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uantitative analysis of fatty acid
profiles of Chinese pecans (Carya cathayensis)
during storage using an electronic nose combined
with chemometric methods

Shui Jiang, Jun Wang * and Yubing Sun

Chinese pecans (Carya cathayensis) continuously deteriorate during storage because of their high fatty acid

contents. In this study, an electronic nose (E-nose) was introduced to characterize Chinese pecans with

different storage times. Chemometric methods (principal component analysis (PCA), partial least squares

regression (PLSR), and back propagation neural networks (BPNNs)) were employed to analyze E-nose data.

For qualitative analysis, PCA could visualize the discrimination between different pecans based on the

E-nose data. For quantitative analysis, the results indicated that BPNN models performed better both in

predicting storage times and fatty acid contents than the PLSR models. In addition, a multi-target BPNN

regression model was built to simultaneously predict the contents of the six main fatty acids, and the

results (R2 > 0.95 in calibration sets and R2 > 0.88 in validation sets) were satisfactory. This study provides

a potentially viable method for determining the storage times and fatty acid profiles of nut products.
1. Introduction

Nuts, as the essence of plants, are generally nutrient dense since
they have high content of fat, abundant protein, and mineral
substances. The composition of nuts makes them benecial
food supplements for reducing the risks of malnutrition and
some chronic diseases such as cardiovascular and cerebrovas-
cular diseases.1 Thus, their high nutritional and medical value
make the economic value of nut products increasingly prom-
inent. However, during long storage, a high content of fat makes
nuts prone to rancidity, and the economic value is signicantly
decreased. This is because the fatty acid proles of most nuts
include polyunsaturated fatty acids such as oleic acid and
linolenic acid.2 Therefore, it is important to monitor the
internal quality of nuts during storage.

Traditionally, the rancidity of nuts is oen evaluated by
determining several indices such as the acid value, peroxide
value, and fatty acid prole.3 Among these evaluation indices,
fatty acid prole is the most important and direct indicator of
the internal quality of nuts. Nkwonta stated that the fatty acid
prole of nuts was signicantly affected by postharvest storage
and processing techniques, and it could be used to characterize
the internal quality of nuts.4 Normally, fatty acid proles can be
detected via analytical techniques, such as gas chromatography-
mass spectroscopy (GC-MS) and high performance liquid
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chromatography (HPLC), by determining the oil extracted from
nut meat;4,5 although these two methods exhibit good objec-
tivity and repeatability, they suffer from the disadvantages of
complex sample preparation and long detection times. For
example, in the study reported by Li, who determined the fatty
acid proles of heartnut and Persian walnut, the total run time
of GC-MS was 86 min, which was very long.6 In summary, the
oxidization procedure of nuts is rarely observed from the
outside directly.

To resolve the aforementioned issues, the development of
a new method to detect the internal quality of nuts is urgently
needed. Recently, some scholars carried out research on the
relationship between volatile compounds and the internal
quality of nuts.7–9 Mexis10 and Abdallah11 have stated that the
components, such as acids, alcohols, esters, and ketones, of
sample gases will be changed as a result of changes in nut
compositions. Normally, the sample gas escapes from the nuts
through their microporous shells; considering that the unique
odors of nuts are altered during rancidity, an electronic nose
was introduced to detect the internal quality.12 An electronic
nose (E-nose) is an instrument that analyzes samples by sensing
the sample gases without complex preparation.13,14 A typical E-
nose consists of several gas sensors that exhibit the character-
istics of cross-sensitivity and a broad spectrum response. As
a result, the electrical signal generated by an E-nose contains
abundant and overlapping information about the test sample.15

Via multivariate statistical techniques and articial neural
networks, the electrical signal can be used to distinguish
different samples or predict the indices of internal quality.16
RSC Adv., 2017, 7, 46461–46471 | 46461
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To extract more useful information from the E-nose data,
scholars have made some attempts to test the performances of
different algorithms. Therein, articial neural networks (ANNs)
have shown great potential to build input–output relationships
between complex nonlinear data obtained from the E-noses.17

Based on different architectures, transfer functions, and learning
strategies, there are many types of ANNs. Among these, BPNN has
received extensive attention because of its universal approxima-
tion capability.18 The work principle of BPNNs is to establish
a model by learning and storing the mapping relations between
the input and output.19 As amultilayer algorithm, a BPNN consists
of an input layer, a hidden layer, and an output layer. During the
modeling process, it is not necessary to dene the mathematical
equation between the input and output; this makes the operation
of BPNNs very convenient. Thus, BPNNs have been widely applied
in the elds of food safety and food detection. Many studies have
been reported on the application of BPNN algorithms to deal with
the E-nose data obtained from the detection of food products
such as meat,20 fruit,21 rice,22 egg,23 and tea.24

