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Activity artifacts in assays present a major problem for biological screening and medicinal chemistry. Such
artifacts are often caused by compounds that form aggregates or are reactive under assay conditions.
Many pan assay interference compounds (PAINS) have been proposed to cause false-positive assay
readouts. PAINS are typically contained as substructures in larger molecules. They are used as
computational filters to detect compounds with potential chemical liabilities. Recent studies have
shown that molecules containing the same PAINS substructure often have greatly varying hit rates in
screening assays.
compounds that are only rarely active or consistently inactive in many assays they are tested in. These
observations suggest that the structural context in which PAINS are presented may play an important
role for eliciting false-positive activities. However, this assumption remains to be investigated. Herein,

Even the overall most frequently active PAINS substructures are found in

we report the systematic identification of analog series of screening compounds that contain PAINS or
exclusively consist of PAINS and the analysis of their activity profiles. Comparison of analogs or
different series of analogs containing the same PAINS substructure provides structural context
information. For many PAINS, extensively tested series with distinct activity profiles were detected.
Furthermore, analogs within the same series often displayed significant differences in hit rates. The
analog series reported herein organize PAINS in different structural contexts. Their activity profiles
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Introduction

Activity artifacts in biological screening assays can be caused by
compounds that are prone to colloidal aggregation™? or that are
chemically reactive under assay conditions.>* A variety of
mechanisms may lead to apparent inhibition and false-positive
signals including, among others, fluorescence of small mole-
cules, redox reactivity, or covalent modifications of target
proteins.*® Compounds with assay interference potential orig-
inate from both synthetic and natural sources” and include
molecules that are intensely investigated in pharmaceutical
research.®

There is no doubt that assay artifacts compromise medic-
inal chemistry programs and that false-positive activities
cumulate in the scientific literature. This situation has trig-
gered community efforts to raise awareness of assay inter-
ference.® Since it often remains unclear if a compound causes
an artificial activity signal, careful experimental follow-up
studies are required.>® One way to proactively address this
problem is the search for potential interference compounds
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that require special attention if they are found to be active in
assays."’

In a landmark study, 480 chemical classes have been put
forward as candidates for assay interference.* To these ends,
limited numbers of compounds were tested in AlphaScreen
assays.’ This set of so-called pan assay interference compounds
(PAINS)® contains many small reactive chemical entities that
often occur as substructures in larger molecules. While it
cannot be expected that PAINS cover the entire spectrum of
possible interference mechanisms, their identification has
made it possible to implement substructure filters to flag
potential interference compounds,®'® an important step toward
the identification of questionable candidates.

However, the predictive value of PAINS filters has also been
called into question, given that for many of the proposed
structures only limited experimental support was available.'* In
general, although assay artifacts are a problematic issue,
excluding any potentially reactive compound from further
consideration would not be justifiable scientifically. Over-
estimating the magnitude of assay interference may lead to
disregarding compounds that have desired activities and/or act
by novel mechanisms.

Two recent studies, have systematically evaluated the activity
of PAINS on the basis of publicly available screening data'**?

This journal is © The Royal Society of Chemistry 2017


http://crossmark.crossref.org/dialog/?doi=10.1039/c7ra06736d&domain=pdf&date_stamp=2017-07-17
http://orcid.org/0000-0002-0557-5714
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7ra06736d
https://pubs.rsc.org/en/journals/journal/RA
https://pubs.rsc.org/en/journals/journal/RA?issueid=RA007057

Open Access Article. Published on 17 July 2017. Downloaded on 2/5/2026 10:57:32 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

and other compound sources." Both investigations revealed
substantial heterogeneity in PAINS activities and greatly varying
hit rates. Furthermore, many rarely active or consistently inac-
tive molecules with PAINS substructures were detected.'™*?
While small subsets of PAINS including, for example, quinones,
catechols, rhodanines, or Mannich bases often represented
highly active compounds, most likely causing artifacts, other
classes of PAINS did not display unusual hit rates. Moreover,
even the most frequently active PAINS were also found in many
consistently inactive compounds. Taken together, these obser-
vations indicated that the molecular environment' or struc-
tural context’ in which PAINS are presented might play an
important role for their ability to elicit desirable activities or
artifacts. However, little has been done so far to address the
question how structural embedding might modulate PAINS
activity.

