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Artificial neural network analysis of the catalytic
efficiency of platinum nanoparticlesy

Michael Fernandez, (2 * Hector Barron and Amanda S. Barnard 2

Even using high throughput methods, data-driven predictions of nanomaterials properties from first principles
simulations can be impractical. In this work, machine learning models are developed to map the catalytic
efficiency of Pt nanocrystals to structural features, such as nanoparticle diameter, surface area, sphericity,
facet configuration and type of surface defects, using a theoretically derived big data set of over three
hundred thousand nanoparticles. Artificial Neural Networks (ANNs) were calibrated with 50% of a data set
including structural features of symmetric Pt nanoparticles; and catalytic activity, selectivity and
thermodynamic stability. Surface response analysis was applied to two-inputs ANNs with squared
correlation coefficient > 0.9, yielding a region of optimal catalytic efficiency for the less spherical
nanocatalysts and {110} facets lower than 20%. Binary decision tree models reveal the optimal three-
property combinations for high catalytic efficiency. In addition, ANN models built for non-symmetric
nanoparticles predict the catalytic efficiency and stability with accuracy >0.93. In general, we show the
combination of machine learning models can rapidly estimate functional properties of hypothetical
nanomaterials at a resolution that is inaccessible to both computation and experimental methods, as well
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1 Introduction

The move from nanoscience to nanotechnology is underpinned
by a detailed and reliable understanding of structure-property
relationships, but this can be extremely difficult to obtain due to
the lack of systematic experimental data correlating nanomaterial
structure and performance. In turn, high-throughput (HT)
computer simulations of virtual nanomaterial libraries provide
an alternative to explore how structural diversity can affect
nanomaterial behaviour. HT computational characterization of
relevant nanomaterials using proven computational methods
such as density functional theory (DFT) have been reported on
multicomponent  crystals'® and alloys,* lithium-based
batteries,”” optically-active organic molecules,® photovoltaic
materials,” graphene nanoflakes' and metal-organic frameworks
(MOFs)."* However, electronic structure stimulations can be
computationally costly, and subject to numerous practical limi-
tations that inhibit their widespread use in big data studies.
For example, an extensive computational screening of surface
structures for new nanocatalysts has been performed for the
methanation reaction,'” but the computational cost of the elec-
tronic structure calculations using DFT was a bottleneck that
limited the number of data points to only a few dozen. This
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as identifying principles or rules that could guide rational nanomaterial design in the near future.

problem is not unique to metallic nanoparticles, but is particu-
larly poignant in cases (such as these) where the wide variety of
shapes, facets, and fraction of different types of surface atoms,
directly impact the catalytic efficiency in organic and inorganic
reactions. An alternative approach aimed at reducing the
computational load was proposed by Barnard et al.** This study
demonstrated how restricting the diversity of the ensemble can
be used to improve or retard the catalytic performance, while
avoiding computationally intense electronic structure calcula-
tions. Taking this type of theoretical screening analysis even
further to identify correlations that underpin these relationships
using more sophisticated statistical and data mining techniques
would be advantageous in many ways, the most obvious of which
is the speed at which predictions could be made to guide more
detailed analyses. However, an entirely theoretical data set will
only be useful if each unique configuration can be represented by
a set of structural features** which can be used to measure
similarity among individual nanoparticles or to build predictive
machine learning (ML) models,"* and systematically relate the
structural features of samples to their functional properties in
quantitative terms. It has been well established that ML can
produce parametric functions of structural features capable of
yielding accurate predictions of functional properties of different
nanoparticle'® and nanoporous'®" systems without the require-
ment of any atomistic simulations, but in these cases the atom-
istic structure was explicitly defined. To the best of our knowledge
the ability of simple structural features that pertaining the
nanoparticle as a whole (i.e. diameter, surface area, sphericity
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and facet configuration) to predict the catalytic efficiency of
nanoparticles remains unknown.

