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rity integration method for
predicting microRNA-disease associations†

Xiaoying Li, Yaping Lin* and Changlong Gu

Increasing evidence has indicated that microRNAs (miRNAs) regulate gene expression at the post-

transcriptional level. Aberrant miRNA expression has been associated with many types of human disease,

including cancers. Their associations can be used to understand the pathogenesis of diseases. However,

using experimental methods to identify the associations between diseases and miRNAs is time

consuming and costly. Computational methods could find the most promising miRNA-disease

associations in a short time, thereby significantly reducing experimental time and cost. This paper

presents a network similarity integration method (NSIM) for predicting potential miRNA-disease

associations, considering that diseases associated with highly related miRNAs are more similar (and vice

versa). The NSIM is based on 5425 experimentally verified human miRNA-disease associations, which

consist of 495 miRNAs and 381 diseases. The NSIM integrates the disease similarity network, miRNA

similarity network, and known miRNA-disease association network on the basis of cousin similarity to

predict novel miRNA-disease associations. We evaluate the NSIM using leave-one-out cross validation.

The area under the curve of the method is 0.9475, indicating its outstanding performance. Case studies

on prostate, breast, and colon neoplasms further proved the outstanding performance of the NSIM to

predict not only disease-related miRNAs but also isolated diseases (diseases without any related miRNAs).
Introduction

MicroRNAs (miRNAs) are small endogenous non-coding RNAs
of about 22 nt long. MiRNAs are involved in many important
biological processes, including cell development, proliferation,
differentiation, apoptosis, and cellular signalling.1–6 Increasing
evidence has indicated that miRNAs play important roles in the
development and progression of human diseases.7–9 Aberrant
miRNA expression has been associated with many types of
human disease, including cancers, such as cardiovascular
diseases,10 prostate neoplasms,11 and breast neoplasms.12

Therefore, prediction and identication of disease-related
miRNAs are critical to understand the pathogenesis of
diseases, and thereby improve disease prognosis, diagnosis,
treatment, and prevention.

In the last few years, many efforts have been exerted to
identify potential miRNA-disease associations. Research using
biological experimentation has determined a large number of
miRNA-disease associations. Databases such as HMDD,13

miR2Disease,14 dbDEMC,15 miRCancer16 have been built to
provide a platform for searching experimentally veried
miRNA-disease associations. HMDD and miR2Disease are
er, Hunan University, Changsha, Hunan

ESI) available: A supplemental table is
.1039/c7ra05348g

4

a collection of experimentally supported humanmiRNA-disease
associations, manually retrieved on the basis of the literature.
Database miRCancer stores miRNA-cancer associations, which
are extracted using the rule-based text mining method. In
addition, dbDEMC stores differentially expressed miRNAs in 14
human cancers by using signicance analysis of microarrays to
retrieve the miRNAs that have different expression levels in
cancers when compared with normal tissues. These databases
serve as a solid data foundation for predictive research of
miRNAs in human diseases.

Considering that the experimental identication of disease-
related miRNAs is time consuming and expensive, researchers
proposed computational methods as important complementary
ways to predict miRNA-disease associations. Computational
methods mainly aim to select the most promising disease-
related miRNAs for further experimental examination to
reduce experimental time and cost. The key problem in miRNA-
disease association inference is similarity calculation. These
computational methods are divided into two categories:17

