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dency of the thermodynamic
properties of long DNA double-strands

Jabbar Khodadadi, a Kavoos Mirabbaszadeh *a and Mohsen Yarmohammadi b

Using the Green’s function technique and tight-binding (TB) Hamiltonian method for p-electrons within

a ladder model of long DNA double-strands acting as semiconducting nanowires, the temperature and

sequence dependency of the Pauli paramagnetic susceptibility (PMS) and electronic heat capacity (EHC)

of some selected configurations are investigated. The results show the explicit reliance of the two

quantities on the arrangement of the DNA base-pairs (BPs). The notable result of this study is the

appearance of three temperature points for which the EHC (PMS) curves of the ordered systems

converge (diverge) at the lowest and highest points, while they diverge (converge) at the middle point.

Disordered systems exhibit a deviation from the trend of the ordered ones and this is more significant

around the higher temperature points. Over a wide range of temperatures, the responses of the poly(GC)

and poly(AT) double-helices limit the behavior of the random DNA chains. Our finding could inspire the

design of experiments to assess the order of randomness in BP sequencing and also to better set the TB

parameters of the model.
1 Introduction

DNA, famed in biology as the carrier of the genetic code, has
attracted enormous attention from physics communities in
recent years. A better insight into the physical behavior of these
mysterious building blocks would provide more knowledge
about their biological function and thus more possibilities for
medical manipulation. Moreover, studies on DNA behavior
offer hope for future molecular electronics by designing high-
speed miniaturized circuits with self-organizing compo-
nents.1–6 DNA may be handled as a wire, transistor, switch or
rectier, depending on its electronic properties,7,8 and there-
fore, a comprehensive understanding of the electronic structure
of these creations is vital. This need is felt particularly strongly
while determining physical quantities such as the thermody-
namic and transport properties, most of which depend on the
electronic structure. However, various intrinsic and extrinsic
complexities have rendered the complete achievement of this
objective impossible. This contradiction has also persevered in
the experimental domain. Natural DNA in solution has highly
supported charge transfer rates,9–12 but dried single DNA
molecules have shown diverse insulating,13,14 semi-
conducting,15,16 and metallic12,17,18 behavior.

Further to this background, no comprehensive theory
relating to the electronic structure and transport mechanisms
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through DNA strands has been proposed so far. Nonetheless,
tremendous effort is still being made in this area of research.

The thermodynamic properties of DNA and relevant struc-
tures have long been under consideration.19–27 For example, the
thermodynamic parameters of DNA sequences with dangling
ends and the contribution of these terminations to the duplex
stability were inspected by Bommarito et al. via enthalpy and
entropy changes extracted from UV melting curves of the
synthesized oligonucleotides on solid supports.19 Using nite-
difference Poisson–Boltzmann methods, Gallagher and Sharp
determined the contribution of electrostatics to the changes of
heat capacity of DNA binding reactions involving the ligands
DAPI, netropsin and lexitropsin, and the l repressor binding
domain.20 Based on the enthalpy and heat capacity changes,
Holbrook et al. investigated the thermodynamics of the self-
assembly of a DNA duplex with 14 BPs from complementary
strands, using titration and differential scanning calorimetry
along with van’t Hoff analysis of the UV thermal scans.21 Using
the same method, Bergqvist et al. probed the local effects of
water molecules and ions on the heat capacity changes of
a protein–DNA interaction.22 They found that although changes
in the local ion binding capacity inuenced the enthalpic and
entropic contributions to the free energy of the interaction,
there was no overall effect of ionic strength on the heat capacity
changes. However, remarkable impacts were observed which
originated from two particular symmetry-related mutations. An
interesting case of the TB approach to be pointed out is the
study conducted by Roche and Maciá who considered the
genomic sequences of the chromosome 22, l-bacteriophage
and D1s80 genes of humans and pygmy chimpanzees and
This journal is © The Royal Society of Chemistry 2017
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compared these with both periodic and quasiperiodic
sequences of nucleotides.23