In this paper, we investigate the correlations between
structural features of a theoretical data set of 8517 Pt nano-
particles and the molar catalytic activity, selectivity and ther-
modynamic stability. Using decision tree (DT) regression and
artificial neural networks (ANNs) we explore the most signifi-
cant combinations of only two or three features that impact
catalytic efficiency. In addition, when all features are simulta-
neously used to train ANNs models, we obtain outstandingly
accurate predictions of how these nanoparticles could be
engineered. The effect of the temperature in the catalytic effi-
ciency is also accurately predicted for more than 300 000
samples by adding an additional input neuron to the network
architecture. As we will show, this approach of mapping the
performance of nanoparticles into its feature space identifies
significant structure-function relationship principles, while
yielding efficient predict models that can be developed with
minimal (or no) reliance on high performance supercomputers.

2 Data preparation and
computational methods
2.1 Pt nanoparticle data set

For this work, we generated a theoretical data set of 8517 Pt
nanoparticles spanning a large range of diameters from 3 nm to
100 nm and including a diverse mixture of shapes consistent with
experimental observations'®*° (Fig. 1). Theoretical predictions of
the molar catalytic activity and stability were generated in
a temperature range from 0 °C to 200 °C. The molar catalytic
activity was obtained by using a surface coordination number
(SCN) classification scheme published elsewhere."*** In that study
the SCN is linked to functional similarities in the nanoparticles.
Under this scheme all Pt atoms with SCN of 1, 2 or 3 are classified
as “surface defects” (where adatoms are placed on “top”, “bridge”
and “hollow” sites); atoms with SCN of 4, 5, 6 or 7 are termed
“surface microstructures” (corresponding to kinks/steps-like
features); and atoms with SCN of 8, 9, 10 or 11 are termed
“surface facets” (corresponding to surface-like features that
includes any planar configuration). The coordination number of Pt
atom in the bulk is 12. Each of these groups are linked to a specific
catalytic reaction,””* where the total number of atoms in the
surface is defined as the number of atoms with SCN less than that
of the bulk. For example, facet-driven catalytic activity is suitable
for hydrogenation reactions, whilst nanoparticles with
microstructure-driven activity are more efficient to catalyse
combustion reactions.?**” Therefore, a theoretical hydrogenation/
combustion selectivity can be defined as the ratio between facet-
driven catalytic activity and microstructure-driven catalytic activity.
While the SCN provides specific details of the local disorder and
faceting, a more global measure of “sphericity” provides valuable
information of the structural features of the particles as a whole.
We define this term as the shape surface-to-volume ratio divided
by the surface-to-volume ratio of a sphere of equivalent volume.
The molar thermodynamic stability was derived from
a shape-dependent thermodynamic model for nanostructures
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Fig. 1 Schematic representations of the nanoparticle morphologies
included in this study: (a) cube, (b) cuboctahedron, (c) hexoctahedron,
(d) octahedron (e) small rhombicuboctahedron, (f) great rhombicu-
boctahedron, (g) rhombic dodecahedron, (h) rhombi-truncated cube,
(i) rhombi-truncated octahedron, (j) doubly-truncated octahedron, (k)
truncated cube, (I) tetrahedron, (m) tetrahexahedron, (n) truncated
octahedron, (o) trisoctahedron, (p) truncated tetrahedron, (q)
trapezohedron.

reported in ref. 28 and 29. It is based on a summation of the
Gibbs free energy G,(7T) of a nanoparticle of material in phase x,
and includes contributions from the bulk and surface of the
structure, as well as from the edges and the corners. This
approach was extended to include planar defects such as twin
planes or stacking faults:

GX(T) — G)b(u”((T) + G;urface(T) + Gidge(T) + G;orner(,T)
+ GRYUT) + ... A

where GY"'N(T), G5""°¢(T), GZU8°(T), and G5°™(T) are the zeroth-
order, first-order, second-order, and third-order terms in the
Gibbs free energy expansion, respectively. GRY(T) is the first
higher order perturbation term.

Each structure in the data set is unique and was charac-
terised by the set of structural features in Table 1. From this
point on, using this data set, all manipulation, pre-processing,
calibration, testing and analysis of machine learning models
was done in Python programming language.

2.2 Machine learning modeling

To correlate the stability and catalytic activity, we used correlation
techniques, that includes multiple linear regression (MLR),
decision tree (DT)* and artificial neural networks (ANNs).*!

