20 ml min~", in an Al,0; pan. The heating profile
was set as follows: the material was stabilized at 25 °C for 5 min
then heated to 1000 °C with the heating rate of 10° min~".

Throughout this paper, the synthesized photocatalysts are
designated as ma-ZnO/SnO,, ZnO/Sn0,-400 and ZnO/Sn0,-700,
where “ma” denotes a process of the mechanical activation,
while the numbers denote the annealing temperatures, 400 and
700 °C, respectively.

2.2. Characterization

X-ray diffraction (XRD) data were recorded on a Philips PW-1050
operated at 40 kV and 20 mA with Cu Ko, , radiation. The data
were collected over a 20 range 10-70° with a step of 0.05° and
a counting time of 5 s per step. The crystal phases were iden-
tified by comparing the recorded data with those reported in the
Joint Committee of Powder Diffraction Standards (JCPDS)
database. The unit cell parameters were calculated through La
Bail refinement using Topas academic software.” The crystallite
sizes (D) were calculated from the XRD line-broadening using
the Scherrer equation D = KA/@,, cos §, where K is the shape
coefficient and is equal to 0.89; A is the wavelength of X-ray
radiation (1.54178 A); By, is the full width at half maximum

This journal is © The Royal Society of Chemistry 2017
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(FWHM) for the XRD reflection, while § is the diffraction angle
(°).>**” Fourier transform infrared (FT-IR) spectra were recorded
on a Thermo Scientific™ Nicolet™ iS™10 FT-IR Spectrometer
equipped with attenuated total reflectance (ATR) accessory. The
ATR/FT-IR measurements were done in the wavenumber region
of 400-2000 cm™!, with a resolution of 4 cm™'. The room-
temperature Raman spectra were taken in the backscattering
geometry using a p-Raman system with a Jobin Yvon T64000
triple monochromator, equipped with a liquid nitrogen-cooled
CCD detector. The excitation was done by the 514.5 nm line
of an Ar-ion laser. The spectra were recorded in the wavenumber
interval of 80-1200 cm™ ' with a resolution of 4 cm™'. The
morphology of composite particles was observed by field
emission scanning electron microscopy (FESEM, Ultra plus,
Carl Zeiss, Germany). The samples for the FESEM analysis were
dispersed in ethanol, in ultrasonic bath, for 5 min; after
dispersion a few drops were filtered through a polycarbonate
membrane. The membrane was put on the carbon tape on the
aluminum stub and carbon-coated in order to prevent electron
charging. Before analysis the sample was vacuumed for 15 min.
Particle size and morphology were investigated using trans-
mission electron microscopy (TEM, JEOL 2100); elemental
mapping was performed by EDXS analysis (JEOL ARM 200CF
equipped with JEOL centurion 100). The specific surface area
(SSA) and the porous properties of the photocatalysts were
determined based on N, adsorption-desorption isotherm at
—195.8 °C using ASAP 2020 (Micromeritics Instrument Corpo-
ration, Norcross, GA, USA). Samples were degassed under
reduced pressure for 10 h at 120 °C prior to analysis. The SSA
was calculated according to the Brunauer-Emmett-Teller (BET)
method from the linear part of the N, adsorption isotherm.*
The total volume of pores (Viora1) Was given at p/p, = 0.998. The
volume of mesopores (Vineso) and pore size distribution were
analyzed according to the Barrett-Joyner-Halenda (BJH)
method from the desorption branch of isotherm.* The volume
of micropores (Viicro) Was calculated from alpha-S plot. Parti-
cles size distribution in water suspensions was determined by
laser light-scattering particle size analyzer (PSA) (Mastersizer
2000; Malvern Instruments Ltd., Malvern, Worchestershire,
U.K.). Prior to measurements the powders were dispersed in
distilled water, using a low-intensity ultrasonic bath, for 5 min.
The UV-Vis diffuse reflectance spectra (DRS) were recorded in
the wavelength range 300-800 nm on an Evolution 600 UV-Vis
spectrophotometer (Thermo Scientific), equipped with DRA-
EV-600 Diffuse Reflectance Accessory. Measurements were
done on pellets (& 6 mm, 7 ~ 1 mm) prepared by pressing the
powders (without any additives) by P = 300 MPa. The reflectance
spectra were measured relative to BaSO, as a reference sample.
Photoluminescence (PL) spectra were recorded on Horiba Jobin
Yvon Fluorolog FL3-22 spectrofluorometer using Xe lamp exci-
tation (wavelength 325 nm).

2.3. Photocatalytic activity tests

The photocatalytic activity of the samples was studied by the de-
colorization of methylene blue dye (MB, a cationic dye with
chemical formula C;¢H;5CIN;S-3H,0; MB shows an intense

This journal is © The Royal Society of Chemistry 2017
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absorption peak at 665 nm). Stock solution of 1000 ppm was
prepared by dissolving 1.0 g of methylene blue (Methylen blay B
extra, E. Merck, Darmstadt, Germany) in 1 | of distilled water.
The MB solutions for photocatalytic activity experiments were
prepared by diluting the stock solutions to the appropriate
concentration.

In each of the experiments 100 mg of a powder was mixed
with 100 ml of MB (10 ppm). Prior to illumination, the
suspension was magnetically stirred for 1 h in a dark to estab-
lish an adsorption-desorption equilibrium. After the equilib-
rium had been established the concentration of MB was
measured and taken as the initial concentration C,. During the
illumination stirring was maintained to keep the mixture in
suspension. At specific time intervals 3 ml of aliquots was
withdrawn and centrifuged (8000 rpm, 10 min) to remove
particles from solution before the absorbance measurement.
The concentrations of the solutions were monitored by using
a GBC Cintra UV-Vis spectrophotometer in the wavelength
range of 300-800 nm; concentration of the MB was calculated
according to the absorbance value at 665 nm.