Therefore, we have carried out a systematic analysis of
analog series containing PAINS, which provide structural
context information. Analog series were systematically extracted
from screening compounds. For series of extensively assayed
PAINS, activity profiles were determined and studied in detail,
yielding first insights into structural context-dependent modu-
lation of PAINS actions. The results of our analysis are pre-
sented in the following.

Methods and materials
Compound activity data

A subset of 437 257 screening compounds from PubChem
BioAssays* that were tested in primary assays (percentage of
inhibition from a single dose) and confirmatory assays (dose-
response assays yielding ICs, values)* provided our starting
point. PubChem compounds for which data from both primary
and confirmatory assays are available have usually been
frequently tested. Hence, most of the pre-selected molecules
were evaluated in more than 50 assays. For our analysis, only the
most extensively assayed compounds were considered. There-
fore, the global distribution of the number of assays in which
the pre-selected compounds were tested was determined.
Fig. 1a shows this distribution in a boxplot format. PubChem
compounds that were tested in more than 257 primary assays,
corresponding to the lower quartile boundary of the distribu-
tion, were selected for our analysis, yielding a total of 327 523
compounds.

Identification of analog series

From these 327 523 compounds, analog series (ASs) were
systematically extracted using a recently developed method-
ology," which is based upon the matched molecular pair (MMP)
formalism.’* MMPs are pairs of compounds that are only
distinguished by a chemical change at a single site,'® often
termed a chemical transformation.”” To generate MMPs,
exocyclic single bonds in screening compounds were system-
atically fragmented following retrosynthetic fragmentation
rules,"® yielding RECAP-MMPs." Previously established trans-
formation restrictions introduced to limit

size were
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transformations in MMPs to chemical modifications typically
observed in analogs.”® Once all possible RECAP-MMPs
were generated, a global MMP network was constructed in
which compounds were represented as nodes and edges
accounted for pairwise MMP relationships. In this network
representation, ASs form disjoint (isolated) clusters.” Each
cluster contains all possible MMP relationships within a series,
which cover all substitution sites and available R-groups.
For 190 612 of the 327 523 extensively assayed compounds,
analog relationships were detected, resulting in the formation
of 34 300 individual clusters and ASs.

For each of the 34 300 ASs, assay and target information was
compiled. For each AS, assay overlap was determined as the
number of assays shared by all analogs. In addition, for pairwise
comparison of ASs, the overlap was calculated as the number of
assays common to both series.

Hit rate intervals and activity profiles

The hit rate of a compound was conventionally defined as the
fraction of assays in which it was active. The distribution of hit
rates over all compounds was captured in a boxplot yielding
a median value of 0.4% (Fig. 1a). On the basis of this distribu-
tion, the interval of expected hit rates (hryp) for active PubChem
screening compounds was defined as 0% < hre, = 1.0%
covering the lower quartile, median, and upper quartile.
Accordingly, hit rates exceeding 1.0% (upper whisker and
outliers) were considered high. The lower whisker and lower
quartile boundary of the boxplot were identical and represented
consistently inactive compounds. Thus, activity profiles were
defined on the basis of three hit rate intervals including
consistent inactivity (0%), expected or average hit rates (0% <
hre, = 1.0%), and high hit rates (>1.0%) (Fig. 1a). Given that
qualifying compounds were tested in at least 258 assays, high
hit rates corresponded to activity in a minimum of three assays,
while expected hit rates of active compounds corresponded to
activity in one or two assays. Hence, as defined, the interval of
high rates predominantly focused on promiscuous compounds.
Apparent promiscuity might result from true multi-target
activities or assay artifacts. The distribution of hit rates
exceeding 1.0% was also monitored in boxplots for screening
compounds that did not contain PAINS substructures (non-
PAINS) and PAINS substructures (Fig. 1b).