The magnetic properties of DNA have also been under
consideration and reported in the literature, particularly during
the last two decades. Yan et al. developed a near-eld magnetic-
tweezer for micromanipulation of single DNA molecules con-
sisting of a small permanent magnet which canmove to as close
as 10 mm from the particle and generate forces much larger than
those generated by previous instruments.24 By means of
molecular dynamics simulations and quantum chemistry
methods, Berashevich and Chakraborty investigated the effect
of humidity on the transport and magnetic properties of DNA.
They concluded that the interaction of water molecules with
nucleobases leads to the breaking of some p bonds and the
appearance of unbound p electrons which could then partici-
pate considerably, up to 103 times more, in the conductivity at
room temperature, while at low temperature the efficiency of
charge transfer is determined by the spin interaction of two
unbound electrons on the intrastrand nucleobases.25

Scanning the literature for experimental and computational
studies on the thermodynamic properties of DNA during the
last few decades shows that the majority of them are carried out
by chemists and biologists, but those by physicists are far fewer.
In this study, we try to draw a theoretical picture of the EHC and
PMS of the DNA double-strands with respect to the temperature
and BP sequencing, using the Green’s function technique and
the TB Hamiltonian model.

In Section 2 we review a semiconducting ladder model with
the corresponding Hamiltonian for long DNA double-strands,
using the Green’s function approach28,29 and related formulas
for the physical quantities. Section 3 includes the calculations,
results and the related discussions. Finally, Section 4 presents
the summary and conclusion of all the results.

2 Model and approach

DNA (deoxyribonucleic acid) macro-molecules are twisted
double-helix structures composed of repeated stacks of either
adenine–thymine (A–T) or guanine–cytosine (G–C) BPs with an
intimate sugar–phosphate (S–P) backbone, being coupled with
hydrogen bonds (the Watson–Crick model).30 Fig. 1 shows
a schematic view of the DNA structure with the simplications
used: rstly to untwist it to achieve a planar shape and secondly
not to include the internal details of the constituents with
respect to scale, spacing and position.

In general, the theoretical studies on DNA can be classied
into two main groups of ab initio calculations31–37 and the
model-based Hamiltonian approach.38–49 Although the former
method operates in amore fundamental way and provides more
detail, it is very time-consuming for systems that are not small.
The latter technique is generally favored when dealing with
large systems wherein optimizing a few parameters can repro-
duce experimental results and reliable data. In this light,
various TB models with proper on-site and hopping parameters
have already been introduced with the aim of giving results
compatible with experimental or ab initio reports.47–52 These
models have mostly evolved around the important nding that
This journal is © The Royal Society of Chemistry 2017
overlapping of p orbitals, particularly those of the stacked BPs,
can create a p pathway for the migration of electrons.2,10,11,24

In this work, we proceed by means of a disordered ladder
model proposed by Yamada,42 constructed by repetition of the
S–P sites with interchain hoppings at the S sites which come
from the attached BPs. This model is shown in Fig. 2; in fact it is
an oversimplied representation of Fig. 1 obtained by ignoring
the migration of electrons along successive BPs. As marked in
the gure, t1 and t2 indicate the hopping amplitudes of
a p-electron from a P site to the le and right attached S sites,
respectively, while WGC and WAT indicate the same quantity but
between the BPs on complementary strands. It is assumed that
no hopping exists between the P sites. Additionally, the BPs with
permuted nucleotides are equivalent, namely WCG ¼ WGC and
WTA ¼ WAT.

