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1. Introduction

Targeted delivery of bromelain using dual mode
nanoparticles: synthesis, physicochemical
characterization, in vitro and in vivo evaluationt

Rozita Nasiri,? Javad Hamzehalipour Almaki,? Ani Idris, ©*@ Mahtab Nasiri,?
Muhammad Irfan,® Fadzilah Adibah Abdul Majid,© Hamid Rashidi Nodeh®
and Rosnhani Hasham®

The engineering, characterization, and application of dual-functional delivery vehicle “SPIONs—-Br—FA" are
reported. In this study, a citrate-coated SPIONSs (superparamagnetic iron oxide nanoparticles) drug-delivery
vehicle was conjugated with Br (bromelain), a phytotherapeutic anticancer agent, and finally immobilized
with FA (folic acid), as a targeting moiety to the FAR+, folate receptor positive, cancer cells. Then, in vitro
compatibility tests were performed to confirm the biocompatibility of the engineered system. A
cytotoxicity study was carried out, which showed a significant dose advantage with SPIONs—Br—FA in
reducing the ICsq values of FAR+ cancer cells compared with neat Br. Through morphological
alternation studies, it was disclosed that the SPIONs—Br—FA-treated cells had undergone apoptosis,
since shrinkage as well as apoptotic bodies were obviously observed. We demonstrated that SPIONs—
Br—FA was a good candidate to suppress the migration of the FAR+ cancer cells as well as to inhibit
colony formation of the FAR+ cancer cells compared to SPIONs-Br. We found that the apoptosis
percentage was sharply increased in the FAR+ cancer cells treated by SPIONs—-Br—FA compared to those
treated by neat Br. Moreover, the qualitative and quantitative biodistribution study performed on the vital
organs and tumor indicated a significant tumor targetability of the SPIONs—FA. Next, we demonstrated
the administration of SPIONs—Br—FA through the tail vein could reduce the tumor burden in 4T1-bearing
mice and also increased their lifespan when compared with SPIONs—Br and neat Br at the same
concentration of bromelain. In conclusion, the results indicated that the synthesized SPIONs—Br—FA is
a promising tool in the field of biomedicine, particularly in cancer therapy.

greatly improved the pharmacokinetics and dynamics of the
drugs in addressing some of the issues the current drugs have

Cancer remains a major health problem and involves various
genetic and cellular abnormalities.”* In the past decade, it has
received much attention from researchers®* as the mortality
rate due to cancer continues to rise.” Despite several advance-
ments in conventional treatment, such as surgery, chemo and
radiation therapy, the progress of research in this area still
requires new initiatives. Recent advances in drug delivery have

“Institute of Bioproduct Development, Department of Bioprocess Engineering, Faculty
of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81110,
Johor Bahru, Johor, Malaysia

*Advanced Materials Research Centre, Department of Materials Engineering, Islamic
Azad University, Najafabad Branch, Najafabad, Iran

“Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala
Terengganu, Malaysia

“Department of Analytical Chemistry, University of Tehran, Tehran, Iran

“Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai 81110,
Johor Bahru, Johor, Malaysia

available. See DOLI:

T Electronic  supplementary  information

10.1039/c7ra06389j

(ES)

40074 | RSC Adv., 2017, 7, 40074-40094

with poor bioavailability, stability and high systemic toxicity.*™*°

In spite of these advances, immune clearance as well as
difficulties in achieving effective concentration and targeted
selectivity remain challenging and demanding."** The last few
years have witnessed the development of a number of
nanoparticles-based therapeutic agents for various diseases as
these offer several advantages, such as longer circulation time,
enhanced permeability and retention (EPR), and improved
bioavailability of drugs.***® Some studies carried out recently
showed that SPIONs are rewarding magnetic nanoparticles
possessing superb characteristics; for instance, recent studies
have shown that RBC membrane-coated SPIONs could resist the
immune response as well as have rapid clearance in the body,
which is known as a major challenge in nanomedicine.'®"”

In the current era, it is essential and also crucial to develop
sensitive, specific, and accelerated methods for the diagnosis
and therapy of cancer since it is a serious concern in the
international community and the current treatments utilized
are insufficient.’®* Recent advances in nanotechnology have
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introduced ultrasmall platforms, such as superparamagnetic
iron oxide nanoparticles (SPIONs), which invaluably offer an
improvement in cancer therapy, such as targeted drug
delivery,”® magnetic tumor-targeting hyperthermia,* various
localized therapies,* cell labeling,* cell tracking,** magnetic
resonance imaging,”*’ and photothermal therapy.*® Cengelli
et al* coated fluorescent SPIONs with PEG and then immobi-
lized a fluorescent reporter molecule, and then administered
the system to a microglial cell culture containing nervous
system immune cells, where the results obtained proved that
the engineered SPIONs possessed satisfying biocompatibility as
well as remarkable intracellular uptake. In another study,*
magnetite nanoparticles were loaded with doxorubicin and
then conjugation of an antibody to the drug was carried out,
and the combination made was then used for simultaneous
cancer diagnosis and therapy. The results showed the sustain-
able release of encapsulated doxorubicin with no inhibition due
to presence of the magnetic nanocapsules. Kubo et al.** per-
formed implantation of permanent magnets in the sites of
hamster solid osteosarcoma and carried out the delivery of
cytotoxic compounds through magnetic liposomes, whereby
cytotoxic drug delivery was increased by a factor of four times in
comparison with conventional intravenous (nonmagnetic)
delivery.** Moreover, a remarkable increase in anti-tumor
activity was seen and weight-loss as a side effect was elimi-
nated.*” In 2011, Yoo et al.** used folic acid and cy5.5 to func-
tionalize SPIONs in order for them to be used in the lung-
cancer-targeted optical imaging of lung cancer, where
stronger optical imaging was observed in the lung cancer
model. In 2011, another study showed good intracellular drug
distribution and interaction for doxorubicin-SPIONs on MCF-7
cells in comparison with a solution of neat doxorubicin.**
Recently, Nasiri et al.®* showed that the cytotoxic effect was
improved in papain-conjugated cobalt ferrite nanoparticles
compared to neat papain. Similarly, Mosafa et al*® demon-
strated the identical characteristics of papain-immobilized
magnetic nanoparticles compared with neat papain.

Nowadays, SPIONs have been preclinically studied and studies
are now beginning with clinical trials.>*” Various routes are
available for SPIONs synthesis, such as sono-chemical synthesis,
emulsion, thermal decomposition, co-precipitation, and hydro-
thermal synthesis.*®** Co-precipitation is known as a simple and
reliable method to synthesize SPIONs with diameters <20 nm.*
SPIONs have been lately found to be highly potent to perform as
a drug-delivery vehicles, since they are poorly toxic*' and possess
a sufficient amount of magnetic saturation.*> Our previous study*
showed that the conjugation of folic acid (FA) to citrate-coated
SPIONs could enable the fabrication of a novel complex pos-
sessing the ability to target the FAR+ cancer cells***” while pos-
sessing remarkably biocompatibility.**

In recent years, a variety of naturally occurring dietary
compounds have been shown to possess significant anticancer
properties.* Among these, bromelain (EC 3.4.22.33), a cysteine
proteinase derived from pineapple (Ananas comosus), has been
used for several therapeutic applications, such as the inhibition
of platelet aggregation, as an anti-inflammatory agent, in
modulation of cytokines, in enhancing the absorption of
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antibiotics, and as an anti-tumor activity agent.*-** Bromelain
(Br) is known as an effective anticancer phyto-therapeutic agent.
The acceptance of Br as a phyto-therapeutical drug among
researchers is now increasing because of its higher efficacy and
non-toxic nature.*” Also, it was found that the beginning of
tumorigenesis was delayed while the number of tumors were
reduced due to pre-treatment with Br in a mouse skin cancer
model.* In Central and South America, pineapple has been
known as a folk medicine for centuries. The plant's medicinal
properties are related to bromelain, which is an extract from the
stem of the pineapple that has been marketed for the last six
decades.** Bromelain's multiple constituents are the reason why
it is medicinally beneficial; for instance, Br contains proteolytic
enzymes comprising sulthydryl® as well as peroxidase, eschar-
ase (a nonproteolytic component with debriding effects),
glucosidases, acid phosphatase, several protease inhibitors,
cellulases, carbohydrates, organically bound calcium and
glycoproteins.®** Bromelain has proved its capabilities to affect
physiological processes, such as coagulation, inflammation,
and the immune response. Hence, through preclinical and
clinical studies, the therapeutic effects of bromelain either
alone or in combination with other therapeutics have been
evaluated, and has indicated some clinical benefits.”® It was
revealed that the anticancer activity of bromelain may be due to
the protease components it possesses.*® To apply effectively, it is
necessary to find a new approach for targeting the delivery of Br,
and also to enhance Br concentration at the tumor site. In the
past few years, the complete release of native protein from orally
delivered carrier systems has become a major problem due to
a high probability of protein degradation and instability.
Proteins are therapeutically inactive while aggregated or dena-
tured and can cause unforeseeable side effects, including
toxicity and immunogenicity. Our previously published study*?
showed that bromelain possesses remarkable anticancer effects
on ovarian and colon cancer cell lines, but it had toxic effects
toward normal cell lines. So, synthesizing a safe targetable
delivery system to minimize the side effects of bromelain on
normal cell lines and to maximize their toxic effect on tumor
site is highly required.

