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KsLaTe,Ogq:Er: a novel green up-conversion
luminescence material}

Yao Fu, & Ying Tian,"

A novel green up-conversion luminescence material, KsLaTe,Og:Er, was synthesised via a solid-state reaction
method. KsLaTe,Oq:Er phosphors were characterised by X-ray diffraction, reflectance spectroscopy, Raman
spectroscopy, photoluminescence spectroscopy, up-conversion spectroscopy and temperature sensing
performance analysis. The diffraction pattern of the hexagonal KsLaTe,Og:0.02Er microcrystals was indexed
with Miller indices and the lattice constants were a = b = 0.60636 + 0.00018 nm, and ¢ = 149543 +
0.00037 nm. The photoluminescence under 380 nm excitation and the up-conversion luminescence

under 980 and 1550 nm pumping were investigated. The influence of Er** ion concentration and excitation
power on the luminescence properties of KszlLaTe,Og:Er was also discussed. KzLaTe,Og:Er phosphor
presented green down-shifting emission and up-conversion luminescence under 380, and 980 nm

excitation and yellow—green up-conversion luminescence under 1550 nm pumping, respectively, and the

red emission component was enhanced with the increment in excitation wavelength. The quenching

concentration of Er* ions in KsLaTe,Os:Er was much higher than that in normal phosphors. This result can
be attributed to the suppression of energy migration because the shortest (0.606 nm) and average distance
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(0.9720 nm) between Er®* ions were significantly large in KsLaTe,Og. Therefore, the electric quadrupole—

quadrupole interactions between Er®* ions are the dominant energy transfer process in down-shift
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1. Introduction

Rare-earth (RE)-doped luminescence materials play an impor-
tant role in illumination, display, temperature sensor, security
and biomedicine."® Selecting appropriate materials with
excellent luminescence performance based on practical appli-
cations is important. In general, the luminescence properties of
phosphors are regulated through the selection of matrix mate-
rials. Matrix materials can bond doped RE ions, and the
symmetry and strength of the crystal field exert significant
effects on the optical properties of RE ions. Moreover, the
practical applications of matrix materials are largely dependent
on their physicochemical properties.

Tellurates with rich chemical structures and unique
physical properties have attracted considerable attention. RE-
doped tellurite glass with relatively low phonon energy, high
reflection index, and excellent thermal stability has become
a popular research topic.*” However, tellurate phosphors
have seldom been reported. For instance, Sobczyk et al.®
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emission, and the UCL mechanism can be regarded as the excited state absorption in KsLaTe,Og:Er.
Furthermore, the doping concentration of Er®* ions influenced the temperature sensitivity of KsLaTe,Og:Er.

studied the optical properties of Y,Te,0,,:Sm**. Zhang et al.®
investigated the structure and luminescence properties of
Li;Y;Te,0;,:Eu’".

K;LaTe,Oy is a new quaternary tellurite material with
medium phonon energy.' In the present work, the diffraction
pattern of K;LaTe,Oo microcrystals was indexed with Miller
indices. The down-shifting luminescence (DSL, Aer, = 380 nm)
and up-conversion luminescence (UCL, Aep, = 980 and 1550 nm)
of K;LaTe,0q:Er were reported for the first time. In addition, the
thermal quenching and temperature sensor of Kz;LaTe,Og:Er
were investigated.

2. Experimental
2.1 Sample preparation

K;LaTe,Oq:Er phosphors were synthesized via the solid-state
reaction method. The starting raw materials La,03; (99.99%),
Er,03 (99.99%), K,CO; (A. R.), and TeO, (A. R.) were weighed
according to stoichiometric ratio. Secondly, the above-
mentioned materials were thoroughly mixed and ground
using an agate ball mill for 20 min. Finally, all samples were
sintered at 650 °C for 5 h. K;LaTe,Oq:xEr samples with different
Er** concentrations were then obtained (x = 0, 2, 8, 14, 20, 26,
32, 38, 44 mol%).