RSC Adv., 2017, 7, 48962-48971 | 48963


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra06622h

Open Access Article. Published on 17 October 2017. Downloaded on 1/19/2026 5:39:48 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

Tablel Listof structural features used in developing machine learning
models of molar catalytic activity, hydrogenation/combustion selec-
tivity and molar thermodynamic stability of the Pt nanocatalysts

Variable Structural feature

D Spherically averaged particle diameter
(nm)

Np¢ Number of Pt atoms

A Molar surface area (m> mol ™)

S Sphericity

fin Fractional area associated with {111}
facets

fito Fractional area associated with {110}
facets

fioo Fractional area associated with {100}
facets

faz Fractional area associated with {331}
facets

Jfr10 Fractional area associated with {210}
facets

fiis Fractional area associated with {113}
facets

fizs Fractional area associated with {123}
facets

Surface defects Atoms with surface coordination number
1,2 and 3

Surface microstructures Atoms with surface coordination number
4,5,60r7

Surface facets Atoms with surface coordination number
8,9,10 or 11

Nsurface Total surface sites

AG Free energy (k] mol ')

X Total molar activity (site per mol)

Y Hydrogenation/combustion selectivity

Decision trees are binary rule-based modeling technique that
typically uses an attribute selection search to construct binary
rules of different combinations of attributes. Our decision tree
model approximates the stability and catalytic activity of the
metallic nanoparticles as rudimentary decision rules based on
the values of a number of attributes, with the number and
specific types of attributes varying to suit the needs of the task.
Despite their simplicity, decision trees have been shown to yield
accurate predictions with the added value of ease interpretation
given the number of rules are not very large.** In this case the
catalytic activity, hydrogenation/combustion selectivity and the
thermodynamic stability of the metallic nanoparticles are
approximated as simple combination of three binary rules since
too many rules would compromise the interpretation of the tree
model. DTs were implemented using the scikit-learn machine
learning library in Python programming language.®?

ANNs are computer-based models in which a number of
processing elements, also called neurons, units or nodes are
interconnected by links in a net-like structure forming “layers”,*
that can approximate any nonlinear relationship, according to
Kolmogorov's theorem.** In back-propagation ANNs, a variable
value is assigned to every neuron, which can be one of three
different kinds. The input neurons form the input layer, which
are directly assigned and are associated with independent vari-
ables, with the exception of the bias neuron. The hidden neurons
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collect values from the input neurons, giving a result that is
passed to a non-input neuron. Finally, the output neurons collect
values from other units and correspond to different dependent
variables, forming the output layer. The links between units have
associated values, known as weights that condition the values
assigned to the neurons. There exist additional weights assigned
to bias values that act as neuron value offsets. The weights are
adjusted through a training process in order to minimize network
error. Commonly neural networks are adjusted, or trained, so
that a particular input leads to a specific target output. The ANNs
models of the catalytic activity, selectivity and the stability of Pt
nanocatalysts were implemented in Python programming
language using the FANN package.**

3 Results and discussion

A quick inspection of the generated data set reveals that cata-
lytic activity, hydrogenation/combustion selectivity and the
thermodynamic stability strongly depend on the configuration
of the nanoparticle facets, with the most catalytically active
facets ({111}, {110} and {100}) also corresponding to the more
selective and stable configurations according to our thermody-
namic model. However, small nanoparticles with large surface
area per mole of Pt atoms (>10 000 m* mol ') are the most
catalytically active but display the lowest selectivity and ther-
modynamic stability (see Fig. S1 in the ESI{). This suggests that
more than one structural feature needs to be simultaneously
controlled to activate high performance nanocatalysts.

To identify the best correlation models of the stability,
catalytic activity and selectivity, we explored different machine
learning techniques. Learning curves of the regression models,
as described by Hansen et al.,** appear in Fig. S2 in the ESI,}
which includes mean predictor (meanp), multilinear regression
(MLR), ridge regression (Ridge), decision tree regression along
with ANNs. As described in ref. 35, the lower prediction errors of
the ANN models, suggest that optimum regressions can be
achieved when training ANNs with structural features of 50% of
data set, whilst the remaining 50% is used to test the prediction
ability of the models (see ESI{ for details). Readers will note
from the ESIf that learning curves generated from 0.1-0.9
fractions of data are flat because the models learn very quickly
from very few examples, meaning that this type of data set is
easy to approximate using a nonlinear predictor because it was
artificially generated from an analytic expression without noise
(as is expected from this type of theoretical data set). This is an
advantage of using theoretical data, provided it is well tested.
One should not be confused by small variations in RMSE in the
learning curves; these are not relevant in this case, since the
correlations are already on the order of 0.95 to 0.99. We can see
that over-fitting has been avoided because the R of the training,
cross-validation and test sets are very high and similar.