The photocatalytic activity of the ingredients and ZnO/SnO,
composites were tested under illumination of: (a) UV lamp
(medium-pressure mercury vapor UV lamp, UVA region, Philips,
4 x 15 W), and (b) direct sunlight. The intensity of used UV light
was 7 mW cm 2, as measured by YK-35UV light meter. All the
experiments under direct sunlight illumination were done in
time between 11:00 a.m. and 2:00 p.m. during the month of July
2015 and at ambient temperature (25 to 30 °C).

Photocatalytic activity was also examined for the degradation
of the pollutant that has no absorption in the visible range. The
photocatalytic test was done on ma-ZnO/SnO, for the degrada-
tion of phenol (C¢HgO, Alpha Aesar, Karlsruhe, Germany) under
direct sunlight illumination. The experimental conditions were
the same as for the de-colorization of MB; 100 mg of the powder
was mixed with 100 ml of phenol (10 ppm). The phenol
concentration during degradation was monitored by the UV-Vis
spectrophotometer in the wavelength range of 200-400 nm, and
afterwards, calculated according to the maximum absorbance
value at 210.5 nm. The total organic carbon (TOC) was deter-
mined by the TOC Analyser Multi N/C (Analytik Jena, Austria).

3. Results and discussion

A thermal stability of ma-ZnO/SnO, composite was investigated
by the TG-DTA analysis. The TG curve presented in Fig. 1 shows
neglected weight loss of about 0.5% in the temperature range
from 25 to 260 °C, probably due to a small amount of surface
water, ethanol and adsorbed gasses remained after the
synthesis procedure. In the temperature range from 260 to
about 900 °C a continuous weight gain exists accompanied with
a wide exothermic peak in DTA curve. The total weight increase
of about 5% is probably due to the solid state reaction between
ZnO and SnO, and formation of a new phase.

The TG-DTA results point to a high thermal stability of ma-
ZnO/Sn0O, composite up to 400 °C. A considerable thermal
stability of photocatalysts, without decomposition or phase
transition, is highly desirable since allows their extensive

RSC Aadv., 2017, 7, 42725-42737 | 42727
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Fig. 1 TG-DTA plots of ma-ZnO/SnO, composite photocatalysts.

application. Besides, thermal stability is significant for photo-
catalysts recovery procedure, usually done by drying in an oven
at 110 °C.>>

It is known that an annealing of ZnO/SnO, composites can
considerably affect photocatalytic activity, mostly through point
defect reparation and/or creation,******* whereby the annealing
temperature has a large impact. Having in mind results of the
TG-DTA analysis we chose to anneal ma-ZnO/SnO, composite at
two different temperatures: at 400 °C, since up to this temper-
ature adsorbed moisture and gasses will be desorbed while
solid state reaction will not be started; and at 700 °C, as the
temperature at which solid state reaction take place and is not
completed.

XRD patterns presented in Fig. 2(a) indicate a high crystal-
linity of all examined samples. All the diffraction peaks in the
pattern of pristine ZnO can be indexed to wurtzite-type structure
with hexagonal phase (P6;mc space group; JCPDS no. 89-0510),
while the diffraction peaks in pattern of pristine SnO, belong to
cassiterite with tetragonal phase (P4,/mnm space group; JCPDS
no. 88-0287). Composite powder ma-ZnO/Sn0O, is consisted of
hexagonal ZnO and tetragonal SnO, phases, without any other
crystal phases. Since there is no reflection of any iron based
phases, it can be confirmed that contamination from milling
media is below the detection limit of the XRD technique.
According to the XRD pattern, the ZnO/Sn0O,-400 composite has
the same phase composition as ma-ZnO/SnO,. However, in the
XRD pattern of the ZnO/Sn0O,-700 composite several additional
reflections appeared, indicating the existence of an additional
phase. To more precise identify a new phase, broad band
composed of (310) and (103) reflections (belonging to SnO, and
ZnO, respectively) of ZnO/Sn0,-700 were examined by a decon-
volution; Fig. 2(b) shows the expanded and deconvoluted region
between 61 and 64 26 angles. After the deconvolution, a new
reflection at 62.5 26 angle can be clearly seen. It is find that all
the additional reflections (marked by a purple circle in Fig. 2(a)),
including one at 62.5 26 angle, belong to Zn,SnO, (JCPDS no.
74-2184). The development of the Zn,SnO, phase correlates
with the weight gain and a large exothermic peak as observed by
TG-DTA.
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It is observed that addition of the SnO, and increases of the
annealing temperature provoke a slight shift of ZnO diffraction
peaks toward the higher 26 angles; in Fig. 2(c) shift of the (101)
peak is shown as an illustrative example. The shift of diffraction
peaks toward the higher 26 angles is caused by a decrease of the
interplanar spacing, i.e. by a reduction of the lattice parameters
(see Table 1). In the cases of ZnO/Sn0,-400 and ZnO/SnO,-700
decrease of the interplanar spacing may result from interfacial
substitution of zinc sites in ZnO, with a crystal radius of Zn*" in
coordination IV equal to 0.74 A,* by Sn*", with a crystal radius
in coordination IV equal to 0.69 A,* that were diffused from
SnO, during the annealing process. This process yields a small
quantity of Zn,Sn0O,.

The refined unit cell parameters for all the examined
powders are listed in Table 1. It should be stressed that
parameters for pristine ZnO and SnO, powders are in good
agreement with those reported in corresponding JCPDS cards
(89-0510 and 88-0287, respectively). The refined unit cell
parameters shows that mechanical milling slightly reduces ZnO
crystal lattice, while crystal lattice of SnO, stay stable. Addi-
tional annealing provokes further reduction of ZnO crystal
lattice and trigger shrinkage of tin oxide unit cell, too. The
calculated values of crystallite sizes in specific crystallographic
directions ([100] and [002] for ZnO, and [110] and [101] for SnO,)
and average crystallite size are listed in Table 1. The results
implicate a slight decrease of zinc oxide average crystallite size
after 2 h of mechanical activation, retaining of that size during
annealing at 400 °C, and promoted growth at 700 °C.