In this study, the synthesis, characterization, and evaluation
of dual-functional nanocarrier (SPIONs-Br-FA) for the delivery
of anticancer agents, namely bromelain, was investigated.
Nobody has tried the nano-delivery of bromelain using y-Fe,O3
to the FAR+ cancer cells before this, but, in this study, Br was
conjugated to the citrate SPIONs and finally it was targeted to
the FAR+ cancer cells using FA resulting in the synthesis of
a novel biocompatible dual-functional therapeutic biomaterial
with desired characteristics. The anti-tumor efficacy of the
formulated SPIONs-Br-FA in different cancer cell lines was
measured and in vivo studies were user to evaluate the efficacy
in the 4T1-bearing Balb/C mice model.

2. Materials and methods
Materials

The chemicals utilized in the current research were all analyti-
cally pure, including sulfuric acid (H,SO,) (QREC), iron(u)
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chloride (FeCl,) (99% purity, Sigma Aldrich), iron(ur) chloride
(FeCl;) (45% purity, Riedel-de Haen), acetone (QREC), hydro-
chloric acid (HCI) (37% purity, QREC), folic acid (Sigma
Aldrich), potassium bromide (KBr, Sigma Aldrich), N-ethyl-N-(3-
dimethylaminopropyl)carbodiimide hydrochloride (EDC, 99%
purity, Sigma Aldrich), N-hydroxy succinimide (NHS, 98%
purity, Sigma Aldrich), bovine serum albumin (BSA, Sigma
Aldrich), Bradford Reagent (Sigma Aldrich), bromelain (Merck),
HSF 1184 cell line (human skin fibroblast cell line, ATCC
Manassas, VA), HeLa cell line (human cervical cancer cell, ATCC
Manassas, VA), MDA-MB-468 cell line (human breast cancer
cell, ATCC Manassas, VA), MDA-MB-231 cell line (human breast
cancer cell, ATCC Manassas, VA), 4T1 cell line (animal stage IV
human breast cancer cell, ATCC Manassas, VA), fetal bovine
serum (Gibco, USA), trypsin EDTA (Gibco, USA), phosphate
buffered saline (PBS, Gibco, USA), MES sodium salt (MES,
Sigma Aldrich), Dulbecco's modified eagle's medium (DMEM,
Gibco, USA), RPMI medium 1640 (Gibco, USA), penicillin-
streptomycin (Gibco, USA), dimethyl sulfoxide (DMSO, Sigma
Aldrich), thiazolyl blue tetrazolium bromide (MTT, Sigma
Aldrich), Prussian blue test kit (Sigma Aldrich), cisplatin (Sigma
Aldrich), paraformaldehyde (Sigma Aldrich), and osmium
tetroxide solution (Sigma Aldrich). In all the experiments, water
was previously deionized (18 MQ). Moreover, 5 week-old female
Balb/C mice and all their requirements were procured from
Bistari Co., Malaysia.

Preparation of the activated SPIONs-COOH core material

Maghemite nanoparticles were fabricated through a co-
precipitation method described in our previous study.* In
brief, a solution of ferric chloride and ferrous chloride was
mixed with ammonium hydroxide. The resultant magnetites
were magnetically separated and washed via deionized water.
The excess base was then removed using a solution of nitric acid
in order to accomplish the neutralization of the precipitate.
Then, oxidization of the obtained magnetites to maghemites
was performed by adding ferric nitrate at 100 °C for 0.5 h.
Subsequently, washing of the precipitate with acetone was
carried out prior to the product being finally dispersed in water
to obtain stable y-Fe,O; (pH = 7). After the maghemite
synthesis, 50 ml of ferrofluid sample was added to 5 g of CA
dissolved in 10 ml DI-water initially and the temperature was
raised to 90 °C under continuous stirring for 90 min. The
mixture was cooled down to room temperature until blackish
precipitates were observed. The procedure was continued by
washing using acetone to acquire citric acid-coated SPIONs
(SPIONs-COOH).***” The final product was named SPIONs-
COOH.

Bromelain conjugation

Conjugation of the bromelain to the coated SPIONs was per-
formed through the EDC/NHS click chemistry reaction.’®* In
brief, a mixture of N-ethyl-N-(3-dimethylaminopropyl)carbodii-
mide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) in
MES buffer (0.05 M, pH = 5.7) was added to 5 ml of activated
SPIONs-COOH and mixed at ambient temperature for 1.5 h.
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Then, the resulting solution underwent a careful two-fold
washing via phosphate buffer solution (PBS), pH = 7.4, and
removal of the aqueous layer was carried out afterwards.
Bromelain (27 mg ml ™, in 5 ml PBS, pH = 7.4) was then mixed
with the activated SPIONs-COOH and the mixture was stirred
for the next 3 h. Then, the reaction was quenched through the
addition of 25 mM glycine in PBS for 0.5 h with continuous
stirring. Washing was performed three times using PBS, until
finally the suspension of the final product (SPIONs-Br) was
ready for further use.

Determination of the amount of conjugated bromelain

The amount of bromelain conjugated onto the nanoparticles
was determined by measuring the initial and final concentra-
tions of bromelain using the Bradford method, in which Coo-
massie protein assay reagent was used while BSA was used as
the standard.”

Folic acid conjugation and loading content determination

Folic acid (FA) was conjugated to the SPIONs-Br and then the FA
loading content was determined using the same method as
described in Nasiri et al.** The final resulting nanocarriers were
called SPIONs-Br-FA.

Characterization

The size of the obtained samples was evaluated using trans-
mission electron microscopy (TEM) (Hitachi H-7500), where
analysis of the snapshots assisted approximating the nano-
particles’ diameters. Field emission scanning electron micros-
copy (FESEM, JSM-6700F, JEOL, Tokyo, Japan) was carried out to
evaluate the morphology of the samples. The accelerating
voltage was 5 kV, while the working distance between the
detector and the samples was 1.5 cm. Subsequently, the snap-
shots obtained were transformed to 3D images using NIH
Image ] software (1.46r/Java 1.6.0_20 (32 bit)).

The chemical integrity was investigated afterward using
Fourier Transform Infrared Spectroscopy (FT-IR) spectra anal-
ysis in the range of 400-4000 cm ™.

The hydrodynamic diameters and surface zeta potential were
gauged using a Nano Zetasizer particle-sizing instrument
(Malvern Instruments, Malvern, UK) after the nanoparticles
powder was diluted in deionized distilled water. Equilibration
of the samples was performed at 25 °C for 5 min prior to each
measurement.

Atomic absorption spectroscopy (SpectrAA-10 Plus spec-
trometer, Varian, France) at 248.3 nm was used to determine the
iron concentration in the samples.

The changes in the chemical and physical characteristics of
the samples were measured using thermogravimetric analysis
(TGA) via a thermogravimetric analyzer (Shimadzu, model TG-
50) under certain adjustments: heating rate of 10 °C min—",
N, flowing rate of 50 ml min ", and temperature ranging from
25 °C to 800 °C.

Verification of the crystalline structures was performed via X-
ray diffraction using a Panalytical X' PERT MPD X-ray diffrac-
tometer. The diffractometer was equipped with a copper anode

This journal is © The Royal Society of Chemistry 2017
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that could generate high intensity Cu Ka radiation (A = 1.54065
A). The range of 260 was between 10° and 90°.