Upon summarizing the abovementioned studies, a conclusion
can be made that BPNN was just used to build the regression
model to predict a single index. However, during the spoilage of
food, changes in internal compositions will cause changes in
many evaluation indices. Moreover, all these indices reect the
internal quality to a certain extent. Therefore, it becomes signif-
icantly important to determine these indices rapidly and
precisely. Nowadays, most commonly used algorithms, such as
PLSR, MLR, and SVM, can only be used to build single-variable
prediction models.25 Compared to these algorithms, BPNN has
a special characteristic: its architecture (the number of layers and
nodes) can be designed; this means that the number of nodes
(objective variables) in the output layers can be greater than one.
Thus, multi-target prediction models can be established based
on the BPNN algorithm. The applications of multi-target
prediction models have been proved in other elds such as
materials processing and welding processes.26,27

To verify the feasibility of multi-target models in the food
detection eld, a BPNN was applied to analyze the E-nose data
of Chinese pecans. Detailed information about Chinese pecans
has been provided in previous studies, and the literature proved
that it is possible to discriminate between different pecan
samples and predict their internal quality based on the E-nose
signals.16 The main objectives of this study are as follows: (1)
to characterize pecans with different storage times using an E-
nose and to determine their fatty acid proles by GC-MS; (2)
to qualitatively and quantitatively analyze the E-nose data based
on the PLSR and BPNN algorithms; and (3) to compare the
performance of a multi-target BPNN model with that of
currently popular methods according to the determination
coefficient (R2), root mean square error (RMSE), and relative
standard deviation (RSD).

2. Materials and methods
2.1. Sample preparation

The experimental materials used in this study were Chinese
pecans (Carya cathayensis), which were supplied by
46462 | RSC Adv., 2017, 7, 46461–46471
Tuanyuanren Company. These pecans were harvested in Long-
gang Town, Linan City of Zhejiang province, China (119.72 E,
30.22 N).

The internal quality of pecans, which were protected by
shells, showed little change in a short period of time. To
decrease the time required for this experiment, an accelerated
storage simulation was applied. During the simulation, the in-
shell pecans were placed in an incubator (STIK (Shanghai)
CO., China) at a temperature of 35 �C and relative humidity
(RH) of 30%. According to the reported studies, pecans stored in
this environment for 10 d and 20 d could simulate those stored
in a 4 �C storehouse for approximately 1 and 2 years, respec-
tively.28,29 This accelerated storage simulation is based on the
Q10 value, which is calculated as follows:

Q10
ðT2�T1Þ=10 ¼ qsðT1Þ

qsðT2Þ
where T1 and T2 are respectively actual and accelerated storage
temperatures (�C), and qs is the storage time (d) of samples.
Normally, the Q10 values range from 1.5 to 2.0 for sensory
quality loss, 1.5 to 3.0 for rancidity, 4 to 10 for browning reac-
tions, and 20 to 40 for quality loss for some frozen fruits and
vegetables.30 The Q10 concept has been successfully applied to
accelerate the shelf life of nuts such as walnuts and
almonds.29,31 Similar to the case of these nuts, nutrient loss and
lipid oxidation of Chinese pecans are the main reactions during
rancidity. Therefore, in this study, the value of Q10 was chosen
as 3.4 according to the research of Taoukis.28

The supplied pecans were randomly divided into 5 groups
(15 sample sets per group and 20 pecans (about 70 g) in each
set). During the process, 4 groups were placed in an incubator
for the articial process, and one group was taken out every 5
days. The original samples were dened as day 0, and processed
samples were dened as day 5, day 10, day 15, and day 20. The
processed samples were exposed to clean air for enough time to
cool them from 35 �C to room temperature, which was 20 �C �
1 �C. Then, E-nose detection was performed. Aer the detection,
all the samples were cracked carefully, and the pecan kernels
were taken out. On the same day, pecan oil was extracted from
these kernels and then analyzed by GC-MS.
2.2. Electronic nose detection

In this study, an electronic nose (E-nose, PEN2, Airsense
Company, Germany) was used to detect sample gases. This
E-nose system was equipped with 10metal oxide semiconductor
(MOS) sensors, which were sensitive to specic groups of vola-
tile compounds. The 10 sensors constituted a sensor array, and
the sensor arrays were located in a chamber in which the
sample gases were exposed to the sensors. These MOS sensors
are W1C (aromatic), W5S (broad range sensitivity), W3C
(ammonia and aromatic), W6S (hydrogen), W5C (arom-aliph),
W1S (broad-methane), W1W (sulph-chlor), W2S (broad-
alcohol), W2W (sulph-chlor), and W3S (methane-aliph).32