This journal is © The Royal Society of Chemistry 2017
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2.2 Characterisation technique

X-ray powder diffraction was performed at 40 kV and 40 mA
from 10° to 70° using a SHIMADZU-6000 X-ray generator with
Cu Ko (A = 0.154184 nm) radiation. The DSL and UCL spectra
(400 nm to 900 nm) were recorded on a Hitachi F-4600 fluo-
rescence spectrophotometer equipped with a power-tunable 980
and 1550 nm fibre laser diode (LD). The highest available power
for the LD was approximately 800 and 700 mW, respectively. The
beam of the LD was focused by the convex lens before
measurement. The temperature dependence of the DSL spectra
was tested by a self-assembly temperature control system with
a XMT-4000 programmable temperature controller. The reflec-
tion spectra of the samples were obtained with a UV-3600
SHIMADZU UV-Vis-NIR spectrophotometer. The maximum
phonon energy of the K;LaTe,Oq host lattice was obtained by
a micro-Raman spectroscope (Jobin Yvon HR800, excited by
633 nm He-Ne laser with a laser spot size of 1 um?, in line
mapping mode). The scanning electron microscope (SEM) and
Energy Dispersive Spectrometer (EDS) of the sample were ob-
tained by JEOL-6360LV field emission gun scanning electron
microscopy. The X-ray photoelectron spectroscopy (XPS) spec-
trum of the sample was obtained by ESCALAB250 surface
analysis system.

3. Results and discussion

Fig. 1a shows the XRD pattern of the K;LaTe,04:0.02Er sample.
The diffraction peaks of the present sample are similar to those
in ref. 10, indicating that the hexagonal K;LaTe,09:0.02Er was
synthesised. The micrograph and EDS of the K;LaTe,O, crystal
shown in Fig. S1.f The concentration of element in the
K;LaTe,O crystal shown in Table S1.f The molar ratio of K, La,
Te, and O element is 3.0 : 1: 2.1 : 7.7 (Table S17). The diffrac-
tion peaks in the XPS pattern are assigned to K*, 0°~, Te®", and
La*", respectively (Fig. S21). The relative concentration values
calculated by elemental sensitivity factor method of K, O, Te,
and La atoms are 61.88, 18.47, 12.31, and 7.34%, respectively,
which are close to the theoretical calculated values in the
K;LaTe,04. However, the standard PDF data of K;LaTe,Oq:Er
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are not available, and ref. 10 did not provide the index data of
K;LaTe,Oy. The lattice parameters of K;LaTe,04:0.02Er were
calculated by the least square method in accordance with the
data in Table S2,T and the crystal lattice parameters of the Kj;-
LaTe,04:0.02Er sample were obtained: a = b = 0.60636 =+
0.00018 nm, ¢ = 1.49543 + 0.00037 nm, V = 0.47617 nm?®.
K;LaTe,0Oy is a 3D framework structure (Fig. 1b). K atoms are
two sites that coordinate with nine and twelve O atoms forming
distorted cuboctahedra, respectively. Te atoms are linked to six
O atoms to form [TeOg] octahedral, and two [TeOg] octahedral
are connected to form a face-sharing [Te,0,]°" anion group. La
atoms are surrounded by six O atoms in regular octahedra, and
La*" ions have a high-ordered state in the crystal lattice.

Fig. 2 shows the Raman spectrum of the K;LaTe,04:0.02Er
sample. The peaks situated at 285, 415, 667, 718, and 832 cm ™"
corresponding to the K;LaTe,Oq host shown in ref. 10. Singh'*
reported that the range of 500-580 cm™ ', 620-680 cm ', and
780-900 cm™ " are the characteristic peaks of Er’" ion. There-
fore, several peaks (remarked as *) are related to Er*" ions. Some
weak peaks in Raman spectrum are also observed due to defects

7000

6000

—~

5 5000

u
w »
o o
o o
o o

Raman Intensity (a

N
o
o
o

1000

300 400 500 600 700 800
Wavenumber (cm'ﬂ)

Fig. 2 Raman spectrum of the KsLaTe,Og:0.02Er sample.
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Fig. 1 XRD pattern (a) and crystal structure diagram (b) of KsLaTe,Og:0.02Er.
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in the lattice of K;LaTe,0y:Er."”> Raman peaks shift to the right
side, which results from Er’" doping. The maximum phonon
energy of the KzLaTe,O, host lattice is 7w = 832 cm ™. Thus,
K;LaTe,O, with an appropriate phonon energy can be consid-
ered as an alternative for the luminescence host material.