network-based methods18–26 and machine-learning-based
methods.26–30

Network-based methods predict miRNA-disease associations
in consideration of the hypothesis that functionally related
miRNAs are usually associated with phenotypically similar
diseases.13 This hypothesis was proposed by Lu et al.13 when
they analyzed the human miRNA-disease association data in
HMDD. Basing on this hypothesis, Jiang et al.18 constructed
This journal is © The Royal Society of Chemistry 2017
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a functional association miRNA network, i.e., a human
phenome-miRNAome network. For a given disease, they
computed the similarity score of all human miRNAs in these
networks and then prioritized all these miRNAs according to
score. The top-ranked miRNAs were expected as the potential
disease miRNAs. However, this model uses only the neigh-
boring information of each miRNA and strongly relies on pre-
dicted miRNA-target interactions, thereby producing false-
positive and false-negative results, that can inuence the nal
prediction accuracy. Shi et al.21 presented a computational
framework to identify miRNA-disease associations and further
constructed a bipartite miRNA-disease network for systemati-
cally analyzing the global properties of miRNA regulation of
disease genes. From these analyses, they found that most
diseases in the same co-regulated module belong to the same
category. Their work extended the previous hypothesis.
However, this method is limited in application because of the
low accuracy of target prediction and the fact that many
disease–gene associations of miRNA-target interactions are
unknown. On the basis of the weighted k most similar neigh-
bours, HDMP22 was proposed to predict disease-related miR-
NAs. HDMP was used to evaluate the function similarity
between miRNAs by considering disease terms and the pheno-
type similarity between diseases, as well as assigning higher
weight to members of the miRNA family or cluster. However,
HDMP only considers local network similarity measure and
disregards diseases without any known related miRNA.
Recently, Zou et al.26 have presented method KATZ, which uses
the functional similarity score to denote the associations on the
basis of the different lengths between the miRNA and disease
nodes. However, the performance of KATZ is relatively poor on
the spare known associations.

Machine-learning-based methods have been used to solve
the problem by improving the classication accuracy and
prediction performance. Jiang et al.29 proposed a Näıve Bayes
model to rank candidate disease-related miRNAs through
genomic data integration. This method strongly relies on
datasets of disease–gene associations and miRNA-target inter-
actions, but over half of human diseases are still unknown. To
distinguish positive miRNA-disease associations from negative
ones, Jiang et al.27 proposed a support vector machine approach
by extracting the features based on miRNA-target data and
phenotype similarity data. Considering the assumption that
miRNAs implicated in a specic tumor phenotype show aber-
rant regulation of their target genes, Xu et al.30 prioritized novel
disease miRNAs on the basis of the miRNA target-dysregulated
network method. The common problem of the two aforemen-
tioned methods is that the negative training samples consisting
of non-association between miRNAs and diseases do not
demonstrate sufficient statistical condence; the lack of
a miRNA-disease association during observation in a biological
experiment does not directly indicate absence of such an asso-
ciation. Chen et al.28 developed regularized least squares for
miRNA-disease association (RLSMDA) to nd potential miRNA
candidates for a specic disease. RLSMDA is a semi-supervised
method that integrates known disease-miRNA associations,
disease–disease similarity dataset, and miRNA–miRNA
This journal is © The Royal Society of Chemistry 2017
functional similarity network. Despite its good prediction
performance for diseases with or without related miRNAs,
RLSMDA does not consider the topology information of the
miRNA network.

The aforementioned methods have three main limitations.
First, some methods are inefficient at cross-validation. Second,
some approaches are unable to predict isolated disease-related
miRNAs. Third, negative samples are difficult to obtain for
some machine learning methods. Consequently, we propose
a network similarity integration method (NSIM) to solve these
limitations. The NSIM integrates miRNA similarities, diseases
similarities, and known miRNA-disease association informa-
tion to predict potential miRNA-disease associations. The
advantages of the NSIM are as follows. First, this method is easy
to understand and can effectively be implemented. Cross vali-
dations and global predictions for all 381 diseases are run
simultaneously. Second, case studies about prostate, breast,
and colon neoplasms demonstrate that the NSIM has good
predictive performance. Third, the NSIM can also predict iso-
lated diseases.

Materials
Dataset

The database we used in this study contains data on miRNA–
miRNA functional similarities, disease semantic similarities,
and known humanmiRNA-disease associations. Below is a brief
description of these data.