Before the detection of pecans, the working conditions
(sample weight, temperature, beaker volume, and headspace
generation time) of the E-nose system were optimized by a set of
This journal is © The Royal Society of Chemistry 2017
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experiments to obtain the best performance. Detailed infor-
mation is provided in previously reported studies.28 In this
study, we have briey listed some important parameters. The
sample weight was about 70 g (20 pecans), the beaker volume
was 500 mL, and the head space generated time was 45 min.
The monitoring and cleaning processes took 80 and 70 s,
respectively. The ow rates of clean air and sample gas through
the gas path and sensor chamber were 600 mL min�1 and
200 mL min�1, respectively. During the detection, one signal
per second for each sensor was obtained by the WinMuster
soware (version 1.6.2, Airsense Analytics, Germany). Finally,
a data matrix (10 � 80) for each sample was obtained for the
following analysis. The output signal of the E-nose was repre-
sented asG/G0. G0 and G represent the electronic conductivity of
the sensor while detecting clean air and sample gas, respec-
tively. During the monitoring process, 10 response curves of
E-nose were obtained. Typical response curves for E-nose in
different sample detections have been described in the previous
literature.
2.3. Determination of the fatty acid proles

As abovementioned, the internal quality of pecan kernels with
different storage times varied because of the fatty acid rancidity.
Therefore, the prole of fatty acids in pecans was regarded as
the indicator of internal quality, and the fatty acid proles were
determined by GC-MS in this study. Aer detection via the E-
nose, pecan samples from each group were broken carefully
to remove the kernels. Aerwards, these pecan kernels were
ground into powder by a squeezer, and these powders were
randomly divided into three groups for the following oil
extraction. Then, three oil samples were extracted by the Soxhlet
extractor (SER148/6, VELP Company, Italy). By repeating the
abovementioned steps, a total of 15 oil samples were obtained
(3 repeats � 5 groups of pecans). To avoid breakage of the long
chain structures of fatty acids in the high temperature envi-
ronment, fatty acids were processed into stable fatty acidmethyl
esters (FAMEs). The FAMEs were prepared by methyl esteri-
cation, as described previously by Torres, with slight modica-
tions.7 Subsequently, all the FAME solutions were detected by
GC-MS. The identication of FAMEs was carried out by
comparing the retention times of standards, and the contents of
each FAME were calculated using the standard curves. In this
experiment, the preparation and detection of FAMEs were
conducted in triplicate. Detailed information about the prepa-
ration of sample oils and FAME solutions and the working
conditions of the GC-MS instruments can be found in our
previous study.34,35
Fig. 1 Response values of each sensor obtained from different sample
detections. The bar stands for the average signal values at the 75th
second in each detection. S1-S10, respectively, represent the W1C,
W5S, W3C, W6S, W5C, W1S, W1W, W2S, W2W, and W3S sensors.
2.4. Analysis of the E-nose data

With regard to the qualitative and quantitative analysis of GC-
MS results, the identication of individual peaks was carried
out by comparing the retention times of the standards (Aladdin-
Jingchun [Shanghai] Biology and Technology Co., Ltd). The
contents of fatty acids were calculated using standard curves,
and the results were expressed as g kg�1 of pecan oils. In
This journal is © The Royal Society of Chemistry 2017
addition, all measurements were replicated three times. The
results have been reported as mean � standard deviation (SD).

For the chemometric analysis, the 75th second values of
E-nose response signals were extracted as features for subse-
quent analysis. PCA was applied to discriminate samples with
different storage times. PLSR and BPNNs were used to predict
the storage time and precise contents of fatty acids. The
prediction models were evaluated by determination coefficient
(R2), root mean standard error (RMSE), and relative standard
deviation (RSD).

In this study, PCA was performed by Statistical Product and
Service Solutions v18.0 (International Business Machines
Corporation, USA), the PLSR method was performed by Minitab
14 (Minitab Inc., USA), and BPNN was run in MATLAB 2010b
(The MathWorks Inc., USA).
3. Results and discussion
3.1. Results of the E-nose detection

In this study, the response values of each sensor at the 75th
second were selected as features for the following analysis. To
explore the differences between signals among different groups,
the average signal values at the 75th second were calculated,
and the result is presented in Fig. 1. In this study, S1, S2, S3, S4,
S5, S6, S7, S8, S9, and S10, respectively, represent theW1C,W5S,
W3C, W6S, W5C, W1S, W1W, W2S, W2W, and W3S sensors.

As shown in Fig. 1, the average signal values of S2 were larger
than those of other sensors in the experiment; this indicated
that S2 was most sensitive to pecan samples. The response
values of S1, S3, and S5 were minimum and almost remained
constant. This might be because these three sensors were
sensitive to aromatic compounds, and the changes in the main
aromatic compounds in different pecan samples were not
obvious. In contrast, the signals of S2, S6, S8, and S10 showed
signicant changes. This may be because new volatile
compounds were produced or the concentration of some orig-
inal compounds changed. These volatile compounds may be
alcohols and alkenes, for which S2, S6, S8, and S10 are sensitive.
It can be concluded from the average response values of the
RSC Adv., 2017, 7, 46461–46471 | 46463
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sensors that the E-nose has the potential to distinguish
different pecans by detecting the sample gases.