The second quantized Hamiltonian of this model reads as:46

cH ¼
XNc

i¼1

X2Nb

a¼1

"
1

2

X
m¼1;2

�
3i;m

aĉi;m
a†ĉi;m

a � ti;m
aaþ1ĉi;m

a†ĉi;m
aþ1

� ti;m
aa�1ĉi;m

a†ĉi;m
a�1

�
�Waĉi;1

a†ĉi;2
a

#
þ h:c:; (1)

where Nc is the number of Bravais lattice unit cells, each
comprised of two strands labelled by m, every one of which
includes Nb, the number of P sites with a nucleotide in between,
and the strands are coupled at the nucleotides (Fig. 2). For an
electron at position a on strand m of unit cell i, 3i,m

a and ĉi,m
a†

(ĉi,m
a) indicate the on-site energy and creation (annihilation)

operator, respectively. In complete accordance, tim
aa�1 ˛ {t1,t2}

and Wa ˛ {WGC, WAT} stand for the longitudinal and transverse
hoppings between adjacent and opposite neighbors at site a.
Evidently, since each unit cell includes two strands with 2Nb

sites on each one, and assigned to each site is a single electron,
there are in total Na ¼ 4Nb points embedded and thus the
Hamiltonian matrix would be of the order Na � Na.

The aim of this study is to make a comparison between the
EHC and PMS of long DNA semiconducting nanowires with
respect to their dependence on the temperature and BP
sequencing. We start with three specic ordered chains, namely
poly(GC), poly(AT) and poly(GC–AT) double-strands, dened as
an innite arrangement of the GC, AT and alternating GC–AT
pairs. We then move towards more realistic states of randomly
arranged chains by considering periodic one-dimensional
systems composed of big unit cells with many BPs arranged
randomly inside. It is obvious from Fig. 2 that the length of such
a unit cell with n BPs is a ¼ 2na0, where a0 is the distance
between a P site and a proximate S site. From our previous
work,46 larger unit cells lead to a better resemblance of natural
DNA and even medium-sized cells (for example those with
a couple of hundred BPs) bring about acceptable outcomes.

It is convenient to continue in a system of units in which
most of the physical constants, such as ħ and kB, are equal to
one. Recalling from the Green’s function approach,53–56 the
matrix elements are generally expressed by Gmn

ab(i,j;s) ¼
�hΤĉi,ma(s)ĉj,nb†(0)i, where s ¼ it is the imaginary time, Τ is the
time ordering operator, and h.i is a symbol for ensemble
RSC Adv., 2017, 7, 48486–48493 | 48487
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Fig. 1 A planar view of the chemical composition of DNA with four bases (G (light red), C (dark red), A (light blue) and T (dark blue)) connecting
the backbones of phosphorylated sugar (brown). P (pink) stands for the phosphate group.
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averaging over the ground state of the system. Calculation of the
dynamical equations for the operators, dĉi,m

a(s)/ds ¼
½cH ðsÞ; ĉi;maðsÞ�, results in:X

‘

�
di‘

�
�I

v

vs
þ 3i

�
þ ti‘

�
Gð‘; j; sÞ ¼ dðsÞdijI ; (2)

where I is the Na � Na identity matrix and d(s) stands for the
Dirac d-function. Applying the following imaginary time Fourier
transform equations:

Gð‘; j; sÞ ¼ 1

b

X
n

e�iunsGð‘; j; iunÞ; (3a)

1

b

ðb
0

dseiðum�unÞs ¼ dmn; (3b)

leads to: X
‘

½ðiunI þ 3iÞdi‘ þ ti‘�Gð‘; j; iunÞ ¼ dijI ; (4)

where b is the inverse of temperature, un ¼ p(2n + 1)/b repre-
sents the fermionic Matsubara frequencies and {m,n} are both
integer numbers. With the transformation of iun / E ¼ 3 + i0+,
the analytical continuation of eqn (4) takes the form of:X

‘

½ðEI þ 3iÞdi‘ þ ti‘�Gð‘; j;EÞ ¼ dijI : (5)
Fig. 2 Simplified model of a two-channel periodic DNA with the approp

48488 | RSC Adv., 2017, 7, 48486–48493
In the last step, applying the k-space Fourier transform is
helpful:

Gð‘; j;EÞ ¼ 1

Nc

X
k˛FBZ

eik:R‘jGðk;EÞ; (6a)

dij ¼ 1

Nc

X
k˛FBZ

eik:Rij ; (6b)

in which Ri is the position of the unit cell i and Rij ¼ Ri � Rj,
while k ¼ kex signies a wave vector that is along the unit vector
ex in the x-direction and runs over the entire rst Brillouin zone
(FBZ). All of these are concluded by

Gðk;EÞ ¼ ðEI � ekÞ�1 (7)

where ek denotes the Fourier transform of tij,

ek ¼ 1

Nc

XNc

i;j¼1

e�ik:Rij tij: (8)

Regarding the relationship between the total DOS and the
imaginary part of the Green’s function, D(3) ¼ �ImTrG(E)/
p,54 by summing over the quantum numbers which
label the Hamiltonian, the DOS of the system takes the form
of:
riate parameter sets to attain semiconductivity.

This journal is © The Royal Society of Chemistry 2017
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Dð3Þ ¼ � 1

pNaNc

XNa

a¼1

X
k˛FBZ

ImGaaðk;EÞ; (9)

in which the diagonal elements, Gaa(k;E), are adapted from eqn
(7).

Now we are sufficiently equipped to extract the desired
physical quantities. The electronic heat capacity could be
calculated by:55–57

CðTÞ ¼
ðþN

�N
d33Dð3Þ

�
vf ð3;TÞ

vT

�
; (10)

where f(3,T) denotes the Fermi–Dirac distribution function,

f ð3;TÞ ¼ 1

1þ expð3=TÞ : (11)

Likewise, recalling the denition of static susceptibility,58

c ¼ 1

Uc

�
vM

vB

�
T ;B/0

; (12)

where M indicates the dimensionless magnetization, it is
feasible to exploit the PM susceptibility as:58

cðTÞ ¼
ðþN

�N
d3Dð3Þ

�
� vf ð3;TÞ

v3

�
: (13)

Finally, from the combination of eqn (9)–(13), the following
forms for the EHC and PMS of our systems are derived:

CðTÞ ¼ � 1

pNaNcT2

XNa

a¼1

�
X

k˛FBZ

Im

ðþN

�N
d3

(
32 expð3=TÞ

½1þ expð3=TÞ�2G
aaðk;EÞ

)
; (14)

cðTÞ ¼ � 1

pNaNcT

XNa

a¼1

�
X

k˛FBZ

Im

ðþN

�N
d3

(
expð3=TÞ

½1þ expð3=TÞ�2G
aaðk;EÞ

)
: (15)
3 Calculations and results

By rescaling all energies to that of t1 for further simplication,
we adapt the subsequent TB parameters from the model given
by Yamada. The parameters were extracted while investigating
the long-range correlation effects on the localization property of
the one-electron states in such disordered models via the DOS
and Lyapunov exponents of the wave functions:42

3i;m
a ¼ 0; t1 ¼ 1:0; t2 ¼ 1

2
t1 ¼ 0:5; WGC ¼ 1:0;

WAT ¼ 2WGC ¼ 2:0:

(16)
This journal is © The Royal Society of Chemistry 2017
Perhaps these parameters, particularly the xing of all the on-
site energies to zero, seem unsound and different to some other
works,35–38,50–52 however, this simple model with the above set of
parameters has succeeded in reproducing the semiconductivity
of DNA double-strands.42,43,46

For the simple case of the poly(GC) duplex, as a practical
example, the orthogonal basis kets of the Hilbert space corre-
sponding to four sites within the unit cell (two coupled strands
of G–P and C–P) are as follows:

{|FG
1 i,|FP

1i,|FC
2 i,|FP

2i}, (17)

and based on this set, by compact symbolization of Gmn
ab h

Gmn
ab(i,j;E), the Hamiltonian has the matrix form of:

Gði; j;EÞ ¼

0BB@
GGG

11 GGP
11 GGC

12 GGP
12

GPG
11 GPP

11 GPC
12 GPP

12

GCG
21 GCP

21 GCC
22 GCP

22

GPG
21 GPP

21 GPC
22 GPP

22

1CCA: (18)

For the corresponding unit cell of length a ¼ 2a0 with the
nearest neighbor vectors Ri,i+1 ¼ �Ri.i�1 ¼ aex, the FBZ interval
would be �p/a # k # p/a, and hence by inserting the param-
eters of eqn (16) into eqn (8), we are led to:

ek ¼

0BB@
0 t1 þ t2e

�ika WGC 0

t1 þ t2e
ika 0 0 0

WGC 0 0 t1 þ t2e
�ika

0 0 t1 þ t2e
ika 0

1CCA: (19)

Diagonalizing the above matrix through some calculations
determines the band structure (BS) of the system as below:

ΕðkÞ ¼ 1

2

�
�WGC �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WGC

2 þ 4½t12 þ t22 þ 2t1t2 cosðkaÞ�
q �

:

(20)

The energy gap of the system can be extracted directly as the
minimum difference between the mid-upper and mid-lower
bands,

Dg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WGC

2 þ 4ðt1 � t2Þ2
q

�WGC: (21)

Obviously these results hold true for poly(AT) DNA as well,
however, WGC should be replaced with WAT. Substituting the
numerical values of the parameters generates values of 0.414t1
and 0.236t1 for the energy gaps of the poly(GC) and poly(AT)
chains, respectively. The results indicate the typical dependence
of the band gap and electrical prole of such systems on their
geometry and TB parameters.

For the case of the poly(GC–AT) duplex, which includes
eight sites within its unit cell (two coupled strands of G–P–A–P
and C–P–T–P), the orthogonal basis kets of the Hilbert space
are:
RSC Adv., 2017, 7, 48486–48493 | 48489
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FG
1

�
;


FP1

1

�
;


FA

1

�
;


FP2

1

�
;


FC

2

�
;


FP1

2

�
;


FT

2

�
;


FP2

2

��
; (22)

and concordantly,

ek ¼

0BBBBBBBBBB@

0 t1 0 t2e
�ika WGC 0 0 0

t1 0 t2 0 0 0 0 0

0 t2 0 t1 0 0 WAT 0
t2e

ika 0 t1 0 0 0 0 0

WGC 0 0 0 0 t1 0 t2e
�ika

0 0 0 0 t1 0 t2 0

0 0 WAT 0 0 t2 0 t1
0 0 0 0 t2e

ika 0 t1 0

1CCCCCCCCCCA
:

(23)

Numerically solving the above matrix and reiterating for all k
vectors of the FBZ determines the BS of this case. The acquired
results have found 0.30t1 to be the value of the band gap.
Furthermore, substitution of eqn (23) in eqn (7) and (9) species
the prole and details of the DOS.

Similarly, larger calculations are carried out to extract the
DOS of bigger duplexes. Fig. 3 shows the results for the three
mentioned ordered systems. Panel (a) for poly(GC) DNA shows
the greatest band gap at the Fermi level, 3F ¼ 0, and mini-gaps
between the subbands on both sides. In contrast, in panel (b),
poly(AT) DNA appears to have the smallest band gap at 3F with
widely separated subbands. Principally, van Hove singularities
directly relate to the number of atoms in the unit cell and
address the regions in which the eigenstates are larger. In both
systems, van Hove singularities occur at the edges of the bands
and subbands, implying that the eigenstates are denser in these
vicinities. The emergence of central gaps and the observed
discrepancies for different systems can be explained by
symmetry breaking, that is asymmetry of the hopping terms
from a typical site to either the le or right neighbor, which
resembles the picture of a molecule located between two other
Fig. 3 The DOS of three ordered chains of (a) poly(GC), (b) poly(AT)
and (c) poly(GC–AT) double-strands, based upon the parameter sets
of eqn (16).