As a complementary to the XRD, ATR/FT-IR and Raman
spectroscopy studies were used for an analysis of the photo-
catalysts crystal structure and to determine effects of the
mechanical milling and the annealing.
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Fig. 2 (a) XRD patterns of pristine metal oxides and photocatalysts

particles, (b) expanded and deconvoluted 61 to 64° 26 region of ZnO/
Sn0O,-700, () shifting of the (101) reflection of ZnO, and (d) ATR/FT-IR
spectra of pristine metal oxides and photocatalysts particles.

This journal is © The Royal Society of Chemistry 2017


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7ra06895f

Open Access Article. Published on 04 September 2017. Downloaded on 1/22/2026 1:41:36 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

View Article Online

RSC Advances

Table 1 The values of average crystallite size, crystallite sizes in specific crystallographic directions, and the unit cell parameters with standard

deviations
Unit cell parameters
ZnO (nm) SnO, (nm) A)
Sample Dyzno (nm) Dsno, (nm) Dznsno, (NM)  Deomposite (NM) — [100]  [002]  [110]  [101] a=bh c
ZnO 39.14 £ 2.09 — — — 42.13 46.66 — — 3.2477(4) 5.2044(2)
Sno, — 34.94 £ 3.09 — — — — 35.75 39.87 4.7353(5) 3.1867(4)
ma-ZnO/SnO, 36.74 £ 2.15 36.11 £ 4.59 — 36.40 £ 2.56 37.89 43.45 48.21 45.00 3.2470(6)" 5.2037(3)
4.7354(7)°  3.1867(3)
Zn0O/Sn0,-400 36.43 £ 2.31 35.22 £ 2.59 — 35.74 £1.73 40.85 43.52 41.40 44.64 3.2468(1 ) 5.1979(4)
4.7353(2)°  3.1864(3)
Zn0O/Sn0,-700 44.33 £ 3.67 40.12 £ 3.58 14.87 £ 3.30 37.23 £3.49 43.32 42.96 42.65 46.05 3.2437(3) 5.1901(2)
4.7347(5)°  3.1860(4)

@ Data for ZnO fraction. ” Data for SnO, fraction.

According to the group theory predictions hexagonal ZnO
crystals with wurtzite crystal structure and Ce,* symmetry have
eight sets of phonon normal modes at the I' point, represented
as I’ = 2A; + 2E; + 2B; + 2E,. Among them, one set of A; and E;
modes are acoustic, while the remaining ones are optical
modes, to be precise, I'o,e = Ay + 2By + E; + 2E,. The A; and E,
are both Raman and infrared active, E, is Raman active only,
whereas B; is inactive i.e. silent mode. Moreover, the A; and E,
modes are polar and split into transverse optical (TO) and
longitudinal optical (LO) components. The E, mode is consisted
of two modes, of low and high frequency phonons (EX™ and

ESi#"), associated with the vibration of the heavy ZnO sublattice
and oxygen atoms, respectively. Tetragonal SnO, with rutile
crystal structure and D,,** symmetry has eleven sets of phonon
normal modes represented by I' = 1A, + 1Ay, + 1A, + 1By +
1B,, + 2By, + 1E, + 3E,. Among these phonons A4y, By, By, and
E, are Raman active, while A,, and E, are infrared active
modes.>*>*

The ATR/FT-IR spectra of investigated samples are shown in
Fig. 2(d). The main characteristic in the spectrum of ZnO
particles is peak in the region from 400 to 600 cm ™", attributed
to Zn-O vibrations in ZnO lattice.*® The spectrum of SnO, shows
a broad band between 400 and 760 cm ™ * attributed to E, mode
of anti-symmetric Sn-O stretching vibrations.>** The mathe-
matical deconvolution of this broad band yields three Gaussian
peaks centered at 491.5, 603 and 675 cm™*; this result is in
accordance with the group theory which predict triple degen-
erative E, mode. The spectrum of ma-ZnO/SnO, shows two
main band, first one is in the region from 400 to 600 cm ™" due
to Zn-O vibrations and second one in the range 580-750 cm ™"
attributed to Sn-O stretching vibrations. It is worth to note that
mechanical milling of ZnO/SnO, mixture leads to almost
180 cm ™' blue shift of E, mode. Previously have been shown
that a blue shift of E,, mode occurs when tin oxide particles are
reduced;**** in the case of ma-ZnO/SnO, sample this statement
is further confirmed by FESEM analysis, results are discussed
later in the text. Furthermore, small band which arouses near
1100 cm ™' (indicated by triangle) is due to C-O stretching
vibrations from CO, adsorbed at the particles surface. The
spectrum of ZnO/Sn0,-400 is almost the identical as ma-ZnO/

This journal is © The Royal Society of Chemistry 2017

SnO, one, actually, without C-O vibrations since particles have
been degassed during annealing at 400 °C. New small and sharp
peak at 614 cm ™' (indicated by asterisk) appears in the spec-
trum of ZnO/Sn0,-700; it belongs to E, mode which is assigned
to the surface phonons, thus, any change of the band implicates
modifications of the surface structure.®* In this case, during
annealing at 700 °C interfacial cations diffuse producing the
defects on the particles surface, also modifying the local
symmetry in the crystal. Certainly, the band at 614 cm™" can be
indication of Zn-O-Sn vibrations, confirming the development
of Zn,Sn0,.