Fig. 3 shows the diffuse reflectance spectra of K;LaTe,Oq:xEr
(x = 2, 26, 44 mol%). As shown in the figure, the absorption
peaks become stronger with increasing Er** ion concentration.
The absorption peaks at 380, 409, 486, 525, 550, 653, 798, 973,
and 1537 nm can be assigned to transition from an Er** ground
state °I,5, to excited states ?Kys/, “Hosay “F/2, “Hy1/2y *S3/2, “Fopa,
Tosay *Th1j2, and “I;5,, levels. The *I5, level of Er’" ions has
a strong absorption to 980 nm photons. The absorption effi-
ciency of the “I,3/, level of Er** ions to 1550 nm photons reached
89% of the 1537 nm. Therefore, Er’* ions can be effectively
sensitised by 1550 nm exciting light. The absorption edge of
Ks;LaTe,Oq:Er can be obtained in absorption spectra. The
reflectance spectra of K;LaTe,Oq:Er was converted into the
absorption spectra based on the Kubelka-Munk formula®
(inset in Fig. 3):

F(R) = (1 — R*2R = KIS, (1)

where R is the reflectance, K is the absorption coefficient, and S
is the scattering coefficient. The absorption edges of K;LaTe,-
Og:xEr are 287, 293 and 301 nm, which correspond to the band
gap energies of 4.32, 4.23, and 4.12 eV, respectively (x = 2, 26, 44
mol%). The band gap value decreases with increasing Er*" ion
concentration. This phenomenon can be attributed to the fact
that the ionic radii of Er** (0.088 nm) are smaller than that of
La’" (0.102 nm), thus resulting in the shrinkage of the lattice
matrix and the red shift of the absorption bands after doping
Er*" ions.

Fig. 4a shows the excitation and DSL spectra of K;LaTe,Oq:Er.
The excitation spectrum of K;LaTe,Oo:Er presents a strong peak
at ~380 nm, which corresponds to the *Gy,, — “I;5/, transition
by monitoring the 550 nm emission of Er** ions. KzLaTe,0q:Er
under 380 nm excitation (K;LaTe,Oq:Er at 380 nm) exhibits pure
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Fig. 3 UV-Vis-NIR reflectance and absorption (inset) spectra of Ks-
LaTe,Og:xEr (x = 2, 26, 44 mol%).
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Fig. 4 Excitation and DSL spectra of KsLaTe,Og:Er (a) and
dependence of 2Hi1/5/%Sz/5 — “l15/2 green DSL integrated intensity on
Er®* ion concentration (b).

green emission (Ig, >Hy1/2/*S32 — “I15/2), and the red irradiation
(In, *Fo; — “l155) is very weak with the green and red fluores-
cence intensity ratio (Ig/Iy) Ig/Ir = 21.3. KzLaTe,Oq:Er at 380 nm
has a relatively strong peak at ~410 nm, which is assigned to the
*Hy/, — “1;5), transition of Er** ions. In addition, the emission
spectra present a weak band located at 450-470 nm, which
corresponds to the *F3/,/*Fs;, — “I;5, transition. The doping
concentration of the optimum Er** ions is 26 mol% (Fig. 4b).
The integrated intensity initially increases with increasing
doping concentration, reaches its maximum at around 26
mol%, and then decreases. The quenching concentration is
much higher than that of conventional materials.** The rela-
tionship between the DSL intensity and doping concentration of
the luminescence centre can be described by the Van Uitert
model.*

I(C) = Clk(1 + BC23), (2)

where C is the concentration of RE*" ions, « and @ are the
constants and Q is the interaction types between RE*" ions. Q =
3,6, 8,and 10 is related to exchange interaction, electric dipole—
dipole (D-D), electric dipole-quadrupole (D-Q), and electric
quadrupole-quadrupole (Q-Q) interactions. Eqn (2) was fitted
to the data in Fig. 4b, and the Q value of K;LaTe,O:Er at 380 nm
is 10.2 + 0.3 =~ 10. Therefore, the Q-Q interaction between Er**
ions is dominant for quenching *Hy;,,/*S;/, levels in KzLaTe,-
Oq:Er. However, ET is usually caused by the D-D interaction in
most materials.*

The shortest distance between La**-La®" ions is 0.606 nm in
the K;LaTe,Oo matrix, which is significantly larger than that of
Y**-¥** in Y,0; (0.351 nm). The average distance d between
doping Er** ions can be expressed as'’

This journal is © The Royal Society of Chemistry 2017
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where V is the volume of the unit crystal cell, x is the Er** doping
concentration and Z is the number of molecules in the
unit crystal cells. When the Er** ion concentration is 26 mol%,
d = 0.9711 nm, which is also significantly larger than that in
Gd,0,5:10% Er*" (0.753 nm) and B-NaYF4:25% Er’" (0.663
nm)."” Therefore, the shortest distance and average distance
between Er*" ions are large in the K;LaTe,Oo matrix. The energy
migration is affected by matrix.”® The K;LaTe,Oo host can
provide long lattice sites for Er’" ions, which is helpful in
obtaining heavy dopes and effectively reduces the harmful ET
process. Moreover, it is beneficial in improving the absorption
of incident light.