3.1 Two-inputs artificial neural networks (ANNs) models of
the catalytic efficiency of symmetric Pt nanoparticles

To explore all binary correlation patterns across the entire range
of nanoparticle sizes, shapes and surface defects, we use two-

This journal is © The Royal Society of Chemistry 2017
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Fig. 2 Response surfaces of the two-inputs ANN models of catalytic activity (a and b), hydrogenation/combustion selectivity (c and d) and
stability (e and f) at 25 °C of Pt nanoparticles using sphericity, fraction of {110} and {111} facets and molar surface area.

inputs ANN models. Each pair of structural features was used as combustion selectivity and thermodynamic stability of the Pt
inputs of back-propagated ANN models for the calibration of nanocatalysts. The efficacy of each combination of two variables
regression models of the catalytic activity, hydrogenation/ to describe these properties is depicted in Fig. S4 in the ESI} as
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heatmaps of the squared correlation coefficient of three-fold-
out cross-validation (Rrpo’) of the two-inputs ANN models.
Combining sphericity with fraction of {111} facets, {110} facets
or molar surface area, exhibits the highest correlations with the
catalytic activity and selectivity (Rrpo> > 0.92); whereas the
correlations for thermodynamic stability are higher than 0.9 for
all the variable pairs that include the diameter or molar surface
area. This fact confirms that simultaneously controlling the
overall shape and size of the nanoparticles, without directly
constraining the facet configuration, can improve catalytic
efficiency. This prediction supports the experimental evidence
that the tunability of the catalytic properties depends on the full
control over the nanoparticle size and morphology.**-*

The two-inputs ANN models that predict catalytic activity,
hydrogenation/combustion selectivity and the stability of Pt
nanocatalysts with high accuracy represent robust parametric
functions of these properties. These models can be used to
further explore the response surfaces of these properties within
the variables ranges in the data set (see ESI for details).
Fig. 2(a-d) depicts the response surface analysis of the two-
inputs ANN models of sphericity and fraction of {110} facets;
and sphericity and fraction of {111} facets. In general, the
response surfaces in Fig. 2 depicts both maximum catalytic
activity and hydrogenation/combustion selectivity for the less
spherical Pt nanocatalysts with low and high fractions of {110}
and {111} facets, respectively, with the exception of the least
spherical nanoparticles (S > 1.4) that display very high
hydrogenation/combustion selectivity regardless of the facet
configuration. This result suggests that optimal catalytic effi-
ciency occurs for less spherical nanoparticles, where the
contributions of more edges and corners can compensate each
other. As it can be expected, Fig. 2(e) and (f) illustrates that
nanoparticles with smaller molar surface area (the larger
particles) are more stable regardless of their facet configuration,
where high fraction of active {111} facets contributes to lower
the AG values increasing the stability.

3.2 Multiple linear regression models of the catalytic
efficiency of symmetric Pt nanoparticles

The response surface analysis of the two-inputs ANN modes
provides valuable insights into the mutual correlations of
structural features and the catalytic efficiency and stability of
the Pt nanoparticles. However, this analysis can overlook rele-
vant interactions between more than two variables, which could
be essential for a more comprehensive understanding of Pt
nanoparticle structure-property relationships.

MLR analysis is a convenient approach to correlate structure
and properties due to its easy implementation and
straightforward interpretation. MLR models of the catalytic
efficient of symmetric Pt nanoparticles trained with the
variables in Table 1 appear in eqn (2)—(4).