Anti-coagulation assay

A semi-automated blood coagulation analyzer Clot SP was
employed to determine the pro-thrombin time (PT), thrombin
time (TT), and the activated partial thromboplastin time (APTT)
of human blood incubated with samples for intrinsic, extrinsic,
and both intrinsic and extrinsic pathways, respectively. The
fibrinogen formation time (FB) of the samples was also
measured using the same device. The blood sample was ob-
tained from a male donor (29 years old, no history of extreme
disease) at the Health Centre of Universiti Teknologi Malaysia
(UTM) and transferred to the tube containing citrate to avoid
the blood sample from coagulating. Informed consent was ob-
tained from the donor for the use of their blood and the
dissemination of information about their blood in the scientific
record. The procedure was accepted as satisfactory by the
Medical Advisory Committee and the Clinical Ethics Committee
of Sultanah Aminah Healthcare Hospital Berhad, Malaysia, in
association with the Ministry of Health (MOH). PBS solution
(pH = 7.4) was used to dilute the samples (0.2 ml) and the
diluted samples were incubated together with 500 pl plasma of
fresh human blood under specific conditions: 30 min, 37 °C,
and in a transparent plastic tube. Eventually, the PT, TT, APTT,
and FB were measured three times for each of the samples.®* In
order to carry out the hemolysis study, 100 pl of washed RBCs
together with 900 pl of each of the samples dispersed in saline
was incubated for 2 h, followed by centrifugation for 5 min at
1500 rpm. Subsequently, to the collected supernatant, 900 pl of
saline was added and via a UV spectrophotometer (Carywin UV),
the absorbance was recorded at 541 nm. The coagulation test in
a slide method was carried out to determine the hard clot
formation time on slide. The synthesized samples were diluted
in 0.2 ml of phosphate buffered saline (PBS) solution (pH = 7.4).
The samples were incubated with a drop of blood on the glass
slide at 37 °C. Every 30 s, the needle was placed in the middle of
a blood drop and it was then elevated. Blood coagulation started
when fibrin threads appeared attached to the needles. Through
manually dipping a silicon-coated stainless steel hook into the
solution, hard clot formation was closely monitored via the
detection of fibrin threads. Clotting time was recorded once the
first fibrin formation sign was seen, and the clotting time was
recorded. In order to obtain reliable values, each test was
repeated three times (with hard clot formation normally taking
place in 5 to 10 min).

Cell lines

The HSF 1184 (normal human skin cell line), HeLa (human
ovarian cancer cell line, FAR+), MDA-MB-468 (human breast
cancer cell line, FAR—), MDA-MB-231 (human breast cancer cell
line, FAR+), and 4T1 (animal stage IV breast cancer cell line,
FAR+) cell lines were purchased from ATCC. The HSF 1184,
MDA-MB-231 and MDA-MB-468 cell lines were both cultured in
DMEM medium supplemented with 10% fetal bovine serum
(VWR, Visalia, CA) and 1% penicillin-streptomycin (Sigma, St.
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Louis, MO). HeLa and 4T1 cell lines were cultured in RPMI 1640
medium with 10% fetal bovine serum (VWR, Visalia, CA) and
1% penicillin-streptomycin (Sigma, St. Louis, MO). Cells were
maintained at 37 &+ 0.5 °C in a humid atmosphere of 5% CO, (v/
v) in air. All the tests were accomplished when the cells were in
their exponential growth phase.

Anti-proliferation assay

Tetrazolium dye (MTT) assay was carried out for evaluation of
the viability of HSF 1184, HeLa, MDA-MB-468, MDA-MB-231,
and 4T1 cell lines when they are treated with bare SPIONS,
SPIONs-COOH, SPIONs-FA, neat Br, SPIONs-Br, and SPIONs-
Br-FA.*® After being harvested, the cells were resuspended in
their related medium at 5 x 10 cells/200 pl. Subsequently, 24-
well plates were used to culture the cells. After 24 h, the medium
of each cell line was removed and replaced with 200 pl of each
sample (100, 200, 300, 500, 1000 pg ml~*) diluted with medium
and located in an incubator for 24 h. Then, 20 pl of MTT (5 mg
ml ') was added prior to 4 h incubation in absolute darkness
since this reaction is highly sensitive to light. Subsequently, the
formulations were aspirated prior to the addition of 200 pl of
DMSO in order for formazan crystals to be dissolved. After-
wards, measurement of the absorbance at 570 nm was carried
out via a microplane reader (BioRad). The medium was used as
blank while untreated cells were used as the control with 100%
viability. Finally, the results are expressed herein as mean
values £ standard deviation of 6 independent measurements.
Compared to the control group, the relative cell viability (%) was
calculated via eqn (1).

D I
Cell viability (%) — 22570 (sample)

" OD 570 (control) x 100 )

Morphological assessment by phase-contrast inverted
microscopy

The morphological apoptosis of cells after treatment with neat
Br and SPIONs-Br-FA was observed using an inverted micro-
scope according to the standard protocol.** A solution of 1 x 10°
cells per ml was seeded in 6-well plates and the cells were
treated for 24 h with neat Br (at the IC5, value) and SPIONs-Br-
FA (at the ICs, value of neat Br), with a 70% level of confluence
achieved. The negative control was the untreated cells, while
cisplatin was used as the positive apoptosis control. Next,
removal of the medium and washing with PBS were carried out
so as to track the morphological alterations occurring.

Apoptosis detection by AO/EB staining

Slight modifications were made to Acridine orange (AO) and
ethidium bromide (EB) double staining as described by Gani
et al.®® The cells were treated with neat Br (at the IC5, value) and
SPIONs-Br-FA (at the ICs, value of neat Br) for 24 h. After 24 h
treatment, using 100 pl of 1x working solution, the cells were
stained. 1x working solution was prepared by mixing 500 ug EB
and 100 pg AO in 1 ml of PBS. Once the cells had undergone
a 10 min incubation, the cells were observed using a fluorescent

RSC Aadv., 2017, 7, 40074-40094 | 40077


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra06389j

Open Access Article. Published on 16 August 2017. Downloaded on 1/21/2026 6:59:15 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

microscope (Olympus). The nuclei of the living cells were
stained green once with AO, which was used as a cell-permeant
dye. Unlike the AO, in cells with ruptured plasma membranes or
dead cells, the nuclei were stained orange through EB staining.
As a result, live cells with an organized structure were observed
in green, while the dead cells with round nuclei were observed
in orange. From at least 200 cells, the number of viable,
apoptotic, and necrotic cells were counted. The percentages of
apoptotic and necrotic cells were then calculated using eqn (2)
and (3), respectively,

Acen(%) = 1]\\[7: x 100 (2)
Nceu(%) = %‘: x 100 (3)

where A..j; (%) stands for the percentage of apoptotic cells, Neeyy
(%) stands for the percentage of necrotic cells, N, is the number
of apoptotic cells, N,, represents the number of necrotic cells,
and N, is the total number of cells.

Scratch motility assay

In order to measure the ability of the FAR+ cells treated with
neat Br (at the ICs, value) and SPIONs-Br-FA (at the ICs, value
of neat Br), a scratch assay was performed according to Amini
et al.,** with slight modifications. Briefly, in a 6-well plate, 3 x
10° cells per well were seeded and incubated to obtain
a confluent monolayer. Using a cell scrapper, the monolayer was
linearly scratched and the debris and the detached cells were
removed after being gently washed via PBS. Next, treatment of
the cells via neat Br and SPIONs-Br-FA was performed. The
negative control wells were filled using the complete medium
and incubated at 37 °C, while the migrated distance by the cells
was measured at 0, 12, and 24 h using an inverted phase-
contrast microscope (Zeiss Axiovert 100). For evaluation and
comparison of the width of the scratches at each time interval,
NIH Image J software was operated. Statistical calculations were
performed to obtain the healing rates, while the final results
were released as cell migration percentages.

Clonogenic inhibition assay

Previously, a clonogenic cell survival assay was performed as
described by Gani et al.,*® with slight modifications. In brief,
cells in their growth log phase were trypsinized. Then, a tripli-
cate seeding of almost 1 x 10 cells per ml into 6-well plates was
performed and the medium was replaced by a medium con-
taining neat Br (at the ICs, value) and SPIONs-Br-FA (at the ICs,
value of neat Br) a day later. A day later, fresh medium replaced
the extracts and the cells were maintained at 37 °C in a CO,
incubator for 10 days, during which growth media were
refreshed every 2 days. Fixation of the colonies was carried out
using —20 °C methanol and staining with 0.5% trypan blue
solution. The results were then expressed as q colony-forming-
potential percentage for the colonies including 50 or more
cells. Eqn (4) was used to calculate the efficiency of the colony
formation:
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Nep = % x 100% (4)

where 7. ¢ is the colony formation efficiency, N, is the number of
the colonies formed, and N; is the number of cells incubated.