Known human miRNA-disease associations

Data on known human miRNA-disease were downloaded from
HMDD 2.0 (ref. 13) (http://www.cuilab.cn/hmdd, Jun-14-2014
Version). We removed duplicated associations and those asso-
ciations whose disease could not be mapped to the MeSH
database or whose disease did not have a related MeSH tree
number. Aer ltering, we nally received 5425 high-quality
experimentally veried human miRNA-disease associations
consisting of 495 miRNAs and 381 diseases in the dataset.
Matrix AS denotes miRNA-disease associations and AS(i,j) ¼ 1
means there exists a validated association betweenmiRNA i and
disease j; otherwise, AS(i,j) ¼ 0.

Disease directed acyclic graph

In our study, a functional similarity score for each disease pair
was calculated based on the hypothesis that miRNAs with
similar functions used to be associated with similar diseases.
We improved the detailed description provided by ref. 19 about
the calculated method. The diseases are mapped to the MeSH
database (the website is http://www.ncbi.nlm.nih.gov/), and
their MeSH headings (or called descriptors) are downloaded.
Each MeSH heading shows a tree structure of a hierarchical
organization. This tree structure of a disease is described as
a directed acyclic graph (DAG). The nodes of the tree represent
diseases while the edges represent the relationship between the
parent node and their children nodes. The higher the hierarchy
of a node is, the more general its meaning is. Otherwise, the
RSC Adv., 2017, 7, 32216–32224 | 32217

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra05348g


Fig. 1 The disease DAG of gastrointestinal neoplasms.

Fig. 2 The flowchart of NSIM.
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lower the hierarchy is, the more specic its meaning is. The
DAG of gastrointestinal neoplasms is shown in Fig. 1.

Methods

Based on the information of experimentally validated miRNA-
disease association network and two common assumptions, we
reconstructed miRNA and disease similarity networks, and
employed the NSIM to predict potential miRNA-disease associa-
tions. One of the assumptions is miRNAs with similar functions
are normally associated with phenotypically similar diseases and
vice versa,13,31 and the other is diseases with similar functions are
oen having similar semantic descriptions and vice versa.19 The
NSIM contains four processes. First, it calculates the semantic
similarity score of diseases according to the semantic tree
structure. Second, it calculates miRNA–miRNA functional simi-
larities based on the semantic similarity score of diseases. A
miRNA functional network was built on the basis of these
calculations. Third, it calculates the similarity score of diseases to
reconstruct a disease similarity network by considering the
disease semantic similarities and disease similarities of known
miRNA-disease associations. Fourth, it integrates the disease
similarities, miRNA similarities, and known miRNA-disease
associations to predict potential associations between miRNAs
and diseases. The owchart of the NSIM is shown in Fig. 2.

Measurement of disease semantic similarities

Some researchers have measured the similarity of diseases by
the hierarchical structure of disease semantics.19,32 In this work,
the semantic similarity measure for disease is developed based
on Wang et al.,19 but not the same as it.

A disease A can be represented as a graph, DAG(A) ¼ (A, TA,
EA), where TA is the set of all ancestor nodes of A including A
itself and EA is the set of corresponding links of A. The contri-
bution of ancestor node t to A is dened as follows:

DAðAÞ ¼ 1

DAðtÞ ¼ max
n
D�DA

�
t0
����t0˛children of t

o
if tsA:

(
(1)

where D is the semantic contribution factor for edges EA linking
disease t with its child disease t0. The semantic value of disease
A is dened as follows:

DVðAÞ ¼
X
t˛TA

DAðtÞ: (2)
32218 | RSC Adv., 2017, 7, 32216–32224
The semantic similarity score of disease A and disease B is
dened as:

DDðA;BÞ ¼

X
t˛TAX

​ TB

DAðtÞ þ
X

t˛TAX
​ TB

DBðtÞ

2�minðDVðAÞ;DVðBÞÞ : (3)

where t is the disease terms both in TA and TB. DA(t) is the
semantic value of disease t related to disease A and DB(t) is the
semantic value of disease t related to disease B. The semantics
similarity score between disease A and disease B not only
depends on the number of common diseases of A and B but also
on these common diseases' total semantic relations value. The
more the total number of common diseases is and the higher
the total semantic value of common diseases is, the higher the
score is.