AG=2473+2.523 x 1072 x D — 4.012 x 1073 x Np, + 1.058 x
1073 x 4 —7.463 x 107! x 8§ — 1.390 x f1;; + 6.108 x 1072 x

fito +3.686 x 1072 x fig0 + 7.644 x 107" x fi3; + 1.339 x faro +

9.321 x 107" x fi13 + 7.306 x 107" x fio5 — 2.615 x 107* x
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surface defects — 1.781 x 107 x surface microstructures + 1.021
x 1078 x surface facets + 4.712 x 1077 X Nyurfaces (2)

with R*> = 0.955, ¢ = 0.75025, N = 4258, Rypo> = 0.955, 0rpo =
0.755, Rrest> = 0.948, Orest = 0.796, Nrpese = 4259;

X =—110.510+7.203 x 107" x D — 3.362 x 1075 x Np, + 7.116
x 1073 x A +2.347 x 10* x S+ 2.868 x 10" x f1;; — 3.562 x 10’
X firo + 1.024 x 10" X figo + 9.098 X fyz1 — 5.235 x 107! x foy0 —
4379 x 107! X fi13 — 2.677 x 107! X fio5 + 2.451 x 107> x
surface defects — 9.723 x 107° x surface microstructures + 7.302
x 1078 x surface facets + 8.394 x 107% X Nyurtaces (3)

with R*> = 0.961, ¢ = 10.731, N = 4258, Rrro’ = 0.960, 0rpo =
10.820, Ryest” = 0.961, 0pest = 10.718, Nyese = 4259; and

Y = —-20.961 — 1.883 x 1072 x D + 2.812 x 1077 x Np, — 2.178
x107% x 4 —2.542 x 107! x §—3.900 x 107" x f1;; — 5.280 x
fito + 5.948 x 107! X figo — 4.210 X f331 — 4.612 X foro — 3.774 x
i1z — 3.289 X fixz — 2.568 x 107* x surface defects + 7.762 x
107® x surface microstructures — 1.683 x 1075 x surface facets +
8.814 x 1077 X Ngyrfaces (4)

with R? = 0.921, ¢ = 1.365, N = 4258, Rrpo> = 0.921, 0rpo =
1.371, Rpest® = 0.920, Opese = 1.351, Nopege = 4259.

In each case R?, Rypo” and Rrpe are square Pearson's
correlation coefficient of the training, three-fold-out cross-
validation and test set predictions, respectively, with corre-
sponding standard deviation values ¢, orro and Gres, Whilst N
and Nres are the number of structures used for training and
testing the models, respectively. These amenable linear
combinations of structural features provide good prediction
accuracies and are also interesting mathematical expressions
due to their simplicity and easy application.

3.3 Decision tree models of the catalytic efficiency of
symmetric Pt nanoparticles

In addition to MLR models, simple binary rules (e.g., fraction of
{111} facets must be greater than 0.5), such as in DT* predic-
tions, can provide reliable information on how Pt nanocatalysts
exhibit a desired range of catalytic activity, selectivity and
stability. In comparison to multiple decision levels, three rules
yield more practical models at the expense of lower accuracy but
are more amenable to interpretation.

Therefore, we built three-levels DT models of the molar
catalytic activity, hydrogenation/combustion selectivity and
stability using all the structural features, and produced a satis-
factory cross-validation correlation accuracies of ~0.93. Fig. 3(a)
depicts the binary decision tree graph with the “rules-of-thumb”
principles to exhibit high catalytic activity that include sphe-
ricity, surface and the fraction of {111} facets. We found two
combinations of two-rules and one combination of three-rules
that characterize high catalytic activity as it is indicated by the
similar high values in the lowest branches in Fig. 3(a). There-
fore, the “rules-of-thumb” for high catalytic activity values are to
have sphericity lower than 1.39 (morphologies different from
tetrahedron and truncated tetrahedron) and surface area higher

This journal is © The Royal Society of Chemistry 2017
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Fig. 3 Binary DT model of the (a) molar catalytic activity and (b)
hydrogenation/combustion selectivity of the Pt nanocatalysts, where
red and blue lower nodes represent high and lower values,
respectively.

than 14 215 m> mol ™" (D > 10 nm); or sphericity higher than
1.39 and surface area lower than 1020 m> mol " (D < 60 nm). In
addition, another more specific rule suggests that nanoparticles
with higher degree of sphericity (S < 1.14 and octahedron
morphologies) can also be catalytically active given that the
molar surface area is higher than 14 044 m*> mol™" (D > 10 nm)
and, more importantly, the fraction of {111} facets higher than
0.35 (no cubic nanoparticles).