The stability of each sensor value at the 75th second was
analyzed by calculating the RSD, and the results of the RSD
analysis are listed in Table 1. As shown in Table 1, all the RSD
values are smaller than 3.52%, except the values for S2. The
small RSD indicated a high stability for each sensor response.33

S2 has a broad range sensitivity and is easily inuenced by small
differences in sample gases. Thus, the RSD values of S2 are
relatively higher than those of other sensors. According to
a previous study, S2 plays an important role in distinguishing
different Chinese pecan samples. Therefore, the response
values of S2 were retained in the data matrix. Table 1 also
presents the results of one-way ANOVA for the sensor array. The
results indicated signicant differences (P < 0.001) between
different sample groups.
3.2. Results of the fatty acid proles

In this study, the in-shell pecans were analyzed by E-nose
during storage, and then, fatty acids of pecans were analyzed
as FAMEs using GC-MS. FAME compositions of pecan oil solu-
tions were obtained from the GC chromatogram, and six main
peaks were identied; these were methyl esters of palmitic acid
(C16:0), palmitoleic acid (C16:1, cis-9), stearic acid (C18:0), oleic
acid (C18:1, cis-9), linoleic acid (C18:2, cis-9, 11), and linolenic
acid (C18:3, cis-9, 12, 15) in the elution order. The GC chro-
matogram can be found in our previous study.34 Recently, many
studies have been reported on the fatty acid compositions of
different nuts such as hazelnut, peanut, and walnut. However,
in these studies, the obtained fatty acid compositions were
expressed as percentage of content. As an example, Moser36

determined the fatty acid proles of hazelnut, peanut, and
walnut oil by calculating the area values from their GC chro-
matograms. Mexis10 researched the effect of gamma irradiation
on the fatty acid proles of raw unpeeled almond kernels, and
one of the conclusions was that the fatty acid proles changed
aer processing with different doses of gamma irradiation.
Table 1 Results of RSD and one-way ANOVA of sensor values for Chine

No. Day 0 (%) Day 5 (%) Day 10 (%)

S1 3.52 2.56 3.04
S2 11.97 9.85 10.27
S3 2.78 1.76 2.07
S4 0.22 0.46 1.75
S5 2.75 1.91 2.19
S6 2.32 1.93 1.38
S7 1.91 1.84 2.09
S8 1.88 1.94 1.53
S9 2.99 1.51 1.91
S10 0.42 1.24 1.29

a Fieen samples of each group were tested, the RSD of sensor values demo
one-way ANOVA of sensor values measured for 75 samples in total. S1–S10
W2W, and W3S sensors.

46464 | RSC Adv., 2017, 7, 46461–46471
These studies explored the fatty acid proles of nuts and their
inuencing factors, but no precise contents of fatty acids were
obtained in these studies. To solve this problem, in this study,
we applied GC-MS combined with standard curves to determine
the precise contents of FAMEs. Then, the contents of FAMEs
were translated to the nal contents of fatty acids in the oil
samples using the molecular weight ratio of fatty acids and
FAMEs. The accurate fatty acid contents obtained from GC-MS
are summarized in Table 2 and are expressed as mean � SD.
As shown in Table 2, the determined fatty acid prole of
Chinese pecans mainly contained two saturated and four
unsaturated fatty acids. For the fresh pecan samples, the
content of unsaturated fatty acids was 86.08%, and oleic acid
was most abundant with a percentage of 63.97%. Other fatty
acid constituents of Chinese pecan were linoleic acid (18.73%),
palmitic acid (9.62%), stearic acid (4.30%), linolenic acid
(2.11%), and palmitoleic acid (1.26%). The obtained fatty acid
compositions were similar to those reported in a previous
study;37 however, in this article, only the fatty acid composition
of Chinese pecans has been reported, and no further research
on the inuence of storage on the fatty acid proles has been
carried out.

In this study, the inuence of storage time on fatty acid
proles was explored by determining the precise contents of
fatty acids. As shown in Table 2, it could be concluded that all
the six fatty acid contents exhibited a decreasing trend during
storage. According to the results, oleic acid became most
abundant (340.44–282.27 g kg�1) as the storage time increased,
followed by, in decreasing order of abundance, linoleic acid
(99.68–85.44 g kg�1), palmitic acid (51.22–42.69 g kg�1), stearic
acid (22.91–18.67 g kg�1), linolenic acid (11.25–9.02 g kg�1), and
palmitoleic acid (6.72–5.06 g kg�1). With regard to the values for
day 0, storage under the simulated conditions caused a signi-
cant reduction in the content of individual fatty acids. Speci-
cally, palmitoleic acid showed the highest decrease (24.7%)
followed by, in the decreasing order, linolenic acid (19.8%),
stearic acid (18.5%), oleic acid (17.1%), palmitic acid (16.7%),
and linoleic acid (14.3%) aer 20-d storage.
se pecan samplesa