Measurement of miRNA functional similarity

We dene DSj ¼ {d1,d2,/,dn}, the disease set associated with
miRNA j. The related score between disease d ˛ DSi and set DSj
is dened as follows:

DM
�
d;DSj

� ¼ max
1# t# n

�
DD

�
d;DSjðtÞ

��
: (4)

Here, we dene the maximum similarity of disease d and
diseases in DSj as the related score between disease d and
miRNA j.

We dene matrix MM as the miRNA–miRNA function simi-
larity matrix, where MM(i,j) in row i and column j expresses the
functional similarity score between miRNA i and miRNA j. By
considering the contribution of the similarity diseases, the
functional similarity of MM(i,j) is calculated as follows:

SMDi ¼
X
d˛DSi

DM
�
d;DSj

�

MMði; jÞ ¼ SMDi þ SMDj

jDSij þ
��DSj

�� : (5)
This journal is © The Royal Society of Chemistry 2017
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Fig. 3 Average AUCs affected by a value.
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where SMDi is the similarity score of miRNA i and disease set
DSj, and SMDj is the similarity score of miRNA j and disease set
DSi. |DSi| is the number of the known diseases associated with
miRNA i, and |DSj| is the number of the known diseases asso-
ciated with miRNA j.

Reconstruction of a disease similarity network

A disease similarity network was reconstructed by considering
the disease semantic similarities and disease similarities of
known miRNA-disease associations. Considering the assump-
tion that the more common miRNAs of a disease pair has, the
more similar they are, we dene the disease similarity value of
a known disease-miRNA association on the basis of matrix AS
and Jaccard similarity measurement as

DASði; jÞ ¼ M11

M01 þM10 þM11

: (6)

Considering disease i and disease j in matrix AS, we count
the total number of commonly associated miRNAs of disease i
and j, and then dene it as M11. Similarly, M01 represents the
total number of miRNAs that are only associated with disease i,
M10 represents the total number of miRNAs that are only
associated with disease j. The total number of miRNAs that are
not associated with neither i nor j is disregarded. For a certain
disease pair, the similarity value is set to 0 when the total
number of miRNAs associated with these two diseases is zero.

We reconstruct the disease similarity network as:

SDði; jÞ ¼ DDði; jÞ þDASði; jÞ
2

: (7)

where SD(i,j) is the nal disease similarity value of disease i and
disease j. In this formula, the more similar disease i and disease
j in the known association network are and the higher the
disease semantic similarity between them, the higher their
similarity value is. We hypothesize that the disease semantic
similarity is as important as the disease similarity calculated by
the known association network. Thus, the same weight is given
to form the disease similarity measurement.

NSIM for miRNA-disease associations

The NSIM calculates the potential miRNA-disease association
scores by integrating the miRNA and disease vector space score.
Cosine similarity is employed to calculate the vector space
score.

In the miRNA vector space, the similarity between miRNA i
and all miRNAs is described as a vector VMMi, andMMi, (the ith
row of matrix MM) is used to represent it. Likewise, the simi-
larity between the associations of disease j and all miRNAs is
described as a vector VDj, and ASj (the jth column of matrix AS)
is used to represent it.

VMMi ¼ MMi,

VDj ¼ ASj
This journal is © The Royal Society of Chemistry 2017
The miRNA space score is dened as

NSIM_Mði; jÞ ¼ VMMi$VDj

kVMMik
����VDj

���� : (8)

where VMMi$VDj is the dot product of vector VMMi and VDj;
||VMMi|| is the norm of vector VMMi, ||VDj|| is the norm of
vector VDj. NSIM_M(i,j) is the cosine similarity of vector VMMi

and VDj. Obviously, the smaller angle between VMMi and VDj is,
the greater the vector space score NSIM_M(i,j) is.