In the case of hydrogenation/combustion selectivity, Fig. 3(b)
depicts a binary decision tree with “rules-of-thumb” principles
that include sphericity, surface area and the total number of

View Article Online
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surface sites or dangling bonds. We found two combinations of
two-rules that characterize nanoparticles with selectivity of
approximately or higher than 10, which would guarantee a 10-
fold product enrichment, in the lowest branches in Fig. 3(b).
One “rule-of-thumb” characterises less spherical nanoparticles
(S > 1.21) with an average of more than 2900 surface sites, whilst
another rule accounts for more spherical nanoparticles (S <
1.21) but with average molar surface area of less than 10 000 m>
mol ™! (D < 10 nm). Interestingly, both rules corroborate that
nanoparticles with diameter higher than 7 nm exhibit high
selectivity. The DT analysis clearly illustrate a trade-off between
activity and selectivity that usually govern the selection of an
efficient catalysts for a given chemical reaction, ie. hydroge-
nation or combustion.

The DT analysis yields a simpler model of molar stability
with only one fundamental rule accounting for the low ther-
modynamic stability of nanoparticles with less than 9000 total
atoms in the surface (D < 5 nm) (see Fig. S4 in the ESIt). Owing
to the fact that the total number of atoms in the surface (SCN <
12) is the result of the combination of the nanoparticle size,
shape and facet configuration, this rule illustrates a consoli-
dated structural requirement for stable nanocatalysts, that
implicitly considers the geometrical constrains resulting in the
subsequent formation of active facets and its contributions to
the overall particle-free energy according to the thermodynamic
model.

3.4 ANN models of the catalytic efficiency of symmetric Pt
nanoparticles

In addition to providing useful insights into the intrinsic
structural-property relationship of Pt nanocatalyst systems,
machine learning models can yield accurate predictive models
of the molar catalytic activity, selectivity and stability. For this
purpose, we implemented back-propagated ANNs that are
suitable for data processing, in which the functional relation-
ship between the inputs variables is complex and the output is
not previously defined. ANNs are able to approximate any kind
of analytical continuous function, as complex structure-prop-
erty relationships, by adding sufficient processing units or
neurons. Back-propagated ANNs were designed with one input
layer of 15 neurons fully connected to one hidden layer with
variable number of neuron that transmitted the signal to the
single neuron in the one output layer. The learning curves in
Fig. S2 of the ESI{ showed optimum training set size of 50% of

Table 2 Details and statistics of the optimum ANNs models of the molar catalytic activity, hydrogenation/combustion selectivity and molar

thermodynamic stability of symmetric Pt nanocatalysts

Property Training set size Parameters” Ripo™® Rrest™®
X 4258 h =20, e =20 000, « = 0.25 0.996 0.993
Y 4258 h =20, e =20 000, « = 0.25 0.996 0.999
AG at 25 °C 4258 h =30, e =20 000, « = 0.25 0.993 0.999
AG from 0 °C to 200 °C 34 919 h =40, e =20 000, « = 0.25 0.996 0.999

“ square Pearson's correlation coefficient of the training set cross-validation and test set prediction.

e, h and « are the number of epochs, hidden

neurons and weighting smoothing parameters of the ANN model, respectively.

This journal is © The Royal Society of Chemistry 2017
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the data set. Therefore, ANNs are trained with the structural
features of 50% of the data set, while the remaining 50% was
used to test the predictive power of the neural networks.