In vivo analysis

Animal handling and establishing the 4T1-bearing mice
model. The Institutional Review Board of the Universiti
Kebangsaan Malaysia Animal Ethics Committee (UKMAEC),
Selangor, Malaysia, approved this study and granted its ethical
endorsement (UTM/2014/ANI/26 NOV/625). A submitted full
research proposal, an interview, and hands-on animal training
session were required for the ethical clearance. Data collection
was performed at the Universiti Teknologi Malaysia as the
housing location. Therefore, according to the rules and regu-
lations set by the UKMAEC, proper handling of all the experi-
mental protocols were carried out.

The maintenance of the 15 to 20 g and 6 week-old female
Balb/C mice were carried out using wood shavings-bedded
polypropylene cages at ambient temperature, while the mice
had unlimited access to water and a folate-deficient diet over
the course of the experiment in order to decrease the level of
folic acid to the minimum,®® while a 12 h light/dark cycle was
applied. The adaptation period was considered to be 7 days.
Female Balc/C mice were each subcutaneously injected with 1 x
10° 4T1 murine mammary carcinoma cells (n = 6) into the
mammary fat pad for establishment of the mice bearing the
breast cancer tumor. Two to three weeks later, the 4T1-injected
mice with palpable primary tumors were observed.

The standard protocol of H&E staining was followed to
confirm the presence of tumor cells under an inverted micro-
scope (Nikon Eclipse Ti-s examination).*” In brief, tissue
removal was carried out upon necropsy and the removed tissue
underwent fixation in formalin (10%). Subsequently, the pro-
cessed tissues were paraffin-embedded, sectioned at 5 um,
located on glass slides, and stained via hematoxylin and eosin
through standard procedures.

Quantitative biodistribution study in the 4T1-bearing mice
model. A quantitative biodistribution study was carried out
according to ref. 68 and 69, with slight modification. The 4T1-
bearing mice were injected via the tail vein with 100 pl of
SPIONs-COOH and SPIONs-FA (10 mg kg ') and sacrificed at 4,
12, and 24 h time points. The blood was collected by cardiac
puncture and, after euthanasia, the heart, liver, spleen, lungs,
kidneys, stomach, muscle, and tumor were collected, weighed,
and dissolved completely by adding 2 ml of HCI and 1 ml of
HNO; at 70 °C for 6 h. The solution was diluted with deionized
water and filtered with a 0.45 um Teflon filter. The sample was
analyzed for iron by atomic absorption spectroscopy (AAS)
(VARIAN, model AA240FS). The uptakes of the nanoparticles in
the organs were calculated as a mean percentage of the injected
doses per gram of organ tissues (% ID per g). Each sample and
time point included six independent repetitions.

Qualitative biodistribution studies in the 4T1-bearing mice
model. Qualitative biodistribution studies in the 4T1-bearing
mice were performed by TEM. The 4T1-bearing mice were

This journal is © The Royal Society of Chemistry 2017
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Table 1 First group in the in vivo study

Group I Saline

Group II SPIONs-COOH 10 mg kg

Group III Neat Br 10 mg kg ™"

Group IV SPIONs-Br 4 mg kg ™!

Group V SPIONSs-Br 8 mg kg !

Group VI SPIONs-Br 10 mg kg™

Table 2 Second group in the in vivo study

Group I Saline

Group 11 SPIONs-FA 8 mg kg "

Group III SPIONs-Br-FA 8 mg kg "

Group IV SPIONs-Br-FA + coinjection 8 mg kg "
of excess folic acid

Group V SPIONs-Br 8 mg kg "

Group VI Neat bromelain

(at the same concentration of Br in
conjugated nanoparticles ~1 mg kg™ ')

injected via the tail vein with 100 pl of SPIONs-FA (10 mg kg™ ")
and sacrificed at 24 h after injection. To verify the SPIONs-FA
biodistribution in the major organs, including the heart, liver,
spleen, lungs, kidneys, stomach, muscle, and tumor, these tissues
were collected and washed with PBS. These tissues were fixed
using paraformaldehyde (10%) and were paraffin-embedded.
Using an ultramicrotome, the sections were prepared in an
ultrathin manner. Then, the ultrathin sections were mounted on
200 mesh copper grids stained with 2% osmium tetroxide (dis-
solved in distilled water) for 30 min according to the standard
procedure.” All the stained sections were observed under a Hita-
chi HT7700 Bio-Medical TEM microscope.

In vivo anticancer efficacy

The anticancer efficacy of SPIONs-Br and SPIONs-Br-FA were
evaluated in the 4T1-bearing mice model compared with neat
Br. Mice were inoculated with 1 x 10° cells per mouse on day 0,
followed by treatment with neat Br and nanoparticles in
different formulations after 24 h post inoculation of the 4T1
cancer cells. The mice were randomly divided into 6 groups of 6
as shown in Table 1 (note: after getting the in vivo anticancer
efficiency results of the first group, the second group of 4T1-
bearing mice model were randomly divided into 6 groups of
6, as shown in Table 2). The same procedure was followed for
the second group of study.

The formulations were administered intravenously three
times a week to the 4T1-bearing mice model. Mice of the control
groups were treated with the same volume of normal saline. The
tumor volume was measured every other day in all the groups.

The diameter of each tumor was measured using a digital
caliper. The obtained readings were used in order to calculate
the tumor size through eqn (5), whereby the effect of the
treatment was assessed:

1

V=5 ab* (5)

This journal is © The Royal Society of Chemistry 2017
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where v is tumor volume, a is the longest diameter, and b is the
shortest diameter.
Additionally, the survival rate was calculated using eqn (6):

Nsur (6)

Ry = N,

where Ry, is the survival rate, Ng,, is the number of surviving
mice, and N, is the total number of mice.

Statistical analysis

The data were analyzed by one or two-factor ANOVAs with
appropriate post-tests as well as multiple ¢test analysis using
GraphPad Prism software (version 6.0). The obtained results are
reported herein as the mean + S.E.M (standard error of the
mean) of at least three independent experiments. Statistically
significant data were the ones with a p-value < 0.05.

3. Results and discussion
Synthesis and characterizations

The major goal of the present study was to synthesize, charac-
terize, and evaluate the biocompatibility, binding, and anti-
cancer efficacy of exquisite SPIONs-Br-FA in vitro and in vivo.
Fig. 1 illustrates a schematic representation of the study design.
Fig. 1(A) shows the functionalization of the dual-functional
SPIONs-Br-FA. Fig. 1(B) illustrates the in vitro targeting effi-
ciency of the folate-conjugated SPIONs, which is significantly
higher in FAR+ cells (HeLa, MDA-MB-231 and 4T1) compared to
in the FAR— cells (HSF 1184 and MDA-MB-468), while Fig. 1(C)
shows the in vivo effectiveness of SPIONs-Br-FA in the inhibi-
tion of cancer growth compared to the SPIONs-Br and neat Br.
The step-by-step synthetic routes for the CA-coated SPIONs and
Br and FA conjugation are shown in Fig. 2. Initially, the
synthesized SPIONs were stabilized via citric acid, as shown in
Fig. 2(A), followed by Br conjugation through the EDC/NHS click
chemistry method, as shown in Fig. 2(B1) and (B2). The reaction
was followed by FA immobilization of the Br-conjugated
SPIONSs, as shown in Fig. 2(C) in order to facilitate the target-
ing efficiency of Br-conjugated SPIONs to different types of
cancers, such as breast, lung, and cervical, in which the over-
expression of the folate receptor is seen.””7*

We previously reported that FA provides a good cancer cell-
specific target in vitro.*® Here, we present the modification of
targetable nanoparticles by the conjugation of Br (anticancer
agent) to the activated SPIONs-COOH, which serves as
a bromelain (Br) delivery vehicle to the FAR+ cancer cells.
Furthermore, the effectiveness of the final engineered formu-
lation (SPIONs-Br-FA) was investigated with cancer cells (HSF
1184, MDA-MB-468, MDA-MB-231, and HeLa) and the 4T1-
bearing mice model, respectively.