Obviously, the higher the spatial similarity of miRNA i-
associated miRNAs in the miRNA–miRNA similarity network is,
the greater the association between miRNA i and disease j is.
Similarly, the higher the spatial similarity of disease j-associ-
ated miRNAs in the known miRNA-disease network is, the
greater the association between miRNA i and disease j is.

In the disease vector space, the similarity between the
associations of miRNA i and all diseases is described as a vector
VMi. We could use ASi, (the ith row of matrix AS) to represent it.
Similarly, the similarity between disease j and all diseases is
described as vector VSDj, and we could use SDj (the jth column
of matrix SD) to represent it.

VMi ¼ ASi,

VSDj ¼ SDj

The disease space score is dened as

NSIM_Dði; jÞ ¼ VMi $VSDj

kVMik
����VSDj

���� : (9)

where VMi$VSDj is the dot product of vector VMi and VSDj;
||VMi|| is the norm of vector VMi, ||VSDj|| is the norm of vector
VSDj. NSIM_D(i,j) is the cosine similarity of vector VMi and
VSDj. Notably, the smaller angle between VMi and VSDj is, the
greater the vector space score NSIM_D(i,j) is.

Obviously, that the higher the spatial similarity of miRNA i-
associated diseases in the knownmiRNA-disease network is, the
greater the association of miRNA i and disease j is. Likewise, the
higher the spatial similarity of the disease j associated diseases
in disease similarity network is, the greater the association of
miRNA i and disease j is.
RSC Adv., 2017, 7, 32216–32224 | 32219
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Finally, the miRNA space score and disease space score are
integrated together as

NSIM(i,j) ¼ a � NSIM_M(i,j) + (1 � a) � NSIM_D(i,j) (10)

where a is a parameter to balance the contributions from the
two space similarities, a ˛ (0,1). NSIM(i,j) in row i column j is
the prediction-related score of miRNA i to disease j. To nd
a suitable a value, the different a values from 0.1 to 1 were
investigated by the experiments. Fig. 3 shows that the NSIM
achieves the highest prediction performance when a is 0.5.
Results
Performance evaluation of the NSIM

In our study, we implemented leave-one-out cross validation
(LOOCV) on experimentally veried miRNA-disease associa-
tions to evaluate the predictive performance of the NSIM. Each
known miRNA-disease association was le out in turn as a test
sample, and other known miRNA-disease associations were
taken as a training set. A receiver operating characteristic (ROC)
curve was plotted by varying the threshold, and the value of area
under curve (AUC) was calculated. In the ROC, the vertical and
horizontal axes are the true positive rate (TPR, sensitivity) and
false positive rate (FPR, 1-specicity) at different thresholds,
respectively. Sensitivity refers to the percentage of test miRNAs
with ranking above a given threshold, whereas specicity refers
to the percentage of associations below the threshold. When the
AUC is closer to 1, the prediction performance is better.

To our knowledge, HDMP,22 RLSMDA,28 KATZ,26 and the
global network algorithm developed by Shi et al.21 are the-state-
of-art computational approaches to predict miRNA-disease
associations. We compared NSIM with RLSMDA and KATZ.
HDMP could not predict disease without known associated
miRNAs; the method developed by Shi et al. integrated the
dataset from disease gene associations, miRNA-target
Fig. 4 The comparison result between NSIM, RLSMDA and KATZ was
shown, which demonstrated the superiority performance of NSIM to
other two methods.

32220 | RSC Adv., 2017, 7, 32216–32224
interactions, and protein interactions, which were different
from the dataset used in the NSIM.