Day 15 (%) Day 20 (%)

One-way ANOVA

F P

3.32 1.72 6.34 <0.001
12.96 15.94 7.44 <0.001
2.55 1.26 14.77 <0.001
0.43 0.90 70.03 <0.001
2.57 1.37 11.03 <0.001
1.20 1.24 168.64 <0.001
1.30 1.27 11.66 <0.001
0.95 2.37 234.36 <0.001
1.81 1.39 69.46 <0.001
0.80 1.37 283.65 <0.001

nstrated high stability of the test. Signicance (p < 0.001) obtained from
, respectively, represent W1C, W5S, W3C, W6S, W5C, W1S, W1W, W2S,

This journal is © The Royal Society of Chemistry 2017
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Table 2 Contentsa (g kg�1) of individual fatty acids during storage

Fatty acids Day 0 Day 5 Day 10 Day 15 Day 20

Oleic acid 340.44 � 9.93a 325.10 � 9.12a,b 320.08 � 13.89a,b 301.60 � 14.68b,c 282.27 � 9.48b,c

Linoleic acid 99.68 � 2.78a 94.86 � 3.99a,b 90.77 � 5.25a,b 87.57 � 4.49b 85.44 � 2.86b

Palmitoleic acid 6.72 � 0.19a 6.01 � 0.06b 5.72 � 0.14b 5.28 � 0.04c 5.06 � 0.07c

Linolenic acid 11.25 � 0.26a 10.21 � 0.33b 9.81 � 0.19b 9.73 � 0.16b 9.02 � 0.12c

Palmitic acid 51.22 � 0.27a 48.65 � 0.34b 47.37 � 0.56c 44.91 � 0.23d 42.69 � 0.20e

Stearic acid 22.91 � 0.22a 21.18 � 0.38b 19.80 � 0.43c 19.47 � 0.27c 18.67 � 0.27d

a Values are expressed as mean (n ¼ 3) � SD. Means in the same row followed by different inline letters (a, b, c, d, and e) are statistically different
according to the Tukey's HSD test (P < 0.05).
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3.3. Analysis of PCA

As described in the previous sections, the output of the E-nose is
a type of non-representational data matrix. Thus, it is difficult to
observe the data structure of the E-nose directly. Via appropriate
pattern recognition, the E-nose data could be analyzed for
qualitative discrimination and quantitative regression. In this
study, principal component analysis (PCA) was applied to
visualize the data structure and to qualitatively discriminate
sample groups with different storage times.

PCA two-dimensional and three-dimensional plots obtained
from ve groups of pecan samples with different storage times
are shown in Fig. 2. As shown in Fig. 2(a), the sum of PC1 and
PC2 was calculated and indicated that 79.06% information of
the variance was contained in the score plot. In this plot, the
sample groups day 0, day 5, day 10, and day 15 could be
signicantly distinguished from each other. However, some
samples of day 20 were mixed with those of day 5, day 10, and
day 15. This might be because the rst two PCs explained only
part of the total variance, and some important information
from the sensors was lost during the PCA.

To solve this problem, we selected three components for
qualitative discrimination, and the three-dimensional score
plot of the PCA is shown in Fig. 2(b). As shown in this plot, the
sum of the rst three PCs was 95.7%, which meant that most of
the information from the original data was considered during
PCA. For qualitative discrimination, all the sample groups were
separated by a clear boundary and rarely overlapped. It could be
concluded from the dispersion of sample points that the PCA
Fig. 2 PCA two-dimensional plot (a) and three-dimensional plot (b) obtai
PCA, 15 copies of the E-nose data for each group were applied.

This journal is © The Royal Society of Chemistry 2017
plots showed a satisfactory discrimination performance. The
results of the qualitative analysis indicated that the E-nose data
exhibited a good capability for discrimination of pecans with
different storage times.

3.4. Prediction of storage time by E-nose

The storage time is the most important factor affecting the
internal quality of Chinese pecans. In this study, PLSR and
BPNNs were introduced to develop models for predicting
storage times. The 75th second values were extracted from the
response signals of the E-nose as the feature data. Before
building the models, the feature data (15 samples � 5 cate-
gories) was divided randomly into calibration and validation
subsets, with 60 samples (12 samples of each category) for the
calibration set and 15 samples (3 samples of each category) for
the validation set. The values in the calibration set were applied
to build the PLSR and BPNN models as independent variables,
and the simulated storage times were regarded as the depen-
dent variables. The prediction performances of models were
evaluated by calculating R2 and RMSE. A higher R2 and a lower
RMSE represent a better prediction model. In addition, the R2

values and RMSEs of the calibration and validation sets were
used to verify the performance of model overtting.