Fig. 3 shows Raman spectra of the pristine metal oxides and
the composites. The vibrational modes in spectrum of ZnO are
assigned as: an intensive peak near 100 cm ™" is ascribed to the
vibrations of the zinc sublattice in ZnO;*”*® the peak around
200 cm ! is due deformation mode, while the peaks at 330 and
379 em ™! are due to the second-order vibration mode E,;-E,;.
and the transverse-optical mode A, (TO), respectively.’® A sharp
and intensive peak near 440 cm ™! is due to E,y mode which is

| Y

vl "
L"‘"“‘-“P- WWWW\..\WJM'Wf S—————

ZnO/Sn0,-700

= | § | Zn0/Sn0,-400
© .
< ‘|'*Mwwuwwwwmww\\w‘ﬂwm“"”"" LETTrT e .
o .
k) o
e | . : .| ma-Zn0/Sn0,
Qo (4, Lo Dl
et " ikl r: KU, N o A
£ S 8o
i : N e
“ﬁ 88 ;g K S0,
*.»- -«m.wumwmmnrw N — ‘W- nd bbestnp st oyt i
J < ;l o | Zno
I,‘ g 53 2 h g b
'hwww»vaw"’”' Sl Ay wnww.mu-www""“m
200 400 600 800 1000 1200

Raman shift (cm"ﬂ)

Fig. 3 Raman spectra of pristine metal oxides and photocatalysts
particles.
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related to vibration of oxygen attached to zinc atoms in the
tetrahedral coordination.*® The strong E,;; mode indicates high
crystallinity which is in good correlation with the XRD data for
the pristine ZnO powder. The peak at 590 is attributed to A; (LO)
and E; (LO) modes, while peak at 657 cm ™" represents combi-
nation of acoustic and optical modes (TA + LO). These two peaks
revealed the existence of lattice defects, in particular, oxygen
vacancies and zinc interstitials.*® It is known that longitudinal
optical modes A; (LO) and E; (LO) are evident only when the
c-axis of the wurtzite crystal structure is parallel to the particles
surface.* Existence of these peaks in Raman spectra of pristine
ZnO implicate to rod-shaped particles (this statement is
confirmed by FESEM analysis, results are discussed later in the
text). Wide band in wavenumber region 1090-1150 cm™ "' is
attributed to optical overtone 2LO, actually to 2A,; (LO) and 2E,
(LO). The Raman spectrum of tin oxide particles shows the
peaks centered at 474, 633, and 776 cm™ ' which are ascribed to
the Eg, Aq4, and B,; modes of SnO,, respectively. Peaks at 474,
631 and 776 cm ™" are related to the expansion and contraction
vibration modes of Sn-O bonds in the rutile crystal structure.**
Peaks at 498 and 689 cm ™' belong to infrared-active modes A,
(TO) and A,, (LO), respectively. As it is indicated above, A,
mode is assigned to the surface phonons; obviously for pristine
SnO, sample used in this work the surface atoms represent
a significant fraction of atoms.

As can be seen from the Raman spectrum of ma-ZnO/SnO,,
the peaks of the SnO, phase are dominant while those of the
ZnO significantly decrease after mechanical milling. This
decrease of ZnO peaks intensities is due to the reduction of the
zinc oxide crystallinity, related with a large amount of surface
defects introduced by mechanical milling.*® Vanishing of the tin
oxide peak at 776 cm ™" in the Raman spectra of the composites
is due to significant decreases of SnO, particles sizes after

e s

[ Znoisno,
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milling (this assumption is further confirmed with results of
FESEM and HRTEM analyses). Besides, the tin oxide peak at
663 cm™ " slightly increases and becomes broader in the spectra
of annealed composites as compared to spectrum of ma-ZnO/
SnO,. This can be attributed to the high-temperature induced
substitution of tin cations into the ZnO structure and formation
of a small amount of Zn,Sn0,.** In order to compensate positive
charge, the substitution of Zn>" for Sn** ions would be accom-
panied by formation of more Vo; that is confirmed in the
spectrum of ZnO/Sn0,-700 composites, where the intensity and
width of the peaks at 330 and 657 cm ™' increases pointing to
increase of Vg, and Zn; lattice defects. Thus, evolution of peaks
in Raman spectra of ZnO/SnO, composites confirmed that the
relative concentration ratio of bulk defects to surface defects is
strongly influenced by processing approach.

Effects of the mechanical milling and successive annealing
on particles morphology, size distribution and texture proper-
ties were analyzed by scanning electron microscopy, particle
size analyzer and nitrogen adsorption-desorption isotherm,
respectively.

FESEM images of pristine metal oxides and prepared pho-
tocatalysts particles are shown in Fig. 4. As can be seen the
pristine ZnO particles are mainly consisted of irregular hexag-
onal rod-shapes with a smooth crystal facets; their average
diameter is about 95 nm while the average length is about
180 nm. The pristine SnO, powder is consisted of coarse
polygonal grains, with average size of about 600 nm, which are
organized in agglomerates of about 2 pm sizes. After 2 h of
milling significant reduction of ZnO particles or a change of
their shape are not observed. It can be noticed that after milling
surface of ZnO crystals is no more flat but is covered with
a small spheroidal particles of tin oxide. Thus, during the
milling soft agglomerates of SnO, particles are broken;
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Fig. 4 FESEM images of pristine metal oxides and photocatalysts particles; particle size distribution (based on volume and on number) deter-

mined by laser diffraction from water suspensions (bottom-right).
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furthermore, primary particles are considerably reduced. The
average particle size of ma-ZnO/SnO, composite is estimated
from the recorded micrograph by measuring the largest
dimension of more than 300 particles; a particle size distribu-
tion is given as the micrograph inset. It should be highlighted
that in this case computing program (SemAfore digital slow
scan image recording system, version 5.21 demoj; JEOL, Tokyo,
Japan) is used for estimation of the particle size distribution
since it allows distinguishing of ZnO and SnO, fractions in the
mixture. The average particle size of ma-ZnO/SnO, composite is
about 83 nm, among them ZnO crystals are ~122 nm in average,
while the mean size of SnO, particles is ~21 nm. According to
the micrographs it can be concluded that further annealing
have no significant influence on average particle size.