The activity profile of an AS was then generated by
combining hit rates of all participating analogs, as illustrated in
Fig. 2.

Detection of pan assay interference compounds

Analog series were screened in silico for PAINS using three
public filters available in ChEMBL (481 substructures),”* RDKit
(480),>> and ZINC (480).* For screening compounds, canonical
SMILES representations** were generated. Compounds were
classified as PAINS if a PAINS substructure was detected by at
least one of the three filters (considering possible imple-
mentation discrepancies of substructure strings). Filtering
identified 177 different PAINS substructures in 3473 ASs.

RSC Adv., 2017, 7, 35638-35647 | 35639
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Fig.1 Assay frequency and hit rate distribution. (a) At the top, a boxplot shows the primary assay frequency distribution for 437 257 pre-selected
PubChem compounds. Only compounds tested in more than 257 primary assays (lower quartile boundary) were considered for further analysis.
At the bottom, the hit rate distribution for these 327 532 compounds is shown in another boxplot on the basis of which hit rate intervals were
defined, as detailed in the text. In (b), the hit rate distribution of compounds with hit rates above 1% is shown in boxplots for screening compounds

without PAINS substructures (non-PAINS, left) and PAINS (right).

All calculations were performed using in-house Java and R
scripts with the aid of KNIME* protocols, the OpenEye*®
chemistry toolkit, and RStudio.”

Control calculations

As a control, the analysis was repeated for ASs originating
from compounds tested in 65-247 confirmatory assays. In

35640 | RSC Adv., 2017, 7, 35638-35647

this case, 3459 ASs with PAINS substructures were identified,
1865 of which exclusively consisted of PAINS. The analysis
of the activity profiles of this set of series yielded results
that were readily comparable to those obtained for ASs
originating from primary assays. In the following, we
therefore concentrate on the results for ASs from primary
assays.

This journal is © The Royal Society of Chemistry 2017
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Fig. 2 Activity profiles and exemplary analog series. At the top, all possible activity profiles are displayed that represent different combinations of
the three hit rate intervals according to Fig. 1a (consistently inactive, red; expected hit rates, yellow; high hit rates, green). Below the profiles,
compounds forming two different ASs containing the same PAINS substructure (red) are shown. For each analog, the hit rate and corresponding
interval are given and the resulting activity profile of the series is displayed.

Results and discussions
Analog series with PAINS

For 190 612 of 327 532 PubChem compounds tested in at least
257 primary assays, analog relationships were identified,
yielding a total of 34 300 ASs. Compound and AS statistics are
reported in Fig. 3 (bottom). PAINS were detected in 13 018
compounds from 3473 ASs. More than half of these ASs, ie.
1876 series comprising 7969 compounds, exclusively consisted
of PAINS. These ASs contained two to 190 analogs with on
average four PAINS per series. In all ASs with PAINS, 177 of the
480 PAINS substructures were detected. ASs exclusively con-
sisting of PAINS covered 140 different substructures. Further-
more, for 32 PAINS substructures, at least 10 ASs were
identified. Thus, overall, a large number of PAINS-containing
ASs was available, providing an extensive structural organiza-
tion of PAINS and a sound basis for our analysis.

Targets

For the ASs belonging to the three different categories according
to Fig. 3 target statistics were determined. We found that 7.3%

This journal is © The Royal Society of Chemistry 2017

of the ASs exclusively consisting of PAINS and 6.9% of ASs
comprising PAINS and non-PAINS were only active against
a single target (ST-ASs). For ASs only consisting of non-PAINS,
the proportion of ST-ASs was 13.6%. Thus, most ASs in all
three categories were multi-target ASs (MT-ASs). ST- and MT-ASs
exclusively consisting of PAINS were active against a total of 385
unique targets, while ST- and MT-ASs with PAINS and non-
PAINS covered 401 targets. In addition, non-PAINS ST- and
MT-ASs were active against a total of 418 targets. Thus, target
coverage of all three categories of ASs was extensive and
comparable in magnitude. Notably, the 1873 ASs only consist-
ing of PAINS were active against nearly as many targets (92.1%)
as the ~16-fold larger number of non-PAINS ASs.