The optimum ANN regressions were selected based on cross-
validation accuracy using early stopping criteria (see ESIT for
details). Table 2 shows the details and statistics of the optimum
ANNSs of molar catalytic activity, selectivity and stability, which
outclass MLR models with extremely high accuracies of ~0.99
using 20, 20 and 30 neurons in the hidden layer, respectively. In
addition to the molar thermodynamic stability at 25 °C, we also
trained ANNSs to predict the stability of the Pt nanoparticles at
different temperatures, by adding an extra input neuron to the
network architecture. For training these ANNs the data set was
extended to include the molar free energy (AG in kJ mol™') at
temperature values in the range from 0 °C to 200 °C and
a temperature increment of 5 °C. In this case the calibration was
performed with ~10% of the extended data set of 349 197 for
a total of 34 919 training samples that combine structural
features and temperature values. Table 2 shows that an
optimum ANN model of more complex architecture with 40
hidden neurons is capable of handling the influence of
temperature on the thermodynamic stability with extremely
high accuracy ~0.99.

The calibration of the ANNs yielded outstanding accuracies
but the predictions need further evaluation on an external test set
of samples not used to calibrate the models. For this purpose, we
have selected a test set of 4259 Pt nanoparticles that were not
used to calibrate the machine learning models of the molar
catalytic activity and stability at 25 °C. The scatter plots of the
predicted values in this test set are depicted in Fig. 4, where
“actual” refers to the values calculated theoretically and “pre-
dicted” corresponds to the ANNs predictions, as highlighted in
Table 2. In addition to this we use a test set of 314 278 samples to
test the larger ANN model of stability at different temperatures
that also yields extremely high R* ~ 0.999. Fig. 4(c) depicts the
scatter plots of the predictions, where it can be observed that the
ANN model successfully approximate the molar stability in the
entire temperature range, with the exception of the highest free
energy values that are slightly underestimated by the models. In
order to improve the fitting of large free energy values, we added
extra neurons to the hidden layer but this caused overfitting of
the ANN model. It is worth mentioning that, in addition to the
good approximation provided by ANNSs, the theoretical nature
and the completeness of the big data set also contribute to the
exceptionally high correlation coefficients.

3.5 Application of ANNs models to predict the catalytic
efficiency of non-symmetric Pt nanoparticles

ANN models in Table 2 were trained with numerically derived
catalytic activities, selectivity and stability of a theoretical data
set of symmetric Pt nanoparticles. However, these models use
facet configuration information, which may not be available for
non-symmetric nanoparticles. Therefore, by training new ANNs
without facet configuration inputs we build structure—efficiency
relationship models suitable to predict catalytic efficiency and
stability of more complex non-symmetric nanoparticles.
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Fig. 4 Scatter plots of the predictions of the (a) molar catalytic activity
(Rres® = 0.993), (b) hydrogenation/combustion selectivity (Rrest®> =
0.999), (c) AG (Rrest® = 0.999) at 25 °C and (d) AG (Rrest® = 0.999) at
the temperature range from 0 °C to 200 °C of symmetric Pt nano-
particles in the test set, where “actual” refers to the theoretical values
and “predicted” corresponds to the ANNs predictions.
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Table 3 Details and statistics of the optimum ANNs models of the molar catalytic activity, hydrogenation/combustion selectivity and molar

thermodynamic stability of non-symmetric Pt nanocatalysts

Property Training set size Parameters” Rrpo™® Rerest®
X 4258 h =10, e = 20 000, « = 0.25 0.937 0.937
Y 4258 h =10, e = 20 000, « = 0.25 0.971 0.976
AG at 25 °C 4258 h =10, e = 20 000, « = 0.25 0.940 0.947

“ Square Pearson’s correlation coefficient of the training set cross-validation and test set prediction. ® e, h and « are the number of epochs, hidden
neurons and weighting smoothing parameters of the ANN model, respectively.

The optimum ANN regressions of non-symmetric nano-
particles appear in Table 3, where models are less accurate than
in Table 2. In this case, the scatter plots of the predicted values
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Fig. 5 Scatter plots of the predictions of the (a) molar catalytic activity
(Rrest® = 0.937), (b) hydrogenation/combustion selectivity (Rrest®> =
0.976), (c) AG (Rrest> = 0.947) at 25 °C of Pt nanoparticles in the test
set, where "actual” refers to the theoretical values and “predicted”
corresponds to the non-symmetric ANN predictions.

This journal is © The Royal Society of Chemistry 2017

of the test set depicted in Fig. 5, also exhibit larger errors in
comparison to the ANNs for symmetric Pt nanoparticles in
Fig. 4. However, the agreeable correlation coefficient scores
higher than 0.93 reveal that accurate predictions can also be
made without detailed characterisation of the facet
configurations.