The regression results for PLSR and BPNN are shown in
Fig. 3. Fig. 3(a) shows that the PLSR model does not perform
well in predicting the storage time of pecans based on the
E-nose response signals. The R2 between the actual storage
times and predicted storage times in the calibration set
ned from five groups of pecan samples with different storage times. For
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Fig. 3 Regression results of storage time based on (a) PLSR and (b) BPNN.
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(R2 ¼ 0.9004) was slightly higher than that in the validation
set (R2 ¼ 0.8805); moreover, the RMSE in the calibration set
(RMSE ¼ 2.2442) was lower than that in the validation set
(RMSE ¼ 2.6687). The results of PLSR analysis were similar to
those of Wei12 who applied the PLSR method to predict the
storage time of peanuts based on the E-nose data. Although the
R2 values of PLSR were acceptable, the RMSEs were quite high
both in the calibration set and validation set. This indicated
that the prediction precision of the PLSR models was not good.
To more precisely predict the storage time of pecans, a BPNN
was also applied to build a prediction model based on the
E-nose data. As shown in Fig. 3(b), the R2 values were very high
both in the calibration set (R2 ¼ 0.9891) and validation set (R2 ¼
0.9836), and the RMSEs were very low both in the calibration set
(RMSE ¼ 0.7512) and the validation set (RMSE ¼ 0.9416).

Regarding the quantitative analysis of storage time, the
regression models PLSR and BPNN had satisfactory perfor-
mances in prediction. Compared to the results of PLSR, the
higher R2 values and the lower RMSEs led to the conclusion that
the prediction model of storage time based on the BPNN was
much better. In addition, the R2 values and RMSEs of the cali-
bration and validation sets showed small differences; this
indicated that the overtting degrees of the PLSR and BPNN
models are small. As abovementioned, the E-nose data had the
capacity to accurately predict storage time via an appropriate
regression algorithm.

3.5. Prediction of the fatty acid proles by E-nose

In this study, an E-nose was introduced as a potential alterna-
tive method to GC-MS to analyze the fatty acid proles of
pecans. PLSR and BPNN were used to establish the correlation
between the sensor signals of the E-nose and the fatty acid (i.e.,
oleic acid, linoleic acid, palmitoleic acid, linolenic acid, pal-
mitic acid, and stearic acid) proles of pecans.

3.5.1. Prediction result based on PLSR. PLSR can build
high-performance regression models even when the variables
have high linear correlations, and it is a suitable method for
solving the problem of index prediction based on the E-nose
data. In this study, the PLSR method was applied to predict
46466 | RSC Adv., 2017, 7, 46461–46471
the fatty acid proles of pecans. According to the main fatty
acids obtained from GC-MS, six regression models were per-
formed. Fig. 4 shows the distributions between the predicted
and experimental values of fatty acids. To evaluate the perfor-
mance of regression models and verify the performance of
overtting, the values of R2, RMSE, and RSD were calculated.
Table 3 summarizes the R2 values and RMSEs of the calibration
and validation sets based on the PLSR method.

As shown in Table 3, there were small differences between the
R2 values of the calibration and validation sets, which indicated
that no overtting occurred during the building procedure of
predictionmodels based on the PLSRmethod. However, the RSD
values in this table are smaller than 9%. The low R2 values (R2 <
0.88 in the calibration sets and R2 < 0.87 in the validation sets) led
to a conclusion that the performances of the PLSR models were
unsatisfactory. Furthermore, the RMSEs in both the calibration
and validation sets were very high. As shown in Fig. 4, the data
points were unorganized, and the data points for day 15 were far
away from the tted curves. Therefore, the tting effects for fatty
acids based on the PLSR method were unsatisfactory. This result
might suggest that the latent correlation between the E-nose data
and the experimental data of fatty acids cannot be completely
based on the PLSRmethod. PLSR is a data analysismethod based
on the multivariate statistical analysis, which combines the
properties of principal component analysis and multiple linear
regression analysis.38 To a certain extent, PLSR can accept
collinear data, separate out the sample noise, and make linear
combinations in the dependent concentrationmatrix.39 However,
the relationship between predicted indices and E-nose data was
nonlinear, and the regression model based on PLSR could not
perfectly characterize the mapping relation between the indices
and E-nose data. To gain a better prediction performance,
a BPNN was also applied to build the prediction model of fatty
acid proles based on the E-nose data.

3.5.2. Prediction results based on the BPNN. The predic-
tion results of fatty acid contents based on the PLSR method
were unsatisfactory. Therefore, the BPNN algorithm was intro-
duced and used to build a robust model for predicting the fatty
acid contents. A typical BPNN model consists of three layers
This journal is © The Royal Society of Chemistry 2017

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra05879a


Fig. 4 Predicted fatty acid profiles ((a) oleic acid; (b) linoleic acid; (c) palmitoleic acid; (d) linolenic acid; (e) palmitic acid; and (f) stearic acid) based
on PLSR method; 60 samples for calibration and 15 samples for validation.