Hit rates

Fig. 1a shows the distribution of hit rates of extensively assayed
PubChem compounds on the basis of which hit rate intervals
were determined, as detailed above. In addition, Fig. 1b
compares the distribution of hits rates for those non-PAINS and
PAINS having rates exceeding 1.0%. More than 75 000 non-
PAINS had hit rates greater than 1.0% compared to 5115

RSC Adv., 2017, 7, 35638-35647 | 35641
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Fig. 3 Distribution of activity profiles for analog series of different composition. Global distributions of activity profiles for ASs exclusively
consisting of PAINS (dark blue bars), combinations of PAINS and non-PAINS (blue), and only non-PAINS (light blue) are reported. At the bottom,

compound and series statistics are provided.

compounds with PAINS substructures. Thus, 60.7% of all PAINS
from ASs (7903 compounds) were consistently inactive or only
active in one or two assays. As one would anticipate, within the
hit rate interval exceeding 1.0%, PAINS had overall higher hit
rates than non-PAINS but the differences were only small. As
shown in Fig. 1b, the hit rate distributions were similar for
PAINS and non-PAINS, with median values of slightly above and
below 2.0%, respectively. Taken together, these observations
made for PAINS with analog relationships corroborated earlier
findings from global PubChem analysis."*** For all ASs with
PAINS, activity profiles were generated from their assay data.

Activity profiles

Fig. 2 depicts the seven possible activity profiles for ASs that
account for hit rate intervals and their combinations. Two
exemplary ASs are shown. All analogs belonging to AS 1 were
active and had high hit rates, resulting in the ‘green-only’ profile
of the series. By contrast, four of five analogs of AS 2 were active
and one consistently inactive. Two of the active analogs had
high and two others expected hit rates. Thus, the activity profile
of the series was the combination of all three intervals (‘green-
yellow-red”).

Activity profiles were systematically determined for all 34 300
ASs extracted from extensively assayed PubChem compounds.
Therefore, the ASs were divided into three subsets: analogs
having no PAINS substructures (30 827 series), analogs with and
without PAINS substructures (1597), and analogs always con-
taining PAINS (1876). Fig. 3 reports the distribution of these AS

35642 | RSC Adv., 2017, 7, 35638-35647

subsets over different activity profiles in a histogram. Consis-
tently inactive ASs (‘red-only’ profile) and ASs containing
compounds having high rate rates and inactive analogs (‘green-
red’) were rare. By contrast, nearly 30% of ASs exclusively con-
sisting of PAINS displayed the ‘green-only’ (high hit rate) profile,
which was a much larger proportion than obtained for the other
two AS subsets (with close to 10%). Essentially inverse propor-
tions were observed for ASs containing consistently inactive as
well as active compounds with expected hit rates (‘yellow-red’).
Furthermore, more than 30% of ASs with non-PAINS and PAINS
yielded the complete (‘green-yellow-red’) activity profile. Hence,
these series contained analogs covering all hit rate intervals.
Notably, about 55% of ASs exclusively consisting of PAINS
yielded activity profiles covering multiple hit rate intervals,
revealing that analogs with a given PAINS substructure often
had different activities.

Fig. 4 shows the distribution of activity profiles for 32 PAINS
for which 10 or more ASs were available that exclusively con-
tained this PAINS substructure. Thus, this subset of PAINS was
most frequently found in ASs. It included widely recognized
PAINS such as anilines, rhodanines, or quinones.* The heatmap
reveals the prevalence of the ‘green-only’ and ‘green-yellow’
profiles among the ASs of this subset of PAINS. However, the
heatmap also shows that activity profiles were variably distrib-
uted across ASs with different PAINS. For example, the ‘yellow-
red’ and complete activity profiles were also frequently
observed. Hence, prevalent PAINS also displayed varying activ-
ities in ASs.