The BET results of the specific surface area and pore struc-
ture of examined samples are depicted in Table 2. BET surface
area of pristine ZnO is 5.75 m> g~ '; total volume of pores is
0.0163 cm® g~ with more than 90% of mesopores with diam-
eter between 2 and 50 nm. The BET results show that pristine
SnO, powder is not porous and have low surface area, these
values are too small to be measured with very sensitive equip-
ment used for characterization. The BET surface area of ma-
Zn0/Sn0, composite is 6.55 m> g~ !, while the total volume of
pores is 0.0229 cm® g~ '; both values were slightly higher as
compared to pristine metal oxides, implicating profound effects
of mechanical treatment especially on commercial SnO,
powder. Annealing at 400 and 700 °C has neglected influence on
texture properties of the composite.

The particles size distributions and characteristics parame-
ters, based on volume and number, determined by a laser
diffraction scattering, are presented in the right-bottom part of
the Fig. 4. The distribution results based on volume show that
average particle sizes of pristine ZnO and SnO, in water
dispersion are 0.85 and 10.96 um, respectively. Obviously the
milling has not significant effects on ZnO particles but a total
effect is profound since SnO, agglomerates have been broken.
Actually, the most important effect of milling is on tin oxide
dy(0.9) which falls from 24.7 to 5.2 pm. Further annealing
slightly increase particle sizes, because particles start to over-
connect through sintering procedure. While the distribution
over volume describe large particles those occupy a small
amount of the sample, the insight in the statistically predomi-
nant particles is given by distribution over number.
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The distribution over number shows similar trend as the
volume one; particles have a high degree of uniformity and
a relatively narrow span values. Besides, PSD shows that parti-
cles are in the range between 150 (for dy(0.1)) and 680 nm (for
dn(0.9)). Since the purpose of this photocatalysts is their usage
in water environment, for purification, decolorization, elec-
trolysis, etc., it is very important to separate them from water
after usage, either for the sake of recycling or to prevent further
water contamination. Thus, dn(0.1), which describes the
smallest particles of the photocatalysts in water dispersion, is
an important characteristics which determine the way of their
separation. In this case, catalysts can be removed from the
liquid phase by filtration through a (cellulose acetate, nylon,
etc.) membrane with pore size of 0.10 pm.

TEM and HRTEM images presented in Fig. 5 provide direct
information about size and shape of the composite particles
after annealing at 400 and 700 °C. As it is clearly illustrated at
low magnified TEM images (Fig. 5, left), both samples are
mainly composed of elongated ZnO grains with longer edge of
about 200 nm (sporadically grains with 500 nm length are
observed) and much smaller nanosized grains of SnO,. While
nanosized SnO, grains are present in the form of loosely con-
nected agglomerates in ZnO/Sn0,-700 sample, Fig. 5(b), their
presence in ZnO/Sn0,-400 sample is revealed at the surface of
the ZnO grains in the HRTEM image, Fig. 5(a). A higher
magnification pointed out that SnO, particles sized around
20 nm are single crystallized; marked periodical structures
belong to the (110) plane of cassiterite (JCPDS no. 88-0287)
which persistence in this sample is confirmed by XRD analysis.
Furthermore, the interplanar distance of 1.908 A associated
with the (102) plane of hexagonal wurtzite-type structure is
clearly distinguished in a quite larger ZnO grain (FFT inset
presented at Fig. 5), indicating formation of the ZnO/SnO,
heterojunction in this sample. The annealing at higher
temperature increases formation of SnO, agglomerates in ZnO/
Sn0,-700 sample. Despite it, a small amount of SnO, nano-
crystallites dispersed over larger ZnO grains is still notable in
HRTEM image, Fig. 5(b). The corresponding elemental
mapping (EDXS analysis), Fig. 6 and 7, verifies phase designa-
tion of particles based on HRTEM/FFT analysis. Moreover, it
highlights that SnO, nanocrystallites are present on the surface
of much larger ZnO particles in both samples, but their
spreading is more uniform in ZnO/Sn0,-700 sample, Fig. 7. The

Table 2 Effects of milling and annealing on SSA, volume and size of pores, and average particle size determined by PSA

Sample Sper® (M% 7Y Viewa” (€M 27 Vineso® (€M 71 Viniero? (em® g7 7oy (nm)  dy(0.5)pss’ (um)  dyg(0.5)psa® (um) (eV) (nm)
ZnO 5.75 0.0163 0.0154 0.0020 13.64 0.853 0.357 3.26 380
SnO, — — — — — 10.960 0.257 3.55 349
ma-ZnO/Sn0O, 6.55 0.0229 0.0212 0.0023 24.53 0.862 0.224 3.21 386
Zn0O/Sn0,-400 6.22 0.0265 0.0252 0.0021 18.71 0.978 0.238 3.21 386
Zn0/Sn0,-700 6.15 0.0249 0.0237 0.0016 18.87 1.189 0.293 3.18 390

¢ Sper— BET specific surface area. b Veoal — total pore volume. ¢ V50 — volume of mesopores (2-50 nm). d

Vinicro — volume of micropores (<2 nm). ¢ r,y

- BJH adsorption average pore diameter.” dy/(0.5)pss - average particle size (based on volume) determined by particle size analyzer (PSA).¢ dy(0.5)psa
- average particle size (based on number) determined by particle size analyzer (PSA).
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Fig.5 TEM (left), and HRTEM (right) with marked interplanar distances
of: (a) ZnO/SnO,-400 powder; FFT of ZnO phase is given as an inset,
and (b) ZnO/SnO,-700 powder.

driving force for such self-assembling originates from the high-
temperature solid state diffusion.