Table 3 Results of PLSR prediction models built on the responses of
the E-nose

Fatty acids

Calibration Validation

R2 RMSE RSD (%) R2 RMSE RSD (%)

Oleic acid 0.8340 8.2927 5.70 0.8294 9.6127 6.29
Linoleic acid 0.7214 2.7063 4.77 0.7204 2.1965 4.51
Palmitoleic acid 0.7579 0.2887 8.92 0.7712 0.2331 8.34
Linolenic acid 0.8757 0.2599 6.92 0.8616 0.2994 6.70
Palmitic acid 0.7965 1.3419 5.54 0.7923 1.4833 5.87
Stearic acid 0.7635 0.7268 6.51 0.7574 0.7674 6.05
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(i.e., input layer, hidden layer, and output layer). Previous
studies indicated that the number of nodes in the hidden layer
of the BPNN was an important parameter in controlling the
This journal is © The Royal Society of Chemistry 2017
accuracy of prediction. Aer a series of tests, the BPNN models
were optimized, and the numbers of nodes in the three layers
were 10 in the input layer, 14 in the hidden layer, and 1 in the
output layer.16

The distributions between predicted and experimental values
of fatty acids based on the BPNN are shown in Fig. 5. The R2

values and RMSEs of the calibration and validation sets based on
the BPNN are summarized in Table 4. Comparison of the
regression results based on PLSR and BPNN led to the discovery
that the R2 values of both the calibration sets (R2 > 0.96) and
validation sets (R2 > 0.93) based on the BPNN were higher than
those of the calibration sets (R2 < 0.88) and validation sets (R2 <
0.87) based on PLSR. Furthermore, the RMSEs of the calibration
and validation sets based on the BPNN were much lower than
those based on PLSR. The higher R2 values and the lower RMSEs
indicated that there were close relationships between the fatty
RSC Adv., 2017, 7, 46461–46471 | 46467
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Fig. 5 Predicted fatty acid profiles ((a) oleic acid; (b) linoleic acid; (c) palmitoleic acid; (d) linolenic acid; (e) palmitic acid; and (f) stearic acid) based
on single-target BPNN; 60 samples for calibration and 15 samples for validation.
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acid contents estimated by the BPNNmodels and those obtained
via GC-MS. In addition, as another evaluation criterion, the RSDs
in this table are smaller than 10%, which is acceptable in this
Table 4 Comparison of single-target BPNN models and multi-target BP

Fatty acids

BPNN (single-target)

Calibration Validation

R2 RMSE RSD (%) R2 RMSE R

Oleic acid 0.9777 3.1097 6.60 0.9765 3.1048 6
Linoleic acid 0.9643 1.2703 5.07 0.9678 1.0373 4
Palmitoleic acid 0.9695 0.1033 10.03 0.9751 0.1045 8
Linolenic acid 0.9673 0.1713 8.17 0.9771 0.1321 6
Palmitic acid 0.9678 0.5637 6.45 0.9803 0.6136 5
Stearic acid 0.9655 0.3153 6.51 0.9398 0.4090 6

46468 | RSC Adv., 2017, 7, 46461–46471
study. It could be concluded that the BPNN algorithm could
extract useful information from E-nose datamore effectively than
the PLSR method.
NN model built on the E-nose data

BPNN (multi-target)

Calibration Validation

SD (%) R2 RMSE RSD (%) R2 RMSE RSD (%)

.29 0.9685 4.4058 6.84 0.9620 3.9938 6.37

.51 0.9779 0.7840 5.65 0.9528 1.1967 5.13

.34 0.9759 0.0978 10.60 0.9569 0.1269 9.99

.70 0.9648 0.1609 7.82 0.9486 0.1883 8.25

.87 0.9734 0.5985 6.88 0.9459 0.6875 6.34

.05 0.9548 0.3243 7.11 0.8807 0.5274 6.97

This journal is © The Royal Society of Chemistry 2017
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At present, most of the relevant reported studies mainly
focus on building a regression model of single target. As
abovementioned, the BPNN regression models performed well
while singly predicting the content of each fatty acid. However,
the internal quality of pecans could only be characterized by
fatty acid proles that include six main fatty acids. Therefore,
single-target BPNN models of fatty acids were inconvenient for
determining the fatty acid proles of pecans in practical
applications. In this study, a multi-target BPNN regression
model was built to verify the possibility of predicting the six
fatty acid contents simultaneously. Many reports have
mentioned that multilayered networks are capable of handling
Fig. 6 Predicted fatty acid profiles ((a) oleic acid; (b) linoleic acid; (c) palm
on multi-target BPNN; 60 samples for calibration and 15 samples for va

This journal is © The Royal Society of Chemistry 2017
a wider range of nonlinear functions than single-layer
networks.40 However, the more complicated architecture of
the network model will substantially increase the computa-
tional effort.27 For application in food quality detection, the
BPNN model with one hidden layer is sufficient to deal with the
E-nose data. Therefore, in this study, the developed model
consisted of three layers: an input layer (10 nodes), a hidden
layer (14 nodes), and an output layer (6 nodes). The 6 nodes in
the output layer represented the predicted values of six fatty
acids. The distributions between the predicted and experi-
mental values of six fatty acid contents based on the multi-
target BPNN prediction model are shown in Fig. 6, and the R2
itoleic acid; (d) linolenic acid; (e) palmitic acid; and (f) stearic acid) based
lidation.
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values and RMSEs of the calibration and validation sets are
summarized in Table 4.