This journal is © The Royal Society of Chemistry 2017
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Fig. 4 Activity profile distribution for different PAINS. Activity profiles
of ASs containing the same PAINS substructure are displayed in
a heatmap. Each column corresponds to a given activity profile and
each row represents an individual PAINS (sub)structure. Empty cells
(white) indicate the absence of a profile. Occupied cells are color-
coded according to increasing numbers of ASs displaying the same
profile using a spectrum from light to dark blue. The heatmap only
contains 32 PAINS with at least 10 different ASs. PAINS were ordered
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Context-dependent structure-activity relationships

The ASs containing PAINS substructures provided a series-
based organization and reference frame for analyzing and
comparing the activity of PAINS in different structural envi-
ronments. A variety of interesting and in part puzzling rela-
tionships was observed.

Fig. 5a compares two rhodanine-based series with distinct
hit rates and activity profiles. These ASs were tested in more
than 300 assays with an assay overlap of 98%. Compounds
forming the series on the left were at most active in a single
assay, whereas compounds in the series on the right were active
in six to eight assays. Both ASs shared a 5-phenylmethylen-3-
rhodanine acetamide substructure that was modified at the
nitrogen of the acetamide. Analogs in the series on the left had
a tetrahydrothiophene-1,1-dioxide substituent in common,
while the frequently active compounds in the ASs on the right
shared a 2-(3-pyridinyl)-piperidine. Biologically relevant reac-
tivities of rhodanines and related heterocycles have been
intensely investigated and several plausible mechanisms of
action have been proposed.”® Often considered is a Michael
addition via the exocyclic double bond.* In this case, observed
differences in activity could not be attributed to a Michael-type
reaction because the same rhodanine derivative occurred in
both ASs. Instead, possible photochemical®*® or hydrolytic**
reactivity might be modulated by different substituents at the
acetamide.

Fig. 5b depicts two ASs sharing a 3-methyl-indole core.
Similar to the previous example, analogs forming the series on
the left were only active in at most one assay, while analogs of
the series on the right were active in five to nine assays. This was
the case although the AS on the left was more extensively tested
than the one on the right (in more than 500 vs. 300 assays).
Different from the previous example, substitution patterns were
more diverse here. Baell et al. discussed that 3-alkylindoles and
indole-3-acetamide-2-carboxylic acids likely act as Michael
acceptors and thereby cause artifacts.* However, in this case, the
rarely active analogs in the ASs on the left contained a carboxylic
acid function, which was replaced by a methyl group in the
frequently active series on the right. Thus, the activity profiles of
these ASs were opposite to expectations considering potential
Michael acceptor reactivity.

Fig. 5¢ compares two series of 2-hydroxybenzylamine deriv-
atives, one of which was consistently inactive in many assays
(left), whereas analogs forming the other (right) were active in
nine, 15, and 20 assays, respectively. Such high hit rates are
likely to involve artifacts. The 2-hydroxybenzylamines may act as
Mannich bases and elicit undesired activities by forming reac-
tive quinone methides® or by chelating metal ions.** However,
the striking difference in activity between these two ASs was not
straightforward to rationalize. Notably, the 2-hydroxybenzyl-
amine moiety in the series on the left was located at the
terminus of the analogs, whereas it was fused with a pyridine

according to increasing numbers of ASs. Rows of PAINS for which
specific examples are discussed in the text are numbered in red and
these PAINS are specified below the heatmap.