Under 980 nm pumping, K;LaTe,Oq:Er presents the green
UCL (KzLaTe,Oq:Er at 980 nm) (inset of Fig. 5a). The UCL
spectra for K;LaTe,0q:xEr at 980 nm are shown in Fig. 5a (x = 2,
8, 14, 20, 26, 32, 44 mol%). The spectra consist of basically two
groups in the visual regions at an interval of 500-800 nm: (1) the
strongest green emission at ~525 nm and ~550 nm can be
attributed to the joint contributions of the Er** ion *H,q,, —
1152 and *S3;, — “1;5/, transition, and (2) the second strongest
red emission at ~665 nm can be attributed to the Er** ion *Fq,
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— 1,5, transition. The emission peaks intensity of K;LaTe,-
Oq:Er at 980 nm are successively enhanced with increasing
concentration of Er’* ions. The concentration quenching
phenomenon is not observed when the concentration of Er**
ion reaches 44 mol%. Compared with the DSL spectra in Fig. 4a,
the red emission is improved significantly, and its I/Ix ratio is
reduced from 21.3 (DSL) to 2.5-4.7 (UCL, 980 nm). The lumi-
nescence colour can be tuned by the doping concentration of
Er*" ions and the excitation power under 980 nm excitation. As
the Er’" ion concentration continues to increase from 2 mol% to
38 mol%, the red light component is enhanced, and its I/Ix
ratio is reduced from 3.9 to 2.7. By contrast, the green compo-
nent can be effectively enhanced and the Ig/Ix ratio is increased
from 2.5 to 4.7 with increasing excitation power (Fig. 5¢). Under
high excitation power pumping, more photons can be absorbed
by Er*" ions, which results in Er*" ions populating high levels
easily.

In addition, the dependence of luminescence-integrated
intensity on the Er’" ion concentration of K;LaTe,Oq:Er at
980 nm is nearly linear when the concentration is low (2-26
mol%), which indicates that the UCL mechanism can be
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Fig.5 UCL spectra of the KsLaTe,Oq:XEr sample under 980 nm (a) and 1550 nm (c) pumping, the dependence of the green UCL intensity on Er®*
doping concentration under 980 nm (b) and 1550 nm (d) pumping and the dependence of the ///g value of the KsLaTe,Og:xEr sample on Er**
doping concentration and pumping current under 980 nm (e) and 1550 nm (f) excitation (x = 2, 8, 14, 20, 26, 32, 38, 44 mol%).
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regarded as excited state absorption (ESA). This phenomenon is
owed to the long distance between the RE ions in the K;LaTe,Oq
structure resulting in the suppression of the ET.* K;LaTe,Oqy:Er
at 980 nm presents an approximate nonlinear relation when
Er’* > 26 mol%, indicating that the ET between Er’" ion pairs
also plays an important role in the UC process (Fig. 5b).

K;LaTe,0q:Er exhibits yellow—green emission under 1550
excitation (Ks;LaTe,Oq:Er at 1550 nm) (inset of Fig. 5b). The UCL
spectra in the visible region of K;LaTe,O9:Er at 1550 nm have
the same peak positions and shape with different relative
intensities compared with those at 980 nm excitation. However,
the red emission intensity is significantly improved excited by
1550 nm, and its Ig/Ix ratio is reduced to 0.86-1.17. Whilst
a relatively strong NIR emission peak at ~800 nm is observed,
the optimum doping concentration of Er’* ions is 32 mol% at
1550 nm pumping (Fig. 5¢). When the Er** ion concentration is
increased from 2 mol% to 44 mol%, the I;/Iy ratio is reduced
from 1.5 to 0.86. On the contrary, the green emission can be
significantly enhanced, and the Ig/I; ratio is increased from
0.86 to 1.17 with increasing excitation power (Fig. 5f). The UCL
mechanism of K;LaTe,Oq:Er at 1550 nm is mainly based on the
ESA process when the concentration of Er*" ions is less than 16
mol%. Subsequently, the ET process begins to dominate (Er** >
16 mol%, Fig. 5d). Compared with DSL, the red component of
K;LaTe,Oq:Er is increased, particularly under 1550 nm pump-
ing. However, the red UCL mechanism is still controversial.****

The non-radiation multiphonon relaxation rate (wp) between
the energy levels of RE ions can be expressed using the Miya-
kawa-Dexter theory:*>**

aAE
wWp = W €EXP —% 5 (4)

where «, and w, are the constants related to the host properties,
AE is the energy gap (cm ') and Aw is the maximum phonon
energy of the host lattice.