TEM and FESEM observations (Fig. 3) revealed that the
functionalized SPIONs (SPIONs-Br-FA) were spherical and
nearly uniform (Fig. 3(a3) and (c;)), with an average diameter
size of approximately 23-24 nm (Fig. 3(c3)). Moreover, the
morphology undergoes slight alterations after functionalization
(Fig. 3(b4) and (c;)) and nanoparticles tend to grow as shown in

RSC Adv., 2017, 7, 40074-40094 | 40079
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Fig. 1 (A) Schematic presentation of the functionalization of dual-functional SPIONs—Br—FA, (B) SPIONs—Br—FA binding to the FA receptors on

the cancer cells, (C) administration of SPIONs with different formulations into the 4T1-bearing mice model, leading to the inhibition of cancer

growth.

the size distribution graph (Fig. 3(bs) and (c3)). The 3D images
of the bare nanoparticles and functionalized nanoparticles are
shown in Fig. 3(b,) and (c,). The SPIONs crystalline nature is
presented in the image provided by high resolution trans-
mission electron microscopy (HRTEM, Fig. 3(a;)). A typical
structure of the core-shell (SPIONs-Br-FA) that was slightly
dispersed appeared upon Br and FA conjugation, as shown in
Fig. 3(a3), while a thick layer (12-15 nm) was clearly observed on
the outer shell of the core. The results obtained via HRTEM are
compared herein to the data obtained via fast Fourier transform
(FFT), as seen in (Fig. 3(a;) and (a,)) and could be indexed as the
(311) plane of cubic SPIONs.

40080 | RSC Adv., 2017, 7. 40074-40094

Additional characterizations and physicochemical analyses
of the synthesized nanoparticles through various methods,
such as FT-IR, TGA, DLS, XRD, and microscopic observations in
the absence of the magnetic field are reported in the ESI file

(Fig. S17).

Cellular uptake of nanoparticles into 4T1 cancer cells

In our previous published paper,*® the nanoparticles uptake
into HSF 11 84, MDA-MB-231, MDA-MB-468, and HeLa cell lines
was reported. In the current paper, the quantitative uptake
experiments were performed by means of AAS using 4T1 cells,
known to overexpress the folate receptor.”>”® After the

This journal is © The Royal Society of Chemistry 2017
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Fig. 2 Step-by-step functionalization of dual-functional SPIONs—-Br—FA.

treatment of cells with suspensions of SPIONs—-COOH and
SPIONs-FA in three different concentrations (100, 200, and 300
ng ml~ ) for 4,12, and 24 h, cells as mineralized cell lysates were
tested to determine their iron content via measurement of their
atomic absorbance at 248.3 nm. In contrast to SPIONs—-COOH,
the uptake of SPIONs-FA by 4T1 cells was about 2-fold higher
(Fig. 4(C)). A binding assay was performed in a competitive
manner for the determination of the dependency of cellular
uptake on the folate receptors in FAR+ cells treated with 1 mM

This journal is © The Royal Society of Chemistry 2017

of neat folic acid, which was needed to limit the folate receptor-
dependent binding in a competitive manner. As expected, the
comparative binding assay shows a sharp decreased uptake of
the nanoparticles by the 4T1 cells (Fig. 4(D)). This result indi-
cates that the uptake of SPIONs-FA was mediated by the folate
receptors on the cell surface.**®® On the other hand, the
internalization of SPIONs-COOH and SPIONs-FA were verified
using Prussian blue staining (Fig. 4(A)) and by TEM (Fig. 4(B)).
Fig. 4(A) shows a higher number of nanoparticles, as the blue

RSC Adv., 2017, 7, 40074-40094 | 40081
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(a;) TEM and HRTEM images of bare SPIONSs, (a,) intensity histogram of SPIONs, (as) TEM and HRTEM images of the functionalized

nanoparticles, (by)—(bz) show the FESEM, 3D, and size distribution images of SPIONS, (c;)—(c3) show the FESEM, 3D, and size distribution of the

functionalized nanoparticles.

spots, within 4T1 cells in a concentration-dependent manner
after incubation with SPIONs-FA compared to SPIONs-COOH-
incubated cells. Fig. 4(B) shows SPIONs-FA internalization to
a 4T1 cell by electron microscopy. Although the results obtained
from the TEM and Prussian blue staining confirm the results
obtained from the AAS assay, in which a higher amount of
SPIONs-FA are seen (blue spots) on 4T1 cells when the cells
were treated with SPIONs-FA, a lower number of blue spots was
seen when the cells were treated with SPIONs-COOH. The
results showed that SPIONs-FA was a rewarding option for
targeting 4T1 cancer cells.

In vitro biocompatibility evaluation and cytotoxicity assay

The biocompatibility levels of the SPIONs, SPIONs-COOH, and
SPIONs-FA were qualitatively determined using the colori-
metric MTT assay toward HSF 1184, MDA-MB-468, MDA-MB-
231, and HeLa cells as reported in our previous published
paper,* while the biocompatibility of 4T1 cells were evaluated
in this paper, and for a better comparison, all the data are re-
ported in one graph in this paper. All the HSF 1184, MDA-MB-
231, MDA-MB-468, HeLa, and 4T1 cell lines were incubated
with 100, 200, 300, 500, and 1000 ug Fe ml~* of each SPIONS,
SPIONs-COOH, and SPIONs-FA for 24 h. As illustrated in Fig. 5,
after 24 h incubation with SPIONs-COOH and SPIONs-FA, the
viability of all the cell types were still >70% at all Fe incubation
concentrations. These results agree with the literature.®»* The

40082 | RSC Adv., 2017, 7, 40074-40094

SPIONs-COOH and SPIONs-FA showed <30% cell inhibition,
even at the highest concentration of 1000 pg ml~*; however, the
viability of the cells treated with SPIONs was lower in all cases,
showing that while SPIONs are slightly toxic to the cells,
SPIONs-COOH and SPIONs-FA are reliably biocompatible. In
vitro blood compatibility test were carried out and the results
are reported in the ESI file (Fig. S2t), which indicated that the
synthesized delivery system was perfectly tolerable to blood.

In the case of the cells incubated with SPIONs-Br (100, 200,
300, 500, and 1000 pg Fe ml~*), SPIONs-Br-FA (100, 200, 300,
500, and 1000 ug Fe ml~ ') and neat Br (note: the concentration
of neat Br in each group was equal to the concentration of Br in
the corresponding SPIONs-Br and SPIONs-Br-FA groups), the
24 h cell viabilities are also shown in Fig. 5.

The in vitro cytotoxicity profiling of SPIONs-Br, SPIONs-Br—-
FA, and neat Br in the HSF 1184 and MDA-MB-231, MDA-MB-
468, HeLa, and 4T1 cells are also shown in Fig. 5. The
SPIONs-Br-FA exhibited a boosted cytotoxicity in FAR+ cancer
cells in comparison with cells treated with SPIONs-Br and neat
Br at the same concentrations of bromelain. The ICs, value is
defined as the concentration inhibiting 50% of cell growth, with
a95% confidence interval (95% CI) typically stated at the 95% of
confidence level, which measures the probability that a pop-
ulation parameter will fall between two set values. ICs, values of
SPIONs in different formulations, neat Br, and cisplatin are
illustrated in Table 3. As shown in Table 3, the IC;, values and
95% CI (confidence intervals) of bare SPIONs increased after

This journal is © The Royal Society of Chemistry 2017
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Fig.4 (A) Prussian blue assay ((a) no treatment, (b) SPIONs—COOH 100 pg ml™2, (c) SPIONs—COOH 200 ug ml™?, (d) SPIONs—FA 100 pg ml ™, (e)
SPIONs—FA 200 pg ml™3). (B) TEM image. (C) AAS assay. (D) Competitive binding assay.

citrate coating and remained high even after folate conjugation,
which shows the low cytotoxicity and compatibility of SPIONs-
FA as a delivery vehicle in contact with the cells.

On the other hand, the calculated I1C;, values for SPIONs-Br
were lower for all cells compared to the neat Br. The lower cell
viability (reduced ICs,) was assigned to the fact that SPIONs-Br
were efficiently endocytotically taken up in comparison with the
molecules of neat Br, which passively find their way through the
membrane via diffusion.®® These results are in agreement with
the results reported by Danhier et al.,* where it was illustrated
that via the conjugation of doxorubicin (an anthracycline anti-
biotic commonly used in cancer chemotherapy) to nano-
particles, the toxicity was highly increased. The results of this
study suggested that doxorubicin-conjugated nanoparticles
could efficiently decrease the effective dose received by patients
over the course of the therapy. Similarly, the toxicity of
oxaliplatin-conjugated nanoparticles was investigated.*® Oxali-
platin is known as a cisplatin analog, which has been utilized
for the treatment of colorectal cancer. However it effectively
works, oxaliplatin does not offer any targeting properties to