48490 | RSC Adv., 2017, 7, 48486–48493
molecules of different types. If the neighbors on both sides of
a typical molecule are different, they have different energy
levels, leading to the opening of a gap in the energy band. The
noticeable point in panel (c) for poly(GC–AT) is a band gap of
medium size compared to the two other cases. Moreover, there
are higher numbers of allowed bands and van Hove singulari-
ties due to its larger unit cell that has a larger number of atoms
inside. Therefore, it might be speculated that poly(GC) and
poly(AT) DNA chains can set the limits and conne the curves of
all other double-strands. This could be supported by more
inspection of the plots (a)–(c) of Fig. 4, representing the DOS of
the three disordered chains with unit cells including 20, 100
and 200 randomly arranged BPs. Details of the sequencing have
not been demonstrated except to consider only one constraint:
that every case is composed of equal numbers of G–C and A–T
pairs but in a random arrangement. It can be clearly seen that
the different shapes of the DOS corresponding to unit cells of
different sizes are in agreement with ref. 46 where this result is
veried not only for this condition but also for different
congurations of BPs within a xed size unit cell.

Illustrated in panels (a) and (b) of Fig. 5 are the EHC and PMS
of the ordered chains with respect to the dimensionless
temperature (3 ¼ kBT)/t1. The behavior of the curves in the limit
of very high and very low temperatures can be explained
because the thermal effects are dominant in the upper limit and
overcome all other mechanisms, while in the lower extreme the
thermal energy is not sufficient to excite the electrons to cross
the energy gap. There are two mechanisms governing the
systems: the temperature gradient as a driving agent and the
scattering of electrons from the site potentials as a disturbing
factor. For different systems both mechanisms are locally of
different strengths and their competition dictates the overall
behavior. The conuence points of the curves are quite salient.
Concerning the EHC, there are three special temperatures of
about 31 ¼ 0.20t1, 32 ¼ 0.53t1 and 33 ¼ 0.96t1. For the points 31
Fig. 4 The DOS of three disordered double-strands with (a) 20, (b)
100, and (c) 200 randomly arranged BPs.

This journal is © The Royal Society of Chemistry 2017
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Fig. 5 The (a) EHC and (b) PMS of the three considered ordered
double-strands.

Fig. 6 The (a) EHC and (b) PMS of a few disordered double-strands
including different numbers of BPs with equal contributions of both
types.

Fig. 7 The (a) EHC and (b) PMS of the three different configurations of
disordered double-strands with 200 BPs, labelled by their GC
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and 33, all the ordered systems are almost coincident, while for
32 they diverge signicantly. In addition, the poly(GC) and pol-
y(AT) curves cross, and thus which case is higher alternates, at
31 and 33. Every system exhibits an unsteady increasing trend
until it reaches its peak, aer which the gures steadily decline.
The poly(GC) DNA curve reaches its peak at about 0.56t1 with
the least degree of uctuation, while the poly(AT) DNA curve has
the lowest peak among all the systems, reaching its peak at
0.93t1 with the most recognizable uctuations among all the
systems. The existence of another extreme at 0.27t1 in the latter
case may provide enough evidence to consider a double-
crossover. As expected based on the above interpretation, the
curve of the poly(GC–AT) DNA resides between those of the
other two, with the exception of a meagre departure at about 31.
This is clearer than the peak at 0.7t1, in terms of both its posi-
tion and height.

Similar description emerges with obvious discrepancies for
the PMS of the systems. As panel (b) of Fig. 5 shows, the PMS of
poly(AT) DNA reaches its peak abruptly at 0.2t1 and decreases
much slowly aer that, without any considerable uctuation.
However, the curve for poly(GC) DNA reaches its maximum at
about 0.57t1 aer a noticeable deviation from the initial trend.
Again, the poly(GC–AT) DNA curve stays between the two other
curves and has a peak at about 0.26t1. In contrast to those of the
EHC, the curves of the PMS of the ordered chains meet at 32 and
show a distinguishable divergence at 31 and 33.