The energy gaps of *S3,~"Fo, and *I;;,~"1,3/, are AE = 2980
and 3400 cm ™, corresponding to AE/hw = 3.6 and 4.1. The
strong green emission (*Hyq//*S32 — “I15,2) and almost no red
emission (*Fo;, — *Ij5,) of KzLaTe,Oo:Er at 380 nm are
observed directly excited at 380 nm, indicating that the non-
radiative relaxation *S;, — *Fo, is weak (Fig. 4a). However,
the non-radiative relaxation probability of *I;1, — L35 is
smaller than that of the *S;,, — “Fy,, that is, the *S;,, — “Fo»
non-radiative relaxation process is not the main reason for the
red UCL in K;LaTe,Oq:Er at 980 nm. Therefore, the mechanism
of red intensity enhancement can only be the cross relaxation
(CR) between Er** ions. The red emission intensity is very weak
even at high Er’* concentrations for DSL because the CR
between Er** ions is restrained in K;LaTe,O, owing to the joint
contributions of the long distance between the RE ions and the
lack of intermediate metastable energy level below the 1S3
level. However, the long-level lifetime of the intermediate levels
is inspired, and the CR processes significantly enhance the red
emission in the UCL compared with DSL. The short-level life-
time of the “Io/, level and the small energy gap of “Io;,~"I;1,, (AE
~ 1950 cm ', AE/hw = 2.3) are the major factors influencing
the red radiation enhancement of K;LaTe,Oq:Er at 1550 nm.?*?*
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Therefore, the difference in UCL spectra and quenching
concentration for DSL and UCL results mainly from the
different energy level population of the Er** ions caused by the
different excitation routes.

The different optimum Er*" concentrations of K;LaTe,Oq
under various wavelengths pumping is caused by the different
excitation paths, level lifetime, and absorption cross section of
levels. The transition model of the Er** ions in the K;LaTe,O,
phosphor excited at 380, 980, and 1550 nm is established
to describe the luminescence process in Fig. 6. Red emission
(*Fo;s = *15/,) of Er** ions was very weak in the DSL spectrum
under 380 nm pumping (Fig. 4a). The green UCL process for
K;LaTe,Oq:Er at 380 nm is as follows: 115/, + Aog0 nm — “Gi1/2,
*Gy12 — *Hoj, + multiphonon relaxation + Av410 nm, “Hop —
*F;/5/*F5), + multiphonon relaxation + Av,450-470 nm, - Fa/2/ Fsz —
*Hi,/5/*S;5» + multiphonon relaxation, Hyq,,/*S3;s — “Iysp +
hvsos am/Pvsso nm- The green UCL process for K;LaTe,Oq:Er at
980 nm is as follows: “I15/, + Avog0 nm — “Ti1/2, "Li1/2 + MVog0 nm —
*F,15, *Fy;2 = *Hyyp/*Ss/, + multiphonon relaxation, and *H,y,
218312 = *Lisja + M523 nm/AVs50 nm- Its red UCL mechanism is the
*Fyp + My1p — *Fopp + *Foip CR process. The red and NIR
intensity of K;LaTe,Oq:Er at 1550 nm is significantly enhanced.
The UCL mechanism is as follows: “Iis;, + hviss0 nm — “Li3/2,
4113/2 + hvis50 nm — 419/27 419/2 + hv1s50 nm — 2H11/27 419/2 +
multiphonon relaxation — *Iy1/5, “Iy1/2 + A¥1550 nm — “Fojz, and
“For2 = "is2 + W60 nmy Torz = Tisiz + Mg00 nm-