This journal is © The Royal Society of Chemistry 2017

track and bind to cancer cells, so it attacks any kind of healthy
cells, which uncontrollably divide. To improve this method of
chemotherapy, drug delivery must be enhanced. Brown et al.
showed that the capabilities of oxaliplatin increased when it
was conjugated to nanoparticles. They reported that the in vitro
cytotoxicity after conjugation was increased by a factor of 5-fold,
which was again assigned to the fact that conjugated particles
could pass the membrane of cancer cells via endocytosis.*®
However, in the current study, the ICs, values were signifi-
cantly lower for FAR+ cancer cells when treated with SPIONs—
Br-FA compared to when treated with SPIONs-Br and neat Br,
while there was no significant difference for FAR— cells. It is
evident from the results that the SPIONs-Br-FA was able to
induce significantly more cell death at low doses (in bold in
Table 3) as compared to neat Br and SPIONs-Br (Fig. 5), espe-
cially for FAR+ cancer cell lines (HeLa, MDA-MB-231, 4T1). The
higher efficiency of Br transport via nanoparticles through the
mechanism of the receptor-mediated endocytosis pathway into
FAR+ cancer cells (HeLa, MDA-MB-231, 4T1) in comparison with
the mechanism of the passive diffusion of neat Br into the FAR—

RSC Adv., 2017, 7, 40074-40094 | 40083
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Fig. 5 MTT assay. Each value is the mean + S.E.M. of six replicates out of three independent experiments. (*) indicates a significant difference
compared to the control analyzed by the unpaired t-test, followed by the Holm-Sidak post hoc test (p < 0.05).

cancer cells (HSF 1184, MDA-MB-468) may be the reason why
SPIONs-Br-FA exhibited increased cytotoxicity in FAR+ cancer
cell lines.?”®

To conclude, the ICs, value of neat Br had significant
difference for the FAR+ cancer cells when compared with
SPIONs-Br-FA, while there were no significant difference for
the FAR— cell lines. Also, there was no significant difference
between the IC;, value of neat Br and SPIONs-Br. Therefore, for

40084 | RSC Adv., 2017, 7, 40074-40094

further morphological analysis, apoptotic detection, scratch
motility, and the clonogenic inhibition assays, neat Br and
SPIONs-Br-FA-treated cells were compared to each other.

Morphological assessment and apoptosis detection

The morphologies of HSF 1184, MDA-MB-468, HeLa, MDA-MB-
231, and 4T1 cells after treatment with neat Br (at the ICs,
concentration), SPIONs-Br-FA (at the IC5, concentration of neat

This journal is © The Royal Society of Chemistry 2017
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Inhibitory effect (ICsq values) of SPIONs in different formulations, neat Br, and cisplatin against cells after 24 h. The ICsq values were

FAR—

FAR+

Samples ICsq

(ug mlY) (95% CI)  HSF 1184 MDA-MB-468

MDA-MB-231

HeLa

4T1

SPIONs 1455 (1047 to 2021) 1188 (941.8 to 1499)

SPIONs-COOH 14 086 (5425 to 36 574) 9273 (2294 to 37 487)
SPIONs-FA 4853 (3071 to 8272) 5185 (2402 to 11 194)
Neat Br 240.7 (199.3 to 290.8) 193.1 (177.9 to 209.6)
SPIONs-Br 217.9 (182.8 to 259.7) 195.5 (160.7 to 230.5)
SPIONs-Br-FA 213.3 (184.6 to 246.3) 189.4 (144.6 to 248.1)
Cisplatin 22.34 (20.75 to 24.05) 16.86 (15.52 to 18.32)

Br), and cisplatin (as a positive control, at the cisplatin ICs,
concentration) were studied under an inverted microscope are
shown in Fig. 6. A perfect way to depict and define apoptosis on
the basis of morphological alterations after treatment is using
phase-contrast microscopy.®® In a previous study by Gani et al.,*
the morphological alternations of colon and ovarian cancer

1170 (929.3 to 1473)

7355 (2918 to 18 540)
5282 (2777 to 10 050)
136.7 (123.1 to 151.7)
121.6 (112.9 to 131.1)
101.2 (92.25 to 111)

14.34 (13.23 to 15.54)

1235 (740.7 to 2058)

7398 (2662 to 20 557)
5039 (1912 to 13 282)
100.9 (95.58 to 106.5)
94.85 (91.03 to 98.84)
60.98 (57.32 to 64.88)
10.32 (9.526 to 11.18)

1144 (719.6 to 1819)

5088 (5425 to 36 574)
4726 (3071 to 8272)

91.55 (85.15 to 98.44)
88.15 (83.46 to 93.10)
61.18 (56.48 to 66.26)
9.602 (8.777 to 10.50)

cells after Br treatment indicated a bromelain apoptotic effect
on cancer cells. In the current study, the morphological alter-
nations of HSF 1184, MDA-MB-468, HeLa, MDA-MB-231, and
4T1 cell lines after neat Br and SPIONs-Br-FA treatment were
observed and compared. Apparent changes in morphology were
observed in the treated cells, namely regarding membrane

Fig. 6 Growth inhibitory effect under an inverted microscope, (a) HSF 1184, (b) MDA-MB-231, (c) Hela, (d) MDA-MB-468, (e) 4T1 ((1) no

treatment, (2) neat Br, (3) SPIONs—Br—FA, (4) cisplatin).

This journal is © The Royal Society of Chemistry 2017
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blebbing (MB), apoptotic bodies (AB), nuclear compaction (NC),
rounded up and floating cells (FC), and cell shrinkage (SH).
These morphological changes were previously reported in
apoptotic cells.*** Among the morphological changes and dead
cell characteristics, rounding and cell detachment were more
remarkable in FAR+ cancer cells when treated with SPIONs-Br-
FA compared with neat Br-treated cells. As a result, SPIONs-Br—-
FA induced significant apoptosis compared to neat Br in FAR+
cancer cell lines, which corroborates with the MTT results in
this study.

One key consideration in developing drugs is the apoptosis
induction. Most of the anticancer agents currently in use are
capable of inducing apoptosis in susceptible cells.”>*
Apoptosis: a significant model of cell death, which is an active
process to destroy the cell, that takes place in response to
different agents, such as ionizing radiation or anticancer
agents.” As a vital dye, Acridine orange (AO) is taken up by both
non-viable and viable cells. The resulting nuclei can be observed
in green under a fluorescence microscope, while the cells
stained with ethidium bromide (EB, only non-viable cells) lose
the integrity of their cytoplasmic membrane and their nuclei

200 pm
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200 pm

200 pm

200 pm

200 pm
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turns red. Based on chromatin condensation, fluorescence
emission, and morphological changes, identification of the
different types of cells was carried out, where viable cells
showed a normal morphology with uniform green nuclei.
Highly condensed cells, which formed yellow green fragments,
were identified as early apoptotic cells, whereas orange-red
fragmented/condensed nuclei and orange-red chromatin in
round nuclei were a highlighted morphological characteristic of
late apoptotic and necrotic cells, respectively.®* For 24 h, the
cells (HSF 1184 and MDA-MB-231, MDA-MB-468, HeLa, and
4T1) were exposed to neat Br (at the ICs, concentration),
SPIONs-Br-FA (at the ICs, concentration of neat Br), and
cisplatin (as a positive control, at the ICs5, concentration of
cisplatin), and then stained with EB and AO. Neat Br-, SPIONs-
Br-FA-, and cisplatin-treated cells exhibited transformed
morphological characteristics of non-viable cells under AO/EB
staining, while green and viable cells with round and non-
affected nuclei were snapped in the negative control groups.
Fig. 7 shows that there were no distinct morphological changes
in the control (i.e., no treatment) groups, but cells exhibited the
induction of apoptosis after neat Br and SPIONs-Br-FA

200 pm

200 pm

200 pm

200 pm

Fig.7 Detection of apoptosis by AO/EB staining, (a) HSF 1184, (b) MDA-MB-231, (c) Hela, (d) MDA-MB-468, (e) 4T1 ((1) no treatment, (2) neat Br,

(3) SPIONs—Br—FA, (4) cisplatin).
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treatments. These results illustrate that SPIONs-Br-FA can
bring about enormous detachment, along with leading to
cluster and aggregate formation of the FAR+ cancer cells
compared with neat Br-treated cells. The frequency of necrotic
cells with uniformly stained orange nuclei and the percentage
of apoptotic cells was sharply increased when FAR+ cancer cells
were treated with SPIONs-Br-FA (Fig. S37).

Overall, the SPIONs-Br-FA was shown to be more effective at
inducing apoptosis, suppressing the cell growth, and intro-
ducing morphological changes in FAR+ cancer cells compared
to neat Br-treated cells. The reason for this could be the higher
internalization of Br through the FAR receptors on the surface
of FAR+ cancer cells, which causes Br to be more internalized in
the FAR+ cells and establishes a higher cytotoxicity and conse-
quently, changes in the FAR+ cancer cells. These results are in
agreement with the MTT and inverted microscope results.