The optical properties of pristine ZnO and SnO, powders,
also, the effects of mechanical milling and subsequent
annealing on the capacity of visible light absorption and band
gap energy of photocatalysts were examined by UV-Vis DRS,
plots are presented in Fig. 8. Diffuse reflectance spectra,
Fig. 8(a), reveal characteristic R curves for all the examined
powders. It can be observed that the absorption edge for SnO, is
near 300 nm, while for all the other powders is near 380 nm.
Besides, metal oxides have similar reflectance in the visible light
region, between 85 and 95%, which is much larger than
reflectance of composite powders. The lowest reflectance in the

BF C———— 250 nm SnL C——— 250 nm

———— 250 nm

OK ————250 nm

Fig. 6 EDXS mapping of Zn, Sn, and O concentration in ZnO/SnO,-
400 powder.
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BF(framel) —— 300 nm SnL C— 300 nm

——— 300 nm OK ——— 0.3 ym

Fig. 7 EDXS mapping of Zn, Sn, and O concentration in ZnO/SnO,-
700 powder.

spectral region 380-800 nm shows ma-ZnO/SnO, and
Zn0O/Sn0,-400 composites, while ZnO/Sn0,-700 has the lowest
reflectance (below 25%) in the range 380-500 nm, with further
tendency to increase up 45% between 500 and 800 nm. It should
be highlighted that the absorption capacity of composites is
almost three times improved in comparison with pristine metal
oxides. The improved absorption capacity of composite may be
attributed to a large number of surface defects introduced by
mechanical activation; on this way, profound influence of
mechanical milling on optical properties is confirmed. (Here,
the absorption capacity can be correlated with reflectance since
the measurements were done on pellets with thickness of 1 mm,
thus, transparence could be neglected).

The direct band gap energies (Epg) of the photocatalysts were
determined from the plots of Kubelka-Munk function versus
photon energy (eV).***® First of all, the diffuse reflectance R is
correlated to the Kubelka-Munk function F(R) by relation F(R) =
(1 — R®)/(2R); then, band gap energies were estimated from
a plot of (F(R)-hv)> = flhw) as intercepts obtained by the
extrapolation of the linear part of the curves to (F(R)-#v)* = 0, as
it is shown in Fig. 8(b). Determined E., values are 3.55 eV
for SnO,, 3.26 eV for ZnO, 3.21 eV for ma-ZnO/SnO, and
Zn0O/Sn0,-400 composites, and 3.18 eV for ZnO/Sn0O,-700.

The red shift of ma-ZnO/SnO, band gap energy of 0.05 eV as
compared to pristine ZnO can be attributed to surface defects
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Fig. 8 (a) The UV-Vis diffuse reflectance spectra of pristine metal
oxides and photocatalysts, and (b) Kubelka—Munk curves for deter-
mination of the band gap energies. The band gaps are attained by the
extrapolation procedure.
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Fig. 9 (a) Photoluminescence spectra of pristine metal oxides and
photocatalysts under excitation at 325 nm, (b—f) PL spectra decon-
voluted with a Gaussian function.

achieved during mechanical activation. Further annealing at
400 °C did not influences crystal structure nor phase composi-
tion, thus neither influence the band gap energy. However,
annealing at 700 °C red-shifted band gap energy for 0.08 eV as
compared to ZnO; it is probably due to both, existence of the
surface defects and diffusion of tin cations into ZnO lattice,
which also promote formation of V.

Photoluminescence study was used to determine type of
defects in pristine metal oxides and ZnO/SnO, composites. It is
known that ZnO and SnO, particles have rich defect chem-
istry*** and variety of defects may exist in these crystals, in
particular, cation vacancy, oxygen vacancy, cation interstitial,
oxygen interstitial, as well as antisites. As have been shown, the
presence of different defects can result in both, improvement
and deterioration of the photocatalytic activity, depending on
the type and location of the defects. It is generally accepted that
surface defects are favourable, whereas bulk ones only can
worsen the photocatalytic activity of ZnO. Thus, determination
of defects in photocatalysts can be useful for understanding and
further improving of their photoactivity.

The room temperature PL spectra of the photocatalysts are
presented in Fig. 9(a). It can be seen that all of the PL spectra
show UV emission band, near the band-edge, and a broad
visible emission band; however, the spectra vary with milling
and annealing. To reveal positions and area (%) of the hidden
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emission bands, PL spectra were deconvoluted with multiple
Gaussian functions; the data obtained by deconvolution are
listed in Table 3, while deconvoluted spectra are presented in
Fig. 9(b-f). The PL spectrum of pristine ZnO is found to be
convolution of six Gaussian components centered at 385, 409,
435, 454, 485 and 582 nm, Fig. 9(b). The sharp and intense band
at 385 nm is typical for the near band edge emission and is due
to the recombination of the self-excitons of ZnO. The violet
emission at 409 nm can be attributed to the surface zinc
vacancies (V,).** The blue emission bands at 435, 454 and
485 nm are caused by the transitions of excited electrons from
the Zn; level to the valence band." The yellow emission near
580 nm is due to the doubly charged oxygen vacancy states
(Vg™), representing deep-level i.e. lattice defect. These results
are in agreement with Raman spectroscopy ones (Fig. 3) which
revealed the existence of oxygen vacancies and zinc interstitials.
However, beside of the commonly assumed deep-level defects,
the yellow emission can be also attributed to the Zn(OH), or OH
groups at the ZnO particles surface.*® For the pristine ZnO
powder, used in this study, the existence of surface OH ions is
previously confirmed by XPS analysis.**