As shown in Fig. 7a, the K;LaTe,04:0.26Er sample can nearly
recover to its original intensity after cooling down to room
temperature from 473 K, indicating that K;LaTe,Oq:Er phosphors
have a high resistance to heating damage by using a 380 nm
xenon lamp as the excitation source. Fig. 7b shows the integrated
intensities of KzLaTe,Oq:xEr phosphors as a function of
temperature. The integrated emission intensities are normalized
at room temperature for K;LaTe,Oq:xEr (x = 20, 26, 32 mol%).
With the successive increase in the heating temperature, the
green UCL intensity of different concentration samples gradually
decreases. At 473 K, the integrated intensity of the K;LaTe,Oq:xEr
(x = 20, 26, 32 mol%) samples can retain 52%, 56%, and 58% at
room temperature, respectively. Therefore, K;LaTe,Oq:Er is
a good matrix material to achieve a stable DSL. The higher Er**
ion concentration, the more obvious is the thermal quenching
phenomenon of the sample. The thermal quenching mechanism
of the luminescent material is usually different, containing ET,
CR, and non-radiative transition.”® The integrated intensity
curves for various content samples have a similar slope. Thus, the
ET rates between Er’* ions causing heating temperature are
similar. In addition, the probability of *S;, non-radiative relax-
ation to near-low energy level is small. Therefore, CR is mainly
responsible for the luminescent thermal quenching.

According to Boltzmann's distribution, the intensity ratio
(Rus) between the thermal equilibrium levels of *Hy;, and S5,
(Iu/Is), can be expressed as

Ryus = Iy/ls = Cexp(—AE/T), (5)

where C is the constant relating to the host materials, AE is the
energy gap between *H,y), and *S;, levels, « is the Boltzmann

This journal is © The Royal Society of Chemistry 2017
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constant and T'is the absolute temperature. The DSL spectra are
adopted to characterise the temperature sensor properties and to
avoid the thermal effect in UCL caused by the LD.>” Eqn (5) was fit
for the experimental data in Fig. 8a, and the curves for the K;-
LaTe,0q:xEr samples from 303 K to 473 K (x = 20, 26, 32 mol%)
were drawn. The fitting data show that the Er** ion concentra-
tions affect the C and AE values. The Ryg values of *Hy,/, and *S;,
energy levels continuously enhance with increasing heating
temperature, whereas the green DSL intensity decreases with
increasing temperature. Sensitivity is an important parameter to
evaluate the sensor performance for the temperature sensing.
Sensitivity S can be derived according to eqn (6):

S = dRIAT = R(—AEIKT?), (6)

In general, the luminescence intensity caused by doping
concentration exerts a slight effect on sensitivity. However, in

This journal is © The Royal Society of Chemistry 2017

the present study, the temperature sensitivity of the K;LaTe,-
Oo:Er samples decreases with increasing Er** ion concentration
(Fig. 7b). This is due to that the change of the concentration of
Er’** ions may cause the change of the crystal field surrounding
Er*" ions, and the change of crystal field will cause the change of
the optical transition rates of Er** ions. Therefore, the variation
of radiation transition rate of *H;,,, and “S;, levels arouse the
change of fluorescence intensity ratio FIR in different Er’* ion
doped samples and affect the sensitivity values. In addition, the
thermal effects of samples is remarkable when concentration of
doped Er*" ions is higher.?® The temperature of samples has an
effect on crystal field. The sensitivities of 20 and 26 mol% Er**
ions are similar, corresponding to approximately 0.008 and
0.0075 K" at 473 K, respectively. When the Er’* ion concen-
tration reaches 32 mol%, the sensitivity decreases rapidly, and
its value is nearly 0.0057 K (Fig. 8b). Therefore, the low Er**
content should be carefully chosen to obtain the optimal
sensitivity performance. The previously reports on temperature

RSC Adv., 2017, 7, 36374-36381 | 36379
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sensitivities data were provided in Table S3.1 On the basis of the
experimental data in Fig. 8b, the K;LaTe,Oq:Er material can be
used as the luminescent thermometer for temperature sensing.
In addition, the above-mentioned results show that the Er** ion
concentration is important to the thermal quenching and
sensitivity of K;LaTe,Oq:Er phosphors.

4. Conclusion

A new green up-conversion luminescence material, K;LaTe,Oq:Er,
was synthesised. The diffraction pattern of the hexagonal
K;LaTe,O, crystal was indexed with Miller indices and the lattice
constants a = b = 0.60636 + 0.00018 nm, ¢ = 1.49543 =+
0.00037 nm, and V = 0.47617 nm°>. The DSL and UCL properties
of K;LaTe,Oq:Er were studied under 380, 980 and 1550 nm exci-
tation. The shortest distance and average distance between Er**
ions in the K;LaTe,Oy matrix are significantly larger than that in
normal phosphors. Therefore, energy migration is significantly
suppressed, which is helpful in obtaining heavy Er** doping.
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