Scratch motility and clonogenic inhibition assays

The cell migration assay was performed on confluent mono-
layers of FAR+ cancer cell lines. Non-treated cells were used as
a negative control. Scratching of the cells was performed, as
explained in the methodology, prior to them being cultured
using fresh medium in the absence or in the presence of neat Br
(at the ICs, concentration) and SPIONs-Br-FA (at the ICs,
concentration of neat Br). The data are shown in Fig. 8(a)—(c) for

Control Neat Br SPIONs-Br-FA

Neat Br

Fig. 8
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the HeLa, MDA-MB-231, and 4T1 cell lines, respectively, which
clearly showed that the control cells gained a full confluency
after 24 h, whereas cells treated with neat Br and SPIONs-Br-FA
showed the ability to migrate to a minimum with a complete
stop in migration 24 h subsequent to the incubation. The ob-
tained results illustrated that the migration of FAR+ cells was
effectively reduced in a time-dependent manner once they were
incubated with SPIONs-Br-FA. As a result, the SPIONs-Br-FA
displayed higher migration inhibition rates compared to neat
Br in FAR+ cancer cells. The scratch assay findings suggest that
SPIONs-Br-FA have the ability to inhibit significantly the
migration of HeLa, MDA-MB-231, and 4T1 cell lines.

The spread of metastatic cancer cells is the reason behind
almost 90% of the cancer deaths in human and is a significant
barrier in cancer therapy.®® Cell migration is one of the most
crucial steps involved in metastasis, which is the most life-
threatening stage of cancer.” As shown in Fig. 8(a)-(c), the
neat Br and SPIONs-Br-FA inhibited significantly the migration
of MDA-MB-231, HeLa, and 4T1 cell lines. Cell migration
quantitative analysis results are shown in Fig. S4,f with the
results expressed as a percentage of cell migration after 24 h. As
a result, cells treated with SPIONs-Br-FA showed better inhi-
bition of cell migration compared to neat Br in FAR+ cancer
cells. It can be suggested that the higher inhibitory effects of
SPIONs-Br-FA on MDA-MB-231, HelLa, and 4T1 cells migration

Control Neat Br

SPIONs-Br-FA

; AL 57

b

Control Neat Br SPIONs-Br-FA

HeLa MDA-MB-231

T1

Inhibition of (a) MDA-MB-231, (b) Hela, and (c) 4T1 cell lines migration after treatment with neat Br and SPIONs—Br—FA. Images were
snapped with an inverted phase-contrast microscope (50x) at different time intervals (0, 12, and 24 h). (d) Qualitative analysis of the colony-
forming-inhibition potential of neat Br and SPIONs—Br—FA on FAR+ cancer cells.
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were likely because of its higher cytotoxic effect compared to the
neat Br, which was due to the greater internalization of Br
through the FAR receptors on the surface of FAR+ cancer cells.
As a result, more Br was internalized to the FAR+ cells, which led
to a higher cytotoxicity and consequently a higher number of
cells lost their migration ability and the migration percentage of
FAR+ cancer cells was significantly decreased. It could thus be
concluded that SPIONs-Br-FA effectively inhibited FAR+ cancer
cells migration compared to the neat Br.

In order to compare the potential of neat Br and SPIONs-Br-
FA for suppressing the growth of FAR+ cell lines, a clonogenic
assay was carried out. For the measurement of clonogenicity,
the cells were exposed to neat Br (at the IC5, concentration) and
SPIONs-Br-FA (at the IC5, concentration of neat Br). As depic-
ted in Fig. 8(d), the findings revealed a significant clonogenic
inhibition of all FAR+ cancer cells treated with neat Br and
SPIONs-Br-FA. Non-treated cells (negative control) produced
a large number of colonies compared to treated cells. The size
and number of colonies were significantly reduced, particularly
for SPIONs-Br-FA treated FAR+ cancer cells. Comparisons
between the colony-forming abilities of neat Br and SPIONs-Br-
FA in FAR+ cancer cells indicated that the SPIONs-Br-FA had
a higher colony-forming-inhibitory effect compared to neat Br.
It was clearly evident that SPIONs-Br-FA exerted a suppressing
effect on the colony formation of FAR+ cancer cells. The reason
for this could be due to the higher internalization of Br through
the FAR receptors on the surface of FAR+ cancer cells, which led
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to a greater internalization of Br to the FAR+ cells and estab-
lished a higher cytotoxicity and consequently decreased the
survival rate (lower colony-forming ability). It could thus be
concluded that SPIONs-Br-FA effectively decreased the colony-
forming ability of FAR+ cancer cells compared to the neat Br.

Quantitative analysis (Fig. S5t) of the colony-forming-
inhibition potential of both neat Br and SPIONs-Br-FA
against MDA-MB-231, HeLa, and 4T1 cells indicated that the
latter displayed the best ability. Pair-wise comparison of the
SPIONs-Br-FA versus neat Br indicated that Br's effectiveness
was lower at limiting the growth, migration, and colony-
forming abilities of FAR+ cell lines.

In vivo anticancer efficacy

The 4T1-tumor-bearing mice model was established about 2 to 2
weeks after the cancer cells induction to the female Balb/C
mice. Fig. 9(e) shows the 4T1 breast tumor in situ, which was
confirmed by histological analysis. The tumor region consisted
of viable tumor cells, which displayed numerous focal areas of
necrosis, suggesting a massive tumor formation.

The most common animal models used in biomedical
research are mice due to 95% of their genes sharing homology
with humans. Observations in this study showed that tumors
began to appear within 2 to 3 weeks after the initiation of 4T1
cells. 24 h after 4T1 cells inoculation, the mice were subjected to
the first treatment (intravenous injection (IV)). The groups (n =
6) were as follows: saline, SPIONs-COOH (10 mg kg™ '), neat Br

a o~ SPIONs-Br 10 mglkg b C oo
SPIONs-Br 8 mg/kg 1.0 —
-¥- SPIONs-Br 4 mg/kg | ’ E 800
8004 -+ Neat Br 10 mg/kg ~ 08 <
— = SPIONs-COOH 10 mglkg S L |_] g e00
3 -o- Saline 4 3
£ 600 2 08 2 400
t :
- 200:
E 4o S 04 2
S E [—Saline o
2 5 |~ SPIONs-COOH 10 mg/kg
g @ 0.24——Neat Br 10 mgikg
2

0.0

|—— SPIONs-Br 4 mglkg
SPIONs-Br 8 mglkg
SPIONs-Br 10 mglkg

40 0 10

20 30 40 50 60

Days after tumor inoculation

Fig. 9

Neat Br

(@) Tumor volume after treatment (group 1), (*) indicates significant difference compared to the control analyzed by unpaired t-test

followed by the Holm—-Sidak post hoc test (p < 0.05). (b) Survival rate% after treatment (group 1). (c) Tumor volume after treatment (group 2), (*P <
0.05) and (**P < 0.01) indicate significant differences compared to the control analyzed by one-way ANOVA. (d) Extracted tumors after treatment
(group 2). (e) Image of mice bearing the 4T1 breast tumor in situ and a histological slice of tumor. The tumor section was stained using H&E

staining and observed under a microscope (100x).
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(10 mg kg~ "), SPIONs-Br (10 mg kg '), SPIONs-Br (8 mg kg™ 1),
and SPIONs-Br (4 mg kg™ '). As shown in Fig. 9(a), the tumor
growth rate of the saline- and SPIONs-COOH-injected groups
was significantly higher than the other groups treated with neat
Br and SPIONs-Br at different concentrations, and the survival
period of the 4T1-tumor-bearing mice model, which was
observed for 60 days after tumor implantation showed that
SPIONs-Br (at a concentration of 8 mg kg™ ') prolonged the
lifespan of the mouse model (Fig. 9(b)) compared to SPIONs-Br
(at a concentration of 10 mg kg~ ') and neat Br (at a concentra-
tion of 10 mg kg ). These results demonstrated that the
treatment of the 4T1-bearing mice model with SPIONs-Br (8 mg
kg ") significantly inhibited tumor growth and improved the
survival rate. Therefore, the concentration of 8 mg kg™ " was
chosen to be used for the experiments in the second group.

The second group of experiments was designed to find out
the tumor inhibition effect at this concentration for different
nanoparticles formulation and to explore the FA targeting
function in a living model. The second groups (n = 6) of
experiments were injected intravenously by saline, SPIONs-FA
(8 mg kg™ "), neat Br (1 mg kg~ '), SPIONs-Br (8 mg kg~ "'-1 mg
kg™ Br concentration), SPIONs-Br-FA (8 mg kg™ '-1 mg kg™~ Br
concentration), and SPIONs-Br-FA (8 mg kg '-1 mg kg ' Br
concentration) + the coinjection of excess FA (1 mM free folic
acid). The amounts of Br administered were 1 mg kg " in all of
the formulations.