Deconvoluted PL spectrum of pristine SnO, powder shows
a weak band centered at 380 nm, the violet emission at 410 nm,
three blue emission bands peaking at 433, 454 and 486 nm, and
a strong broad red emission band at 630 nm, Fig. 9(c). The red
emission band is related to deep-level defects within the gap of
SnO,, associated with oxygen vacancies and Sn interstitial
formed during synthesis procedure.*” The intensities of PL
bands in spectrum of SnO, are significantly smaller as
compared to those in PL spectrum of ZnO. PL spectrum of ma-
ZnO/SnO, composite, Fig. 9(d), is consisted of six bands
centered at 380, 411, 433, 454, 486 and 546 nm. Comparing to
PL spectra of metal oxides, composite one did not shows yellow
or red emissions attributed to deep-level defects, instead, green
emission appears at 546 nm. Green emission implicates to
surface defects, as well as the defects just below the crystallite
surface.*® These results confirmed that milling considerably
influenced the relative concentration ratio of surface defects to
bulk defects. PL spectra of annealed composites show almost
the same emission bands as that of ma-ZnO/SnO,. However,
results of the deconvolution point to different band area ratio of

Table 3 Position and area of emission bands in PL spectra obtained after deconvolution by a Gaussian function

Emission

Peak uv Violet Blue Green Yellow Red
ZnO Position (nm) 385 409 435 454 485 582

Area (%) 8.85 10.01 4.49 4.26 13.75 58.63
SnO, Position (nm) 380 410 433 454 486 630

Area (%) 1.85 17.03 14.22 18.86 9.06 38.98
ma-ZnO/SnO, Position (nm) 380 411 433 454 486 546

Area (%) 1.41 24.10 21.38 27.96 14.73 10.42
Zn0O/Sn0,-400 Position (nm) 380 411 433 454 485 549

Area (%) 0.88 24.31 21.79 28.35 15.28 9.39
Zn0O/Sn0,-700 Position (nm) 379 411 433 454 486 565.5

Area (%) 0.68 17.70 15.24 19.94 24.33 22.11

This journal is © The Royal Society of Chemistry 2017
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Fig. 10 Photocatalytic efficiency, and appropriate first-order reaction
kinetic plots, for de-colorization of [MB]; = 10 ppm in the presence of
examined samples, under: (a, c) UV, and (b, d) natural sunlight
illumination.

bulk defects to surface defect, which is somewhat higher for
Zn0O/Sn0,-700. Slightly larger amount of the bulk defects in
Zn0/Sn0,-700 is due to the formation of Zn,Sn0O, accompanied
by Vo, which is also in accordance with results of the Raman
spectroscopy. Results of the PL spectroscopy clearly reveal that
the relative concentration of surface defects is larger in the
composites as compared to pristine ZnO while the number of
exciton recombination is reduced.

Fig. 10(a and b) shows the efficiency of the photocatalytic de-
colorization of MB dye in the presence of pristine ZnO and
prepared composites under two different illumination sources.
It was found that less than 1% of the MB was adsorbed on the
photocatalysts after the equilibration of the dye-photocatalyst
suspension in a dark. The neglected adsorption is due to
a relatively small specific surface area. When UV light was used
as illumination source composites ma-ZnO/SnO, and ZnO/
Sn0,-400 show improved activity compared to pristine ZnO,
while the lowest efficiency was observed when ZnO/Sn0O,-700
was applied, Fig. 10(a). The linear kinetic curves of the In(C/C,)
versus the illumination time plot, Fig. 10(c), implicate first order
reaction kinetics. The calculated kinetic parameters, the rate
constant of photo-de-colorization (K; [min~']) and ¢,,, [min], are
denoted in Table 4. When the most efficient photocatalysts, ma-
Zn0O/Sn0, and ZnO/Sn0,-400, were used MB dye solution was
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Fig. 11 Recycling test of ma-ZnO/SnO, photocatalyst on de-colori-
zation of [MB]; = 10 ppm under UV light illumination.

completely de-colorized after 40 min, whereas the time neces-
sary for the de-colorization of 50% of the dye was ¢;,, = 9.42 and
10.86 min, respectively. When the pristine ZnO was used, MB
dye was completely de-colorized after 90 min, while ¢, =
19.47 min.

When natural sunlight was used as the illumination source,
the activity decreases in order ma-ZnO/SnO, < ZnO < ZnO/SnO,-
400 < Zn0O/Sn0,-700, Fig. 10(b). Fig. 10(d) shows kinetic plots for
sunlight driven photocatalytic de-colorization of MB in the
presence of examined samples. Each of the curves can be
separated into two linear segments with different slopes. For
each slope the rate constant of photo-de-colorization was
calculated and denoted as k{" and K2, also, '} and 2} were
calculated and listed in Table 4. When ma-ZnO/SnO, was used
MB was almost completely (97%) de-colorized after 30 min and
£} was equal to 3.85 min. That is significantly faster than
60 min, which is time necessary to decolorize 97% of MB in the
presence of ZnO, with #!} of 5.10 min.

In order to test photocatalytic stability of ma-ZnO/SnO,
under long run working conditions, the degradation of MB was
determined in repeated cycles without the photocatalyst being
subject to any cleaning treatments after degradation process
was completed. The photocatalytic activity of composite was
compared in three consecutive runs and obtained data are
presented in Fig. 11. It should be stressed that the activity of ma-
ZnO/Sn0O, is preserved under long run working conditions.
Moreover, after the ma-ZnO/SnO, photocatalysts had been

Table 4 Kinetic parameters for photocatalytic de-colorization of [MB] = 10 ppm; [photocatalyst] = 100 mg/100 ml, pH of the solution = natural

(5.5)

UV lamp Natural sunlight
Sample K; [min~"] t1/, [min] K [min~Y] £ [min] K2 [min] #2) [min]
Zno 3.56 x 107> 19.47 1.36 x 10" 5.10 6.76 x 10° 102.54
ma-ZnO/SnO, 7.36 x 102 9.42 1.80 x 1071 3.85 1.59 x 1072 43.59
Zn0/Sn0,-400 6.38 x 102 10.86 4.40 x 1072 15.75 1.91 x 102 36.29
Zn0/Sn0,-700 3.42 x 1073 202.67 1.20 x 102 57.76 — —
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loaded with MB and UV light illuminated, and then consecu-
tively recovered, the crystal structure of the photocatalyst was
checked by XRD. The recovered photocatalyst showed almost
the same XRD pattern as the initial one (see Fig. 2), which
indicates that ma-ZnO/SnO, has a stable crystal structure
during long-term photocatalysis and is suitable for recycling
and reuse with a slight loss of the photocatalytic activity.