The new ANN models were applied to predict the catalytic
efficiency and stability of an external dataset of 521 non-
symmetric Pt nanoparticles generated by molecular dynamics
simulations as described elsewhere.* The tri-dimensional
structures of the nanoparticles with the highest catalytic
activity, selectivity and thermodynamic stability according to
ANN predictions appear in Fig. 6. As we can observed, lower
coordinated atoms are localised on the tips and edges while
higher coordinated atoms occupy planar areas over the surface.
The nanoparticle with 662 atoms exhibits high catalytic activity
that is linked to a highly irregular morphology, where low
coordinates sites can be noticeable (atoms in red in Fig. 6). The
nanoparticle with 1554 atoms has localised atomic distribution
of atoms with SCN of 8, 9, 10 and 11 (atoms in blue Fig. 6)
covering larger extensions on the surface. Meanwhile, lower
coordinated atoms can not be distinguished and atoms with
SCN of 4, 5, 6 and 7 that appear in green in Fig. 6 are randomly
distributed forming “chains”. These structural features
enhance the selectivity through surface microstructure defects.
The rise of surface defects and the subsequent development of
surface facets increases the thermodynamic stability of the
nanoparticles with 15 600 atoms in Fig. 6, where regardless the
sphericity of the structure, we can observe “patches” of SCN of 8,
9, 10 and 11; and SCN of 4, 5, 6 and 7; and developed facets.

662
atoms

1554
atoms

15600
atoms

Fig. 6 Distribution of catalytically active sites in non-symmetric Pt
nanoparticles with optimal catalytic activity (662 atoms), selectivity
(1554 atoms) and thermodynamic stability (15 600 atoms) according to
the ANN models. Atoms coloured in red (SCN of 1, 2 and 3) correspond
to surface defects sites, atoms in green (SCN of 4, 5, 6 and 7) corre-
spond to surface microstructures sites and atoms in blue (SCN of 8, 9,
10 and 11) correspond to surface facets sites.
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Our models have shown that simple global features of these
nanoparticles, of the type routinely characterized using electron
microscopy,” can be used to screen large configuration spaces.
These models can, of course, be used to predict the structure-
property relationships of more complicated nanoparticle
system upon previous characterization using the structural
features in Table 1. The ANN predictors can be extended to
handle other nanocatalysts by adding more processing neurons
to account for the chemical diversity and retraining the models
with additional data on different nanoparticle systems.

4 Conclusion

The use of theoretical representations of nanoparticle systems
has intrinsic advantages, such as the reduced computational
cost of representing each unique configuration as a set of
structural features, but this requires careful consideration.
Pattern recognition techniques can reveal which structural
features are important, and to what degree; and can provide
unprecedented insights into physical phenomena while still
being consistent with intuitive assumptions. Simple models can
be used to develop large exhaustive data sets ideal for data-
driven screening prior to a deeper commitment of computa-
tional and experimental resources.

In the case of Pt nanocatalysts, two main strategies to
increase the catalytic efficiency are revealed by our machine
learning models. The DT predicts that the insertion of low-index
facets and the manipulation of the ratio between molar surface
area and sphericity, possibly mediated by the diameter of the
nanoparticle, would increase the catalytic activity, whilst the
hydrogenation/combustion selectivity could be improved for
nanoparticles with diameter higher than 7 nm. Meanwhile, the
structural requirements for stable nanoparticles are reduced to
the simple principle of more than 9000 atoms in the nano-
particle surface, which condenses all the geometrical constrains
and contributions of the different facets to the overall particle-
free energy. Furthermore, the flexibility of ANNs to approximate
complex structure-property relationship is demonstrated by
correlation coefficients higher than 93% of models suitable for
non-symmetric nanoparticles.

To the best of our knowledge this is the first demonstration
of using structural data on nanoparticles derived from a ther-
modynamic model to calibrate machine learning predictors of
their functional properties. The present methodology is a sound
and relatively inexpensive approach to rapidly explore hypo-
thetical structure-property spaces of nanomaterials.
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