As shown in Fig. 9(c), the tumor volume measurements 60
days after treatment for the second group with different
formulations (at a concentration of 8 mg kg™ ') demonstrated
that the mice treated with SPIONs-Br-FA had an appreciably
smaller tumor than the other treatment groups. To be more
specific, the live models were sacrificed and the tumors were
then extracted and subjected to size measurement.

The photographs of the tumors illustrated that the smallest
tumor belonged to the live models injected with SPIONs-Br-FA,
followed by the live models injected with SPIONs-Br and neat Br
(Fig. 9(d)). During the period of this experiment (60 days), all of
the live models were alive. The tumor volumes of each group
changed differently, owing to the targeting effect of SPIONs-Br-
FA to the tumor site, whereby more Br reached the tumor site,
which led to better results. The ability of the higher targeting
efficiency to the tumor by SPIONs-Br-FA was striking and
directly responsible for the higher tumor suppression efficacy
than for the other formulations in the treatment groups.

These results are in agreement with the study carried out by
ref. 66, which demonstrated that the targeted delivery of
methotrexate (anticancer agent) increased its anti-tumor
activity and markedly decreased its toxicity which is not
possible with a neat and non-targeting methotrexate. In 2014,%*
a study showed that bromelain's anticancer activity could be
significantly boosted and the lifespan of bromelain-treated
tumor-bearing mice could be remarkably extended when
bromelain was encapsulated into poly(lactic-co-glycolic acid) in
comparison to neat bromelain. It is satisfactory to draw
a conclusion in this study that SPIONs-Br-FA successfully
targets and finds its way into the tumor cells through FAR+

This journal is © The Royal Society of Chemistry 2017
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receptors, which thus affords a promising treatment, while toxic
side effects remarkably declined.

Biodistribution study

To understand the biodistribution and in vivo targeting efficacy of
the functionalized nanoparticles, the biodistribution of SPIONs-
COOH and SPIONs-FA in different major organs as well as in
tumors, the 4T1-bearing mice model were sacrificed at 4, 12, and
24 h after intravenous administration. The biodistribution was
expressed as the percentage of injected dose per gram of each
organ (% ID per g). The animals were sacrificed and dissected 4,
12, and 24 h after injection. The live models in the control group
were injected with PBS. Noteworthy quantitative and qualitative
differences in the samples biodistribution was seen, s can be seen
in Fig. 10 and S6,7 respectively. Both SPIONs-COOH and SPIONs-
FA taken up by the liver and spleen (parts of the reticuloendo-
thelial system (RES)) may reduce the unpredictable side effects for
effective long-term treatment.” However, the accumulation of
SPIONs-FA in the liver was higher than SPIONs-COOH, which
may be due to the increment in the size and different surface
characteristics of the SPIONs-FA.

These results revealed the specific localization of SPIONs-FA
at the site of the tumor. Importantly, SPIONs-FA could increase
the iron concentration in the tumor compared to SPIONs-
COOH (P < 0.05). The iron concentration increase at the tumor
site was by a factor of 1.9-fold at 4 h after injection, 2.1-fold at
12 h after injection, and 2.6-fold higher at 24 h after injection, as
shown in Fig. 10. An increment in the blood iron concentration
was seen 4 h post-injection of SPIONs-FA; however, it was
lowered in the next 24 h. For the passive targeting group,
SPIONs-COOH were observed to be accumulated at the tumor
sites, indicating SPIONs-COOH could preferentially accumu-
late in the tumor tissues due to the EPR (enhanced permeability

SPIONs-COOH SPIONs-FA
201 O 4h 207 4h
| B12h = 12h
151 M 24h 515 240 [ -

D & BB S S RS
F LD @S SR SIS
SSRGS SEERRES
%
@) (b)

% ID/gr

Fig. 10 Quantitative biodistribution study (AAS method). (*) indicates
a significant difference compared to the control as analyzed by
unpaired t-test followed by a Holm-Sidak post hoc test (p < 0.05).
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and retention) effects (Fig. 10 and S67). In the absence of folate
targeting, the EPR effect of SPIONSs is the major mechanism of
uptake.” However, the amount of SPIONs-COOH at the tumor
locations was less than for active SPIONs-FA (p < 0.05), which
fully suggests that the prepared SPIONs-FA has the ability to
target tumor tissues.

Experiments with co-injected FA resulted in a nearly
complete blockade in the kidneys and tumor tissue showing the
FAR+ specific uptake of SPIONs-FA in these tissues and organs.
Generally, there is a critical aspect with the FAR targeting
strategy that is related to SPIONs-FA high retention in the
kidneys. In the primary urine, FARs are exposed to a high folate
conjugate concentration due to the fact that the expression of
the FARs happens on the luminal side of the brush border
membrane.”'® As a consequence, folate is significantly and
specifically accumulated in the renal tissues. As shown in
Fig. 10, a high number of SPIONs-FA are accumulated in the
kidneys. The high binding and uptake of SPIONs-FA into the
renal tissue is a logical consequence of FAR expression in the
proximal tubule cells, which causes the high uptake and
binding of SPIONs-FA in the kidneys, which is an unwanted
side effect in the development of SPIONs-FA for therapeutic
purposes.*® To conclude, the biodistribution results illustrated
that SPIONs-FA could be an ideal targeting candidate for the
FAR+ metastatic cancers in biomedical applications.

4. Conclusion

In summary, bromelain was successfully conjugated to the
folate-targeted superparamagnetic y-Fe,O; nanoparticles,
which were coated with citric acid via a method of direct addi-
tion. A novel SPIONs-Br-FA complex was successfully synthe-
sized, then characterized physicochemically (FT-IR, AAS, DLS,
VSM, XRD, TGA, TEM, and FESEM), and tested for in vitro and in
vivo tumor-targeting characteristics. A higher transport of
SPIONs-FA through the mechanism of the receptor endocytosis
pathway into FAR+ cells (HeLa, MDA-MB-231, and 4T1) resulted
in a high accumulation of SPIONs-FA in them compared to
FAR— cell lines (HSF 1184 and MDA-MB-468), which was
assured to occur via qualitative and quantitative in vitro binding
studies (Prussian blue assay and AAS analysis). Qualitative and
quantitative biodistribution studies (AAS analysis and TEM
staining method) clearly revealed the targeting of SPIONs-FA to
the tumor site. The final engineered SPIONs-FA possessed
desirable characteristics, adequate size, and long-term dis-
persibility, and could remain stable in solutions with satisfying
cells and blood biocompatibility, which made it a quite exqui-
site and reliable choice to play a noticeable role as a drug-
delivery carrier in cancer therapy. In vitro (MTT assay) and in
vivo (4T1-bearing Balc/C mice model) cytotoxicity studies
showed a significant dose advantage with SPIONs-Br-FA in
reducing the ICs, values compared with neat Br. Additionally,
SPIONs-Br-FA was a rewarding candidate to suppress cell
growth and could make an enormous morphological alterna-
tion in treated cells compared to neat Br. Furthermore, the
colony formation and migration capabilities of the cells treated
SPIONs-Br-FA were significantly prohibited compared to the
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neat Br-treated cells. In the cells treated with SPIONs-Br-FA,
more signs of apoptosis and a lower number of live cells were
observed compared to the cells treated with neat Br. In other
word, SPIONs-Br-FA induced a higher percentage of apoptotic
cells than the neat Br. Excellent biocompatibility of the SPIONs-
FA and therapeutic efficacy of the SPIONs-Br-FA in FAR+ cancer
cells in vitro and in vivo were demonstrated. An improved in vivo
cytotoxic effect was obtained for SPIONs-Br-FA in comparison
with SPIONs-Br and neat Br, respectively. The ability of a higher
targeting efficiency of SPIONs-Br-FA to the tumor site in the
4T1-bearing Balc/C mice model may have been responsible for
the higher tumor inhibition efficacy than with the other SPIONs
formulations in the treatment groups. Herein this study, it was
conveyed that dual-functional synthesized SPIONs-Br-FA is
a great candidate to inhibit the tumor growth in a live model
with no damage to normal tissues. Considering the unique and
favorable properties of SPIONs-Br-FA, the formulation can be
fruitfully exploited to improve the deliverability of poor bio-
available drugs and may open up certain avenues in cancer
therapy and thus act as an attractive and promising treatment
option for patients.
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