The most efficient photocatalyst, ma-ZnO/SnO,, was also
tested for the degradation of phenol, as a representative of
pollutants that have no absorption in the visible range. Fig. 12
shows the efficiency of the photocatalytic degradation of phenol
in the presence of ma-ZnO/SnO, photocatalysts under natural
sunlight illumination. We found that less than 2% of the phenol
concentration was adsorbed on the ma-ZnO/SnO, during 1 h of
the equilibration of the phenol-photocatalyst suspension in
a dark. Under direct sunlight illumination the phenol concen-
tration rapidly decreased; after 30 min, more than 60% of
phenol was removed, while after 2 h phenol was completely
removed from the system. Accordingly, ma-ZnO/SnO, can be
used as an effective photosensitizer for phenol, as well as for the
MB dye. Besides, it was found that the decrease of the total
organic carbon (TOC) via mineralization was much slower than
the degradation of phenol, Fig. 12. This discrepancy was
previously explained as a result of the phenol photo-oxidation to
benzoquinone and its further slow degradation to CO, and
H,0.

Presented results promote ma-ZnO/SnO, as efficient photo-
catalysts under both, UV and natural sunlight. PL results
implicate that the enhanced photo-activity of ma-ZnO/SnO, as
compared to pristine ZnO is due to the surface defects. In the
case of UV-light driven photoreaction, the surface defects
increased the separation of photogenerated carriers, thereby
hindering recombination. What's more significant, the surface
defects contributes to the visible light absorption. The presence
of Zn; point defects contributes to the visible light absorption
due to the defect level located in the band gap, at 0.22 eV below
the conductive band* (narrowing band gap to about 3.15 eV or
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Fig. 12 Photocatalytic efficiency for the degradation of [phenoll; =
10 ppm in the presence of ma-ZnO/SnO,, under natural sunlight
illumination with TOC efficiency.
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Fig. 13 Band structures for: (a) ZnO and SnO, before contact, (b) ZnO/
SnO, after contact, and (c) illustrative representation of the mecha-
nism of photoexcited charge-carrier transport in the ZnO/SnO,
hetero-particle.

400 nm). This defects also promotes charge transfer and
suppress electron-hole recombination.

Besides intrinsic defects, the ZnO/SnO, heterojunction
particles are involved in enhanced photocatalytic activity. A
prominent role of ZnO/SnO, heterojunction particles in the
separation of photogenerated electrons and holes, which
further improved photocatalytic activity, had been previously
explained as a result of band energy alignment.*” Actually, both
ZnO and SnO, belong to n-type semiconductors; among them,
SnO, is a better electron acceptor than ZnO because the
conduction band potential of SnO, (0 V vs. normal hydrogen
electrode (NHE) at pH 7) is more positive than that of ZnO
(—0.5 V vs. NHE at pH 7), Fig. 13(a).>** It may be expected that
a type-II heterostructure® with a staggered alignment at the
heterojunction is formed for ma-ZnO/SnO, heterojunction
particles, Fig. 13(b).*” In such a case, the electron-hole pairs
generated under sunlight illumination will be separated due to
thermodynamic favouring: electrons will move from the CB
energy level of ZnO to the SnO, one and holes will move from
the VB level of SnO, to the ZnO one. This process promotes the
formation of a charge transfer state and the spatial separation
of the photogenerated carriers within the ZnO/SnO, hetero-
junction particles.*”

The substitution of Zn** ions for Sn** results in surface
modification and formation of more V, in order to compensate
the positive charge. The surface V, act as charge carriers of
holes, thus, facilitated charge separation. However, annealing
at 700 °C for 2 h deteriorate the photocatalytic activity of the
composite. The activity decreased due to the formation of both,
photoinactive Zn,SnO, and the bulk oxygen vacancies (with the
energy level close to the middle of the gap)® acting as a charge
recombination centers.

4. Conclusions

ZnO/Sn0O, composite was processed by mechanical milling of
ZnO and SnO, commercial powders. In this process, SnO,
particles were significantly reduced and decorated on the
surface of larger hexagonal ZnO submicro-rods. The photo-
catalytic activity study showed that ZnO/SnO, composite parti-
cles possess an enhanced efficiency for MB de-colorization as
compared to pristine ZnO, under both UV and sunlight. The
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results of structural, morphological, textural and optical prop-
erties of ZnO/SnO, composite and ingredients implicate to
a significant contribution of surface defects in enhancement of
the photoactivity. A high relative concentration ratio of surface
defects to bulk defects was introduced by milling, also, by
existence of ZnO/SnO, heterojunction particles. Surface defects
narrowed band gap of ZnO/SnO, composite, thus increasing the
capacity of visible light absorption as compared to ZnO. Surface
defects, in particular zinc interstitials and oxygen vacancies,
facilitated charge separation, thereby hindering the recombi-
nation of photogenerated carriers as compared to pristine ZnO.
Annealing of composite at 700 °C stimulate diffusion of tin(wv)
cations into the ZnO particles and formation of both, photo-
inactive Zn,SnO, and the bulk oxygen vacancies which acts as
recombination centers for carriers, resulting in the loss of
photoactivity.

This study aims to draw attention to the mechanical activa-
tion as an inexpensive and environmental friendly technique
for the large-scale production of the long-run working
composite with an enhanced photocatalytic activity under illu-
mination of either UV or sunlight.
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