As shown in Table 4, the performance of the multi-target
BPNN model, which predicted the six fatty acid contents
simultaneously, was acceptable. The R2 values in the calibration
and validation sets were greater than 0.95 and 0.88, respectively.
In addition, the RMSEs of the calibration and validation sets
were almost the same as the results of single-target BPNN
models, and the RSDs in this table were also acceptable. The
satisfactory evaluation indexes (R2 and RMSE) indicated that the
BPNN algorithm could provide the most useful information
from the E-nose data to predict the six fatty acid contents
simultaneously. The advantage of the obtained multi-target
BPNN model was that the fatty acid proles of pecans could
be predicted directly by just inputting the E-nose data once.
Moreover, the multi-target BPNN model makes the detection of
fatty acid proles more convenient and direct, avoiding
complex experimental procedures and data processing.

To date, this is the rst study on the assessment of the
impact of postharvest storage on the fatty acid prole of
Chinese pecans and prediction of the precise contents of each
fatty acid based on the E-nose data. As abovementioned, the
fatty acid prole of Chinese pecans contained mainly two
saturated fatty acids (palmitic acid and stearic acid) and four
unsaturated fatty acids (palmitoleic acid, oleic acid, linoleic
acid and linolenic acid). The main types of fatty acids were
similar to those of most walnuts.41,42 However, the precise fatty
acid composition of Chinese pecans was distinctly different
from that of others, which led to their unique economic
value.7,37 Moreover, this study explored the feasibility of
precisely predicting the fatty acid contents simultaneously
based on the BPNN model. The established multi-target BPNN
model could predict the fatty acid prole directly by inputting
one data set. Compared with that of the common regression
methods such as PLSR and the single-target BPNN, the predic-
tion performance (high R2 and low RMSE) of the multi-target
BPNN was satisfactory.

4. Conclusions

This study provided a nondestructive detection method to
evaluate in-shell pecans using an E-nose. The main research
and conclusions are as follows: (1) PCA has been applied to
visualize the discrimination between different pecan samples,
and the E-nose performs well in differentiating different
samples with the rst three PCs explaining 95.7% of the varia-
tion. (2) A total of six fatty acids (i.e., palmitic acid (C16:0),
palmitoleic acid (C16:1), stearic acid (C18:0), oleic acid (C18:1),
linoleic acid (C18:2), and linolenic acid (C18:3)) have been
identied by GC-MS. During the storage, the measured values of
the six fatty acids decrease by 16.7%, 24.7%, 18.5%, 17.1%,
14.3%, and 19.8%. (3) Single-target BPNN models perform
better both in predicting storage time and fatty acid contents
than PLSR models, and the results of the multi-target BPNN
model, which has been built to simultaneously predict the
contents of six fatty acids, are satisfactory (R2 > 0.95 in cali-
bration sets and R2 > 0.88 in validation sets). To the best of our
46470 | RSC Adv., 2017, 7, 46461–46471
knowledge, no previous study has been performed to simulta-
neously predict the fatty acid prole of nuts based on a multi-
target BPNN model. This study provided a potentially viable
method for determining the storage times and fatty acid proles
of nuts. In the subsequent study, more effort will be focused on
analyzing the aroma characteristics of nuts using a solid phase
microextraction method (SPME) combined with GC-MS.
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Nomenclature
Detection instruments
E-nose
 Electronic nose

GC-MS
 Gas chromatography-mass spectroscopy

SPME
 Solid phase microextraction method

HPLC
 High performance liquid chromatography
Different types of sensors

Electronic nose: W1C, W5S, W3C, W6S, W5C, W1S, W1W, W2S,
W2W, and W3S

Pattern recognition techniques
PCA
 Principal component analysis

PLSR
 Partial least squares regression

BPNN
 Back propagation neural network

MLR
 Multivariable linear regression

SVM
 Support vector machine
Samples

Day 0, day 5, day 10, day 15, and day 20 represent Chinese pecan
samples stored in an incubator at a temperature of 35 �C and
relative humidity (RH) of 30% for 0 day, 5 days, 10 days, 15 days,
and 20 days.
FAMEs
This j
Fatty acid methyl esters
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