According to the results based on this model, perhaps it can
be claimed that the physical properties of the poly(GC) and
poly(AT) DNA nanowires delineate the boundaries which
enclose the graphs of other double-strands. Of course, any
extension must be inferred frommore work on more systems of
other types, including periodic, quasi-periodic, and natural
DNA structures.59–63 This idea has been assessed further, within
This journal is © The Royal Society of Chemistry 2017
the scope of our results, by comparing the mentioned quantities
calculated for such systems with different random DNA chains
whose DOS is plotted in Fig. 4. The outcomes, as portrayed in
Fig. 6, are moderately distributed around the poly(GC–AT) DNA,
giving further evidence to support our rst speculation. We
observe that these random systems disobey the trend of the
ordered chains, i.e. they diverge around the points where the
ordered systems converge and vice versa. Furthermore, this
numbers.
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discrepancy is more noticeable around the higher coincidence
temperatures. For instance, the EHC curves of the random
chains deviate from being coincident at 31 and 33, with more
divergence around 33. They also don’t show a severe divergence
at 32, as opposed to what was previously observed for the
ordered systems. Likewise, the PMS curves of the random
chains deviate from divergence at 31 and 33 and coincidence at
32. Moreover, this deviation from the behavior of the ordered
systems is greater around the higher temperature points.

This behavior holds even for disordered systems of the same
unit cell size but with different arrangements of BPs. Fig. 7
depicts the calculation for a few congurations of such a unit
cell with 200 BPs which have been labelled by their respective
number of GC pairs. The rst two double-strands both contain
100 GCs but they are arranged in different ways, labelled I and
II. Obviously, the mentioned discrepancy is still present but it is
not as severe. The dependence of EHC and PMS of the DNA on
temperature and sequencing, along with the particular
temperatures at which the ordered chains exhibit exclusive
behavior, can inspire the design of experiments for the inves-
tigation of BP arrangement and the order of randomness in
random DNA double-strands. The outcomes of these investi-
gations would be helpful for regulating and quantifying the TB
parameters of the model applied here.
4 Summary and conclusion

Using a proper TB Hamiltonian model and the Green’s function
method, the EHC and PMS of some selected ordered and
disordered DNA double strands have been studied. The main
nding from our calculations using this model is that the EHC
and PMS of poly(GC) and poly(AT) DNA draw the boundaries
which enclose these graphs for the other disordered chains.
Additionally, for each of the mentioned quantities, there exist
particular temperature points at which the EHC curves of the
ordered double-strands coincide (diverge) while their PMS
curves diverge (coincide). Interestingly, these are the points
where disordered systems exhibit the most discrepancy with
respect to the ordered systems, and the deviation is more
signicant for points of higher temperature. Therefore, the
deviation from these points can be considered as a criterion for
evaluating the degree of randomness in BP sequencing of
random DNA chains. Furthermore, they allow the possibility to
better quantify the TB parameters of the model.
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49 D. Klotsa, R. A. Römer and M. S. Turner, Biophys. J., 2005, 89,

2187.
50 T. Kubar, P. B. Woiczikowski, G. Cuniberti and M. Elstner, J.

Phys. Chem. B, 2008, 112(26), 7937.
This journal is © The Royal Society of Chemistry 2017
51 K. Senthilkumar, F. C. Grozema, C. F. Guerra,
F. M. Bickelhaupt, F. D. Lewis, Y. A. Berlin, M. A. Ratner
and L. D. Siebbeles, J. Am. Chem. Soc., 2005, 127 42, 14894.

52 A. A. Voityuk, J. Jortner, M. Bixon and N. Rösch, J. Chem.
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