RSC Adv., 2017, 7, 35638-35647 | 35643
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Fig. 5 Analog series with PAINS having different activity profiles. In (a) to (c), pairs of ASs are shown that contain the same PAINS substructure
(red) but have different activity profiles. For each compound, the number of assays it was tested in, the number of assays in which it was active,
and the corresponding hit rate are reported. For each pair of ASs, assay overlap is quantified. (a) Rhodanines, (b) 3-alkylindoles, (c) Mannich bases.
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ring in the compounds on the right and, in addition, bound to
two other rings. Thus, the structural context in which the PAINS
substructure was presented in these two ASs was distinct and
one may hypothesize that a more or less constrained structural
environment affects Mannich base reactivity.

In addition to comparing different ASs containing the same
PAINS, it is also informative to analyze individual series with
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different hit rates. The representation is according to Fig. 5. (a) Alkyli-
dene thiobarbiturates, (b) quinone derivatives.
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PAINS include (a) tertiary anilines, (b) amino imidazoles, and (c)
phenolic Mannich bases.
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different activity profiles. For example, Fig. 6a shows a series
of alkylidene thiobarbiturates with varying hit rates. Here,
replacement of a 1-methyl-pyrrol with a 3-pyridinmethanamine
group greatly reduced hit rates or completely abolished activity.
In addition, replacing the aromatic (4-fluorophenyl)-methyl
substituent with increasingly aliphatic moieties might also
contributed to a loss in activity. Hence, on the basis of these
observations, several experimentally testable hypotheses can be
formulated.

Fig. 6b depicts an AS of 9,10-dihydro-9,10-dioxo-2-
anthracenesulfonamides containing a quinone substructure,
a notorious PAINS* with one of the highest hit rates overall.
However, in this AS having an unusual ‘green-red’ activity
profile, one of the analogs was found to be consistently inactive
in 430 assays. Compared to a closely related compound with
activity in seven assays, the only modification was a para-to-
ortho repositioning of methyl substituents at the phenyl moiety;
a puzzling observation.

So far, only ASs exclusively consisting of PAINS were
considered. However, series containing analogs with and
without PAINS substructures also revealed interesting rela-
tionships. For example, Fig. 7a shows an ASs with a ‘red-only’
activity profile in which consistently inactive analogs contained
a 1,4-diphenyl-2,6-piperidinedione core. Three of four analogs
had different phenyl derivatives as substituents at the 2,6-
piperidinedione nitrogen. Replacement of these groups with
a N,N-dimethylaniline PAINS substructure also produced
a completely inactive analog, although several likely interfer-
ence mechanisms were proposed for tertiary anilines.** Thus, in
this case, the 1,4-diphenyl-2,6-piperidinedione core restricted
possible reactivity of different substituents.

Fig. 7b shows an ASs with a ‘green-only’ activity profile
containing different amino imidazole derivatives, only one of
which was a PAINS substructure. However, all analogs were
active in seven to nine assays. Finally, Fig. 7c depicts an AS with
three compounds containing a phenolic Mannich base that
were active in 19 or 25 assays. In a fourth analog, methylation of
the phenolic hydroxyl group of the Mannich base led to
consistent inactivity. The only caveat in interpreting these
results was that the inactive analog was tested in 268 assays,
while the remaining active compounds were tested in more
than 400 or 500 assays (mostly including the 268 assays). Thus,
these differences in assay frequency might influence hit rates.
Nonetheless, analysis of this series immediately provides the
experimentally testable hypothesis that methylation of the
reactive phenolic hydroxyl might ‘disable’ this PAINS structure.
Many other ASs including PAINS are available to explore the
dependence of assay interference on the structural context in
which PAINS are presented.

Conclusions

In this work, we have systematically extracted ASs with PAINS
substructures from extensively assayed compounds, analyzed
their activity profiles, and explored structure-activity relation-
ships. These ASs provided an organization of PAINS according
to varying structural contexts and a reference frame for studying
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PAINS actions in different environments. A number of instruc-
tive examples have been identified, providing first insights into
the structural context dependence of PAINS activities. As a part
of our study, all ASs containing PAINS are made freely available
(in an open access deposition referring to this work) to aid in
theoretical and experimental follow-up investigations to further
explore PAINS characteristics and the influence of structural
embedding.**
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