We implemented a LOOCV for RLSMDA and KATZ. In the
present study, the NSIM achieved an AUC value of 0.9475 when
a is 0.5. For RLSMDA, when optimal parameters were selected
as described in the literature, the AUC value was 0.8870. For
KATZ, the AUC value was 0.9202. The comparison result of
overall AUC between NSIM and RLSMDA, KATZ is shown in
Fig. 4.

To obtain reliable judgment, we tested 19 human diseases
that are related to at least 70 microRNAs respectively. As shown
in Table 1, the NSIM achieved the highest AUC of 0.9446 with
lung neoplasms and the lowest AUC of 0.8813 with esophageal
neoplasms. The average AUC value for the 19 diseases was
0.9125 (Table 1). For RLSMDA, the average AUC value for the 19
diseases was 0.8450. The average AUC value was increased by
6.75%. For KATZ, the average AUC value for the 19 diseases was
0.8945. The average AUC value of the NSIM was 1.8% higher
than that of KATZ. The AUC values of the NSIM for of neoplasms
and ovarian neoplasms were lower than those of RLSMDA and
KATZ. The AUC values of the NSIM for the 17 other diseases
were all higher than those of RLSMDA and KATZ. Obviously, the
prediction performance of NSIM was more accurate than those
of RLSMDA and KATA.

Comprehensive prediction of unknown associations

The NSIM was utilized to predict unknown microRNA-disease
associations. Initially, the related score of each microRNA-
disease pair was calculated by using all known and experi-
mented microRNA-disease associations. Then, the unknown
associations were ranked by their scores. Finally, the top 50
associations were manually veried through two databases:
dbDEMC (the database is being upgraded, the experimental
veried microRNA-disease associations are obtained from the
author) and miRCancer. The predicted results are listed in
Table S1 (ESI†), and their veried evidences is presented. For
the top 50 predictive associations, all 50 had been conrmed in
the aforementioned databases.

Case studies

Many researchers have found more and more evidences that
microRNAs are related with various human cancers.8,33343536 To
further evaluate the performance of the NSIM to predict disease-
associated miRNA candidates, we selected prostate, breast, and
colon neoplasms as case studies.

Prostate neoplasm is the most common cancer among males
in 84 countries,35 especially in developed countries. Prostate
neoplasm is the second most common type of cancer and the
h leading cause of cancer-related death among men world-
wide.37 MiRNAs are over expressed during the progression of
prostate neoplasms. Thus, miRNAs are promising diagnostic or
prognostic biomarkers. For example, miR-409-3p, miR-361-3p,
miR-133b, miR-221, and miR-128 are under expressed and
miR-375, miR-141, miR-378*, and miR-203 are upregulated in
prostate cancer.38–40 Candidate miRNAs were ranked in terms of
scores obtained from the NSIM. The top 20 potential miRNAs
This journal is © The Royal Society of Chemistry 2017
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Table 1 Prediction results of NSIM and other methods for LOOCV

Disease name Number of associated microRNAs

AUC

NSIM RLSMDA KATZ

Breast neoplasms 202 0.9353 0.8951 0.9296
Carcinoma, hepatocellular 214 0.9119 0.8631 0.9012
Carcinoma, non-small-cell lung 95 0.9031 0.8342 0.8800
Carcinoma, renal cell 107 0.8926 0.8172 0.875
Carcinoma, squamous cell 80 0.9048 0.8386 0.8895
Colonic neoplasms 78 0.8834 0.8232 0.8728
Colorectal neoplasms 147 0.8845 0.8461 0.8819
Esophageal neoplasms 74 0.8813 0.7747 0.8466
Glioblastoma 96 0.9006 0.7934 0.8595
Glioma 71 0.9131 0.8704 0.9114
Heart failure 120 0.9071 0.8454 0.8636
Lung neoplasms 132 0.9446 0.7844 0.9249
Melanoma 141 0.9185 0.8850 0.8903
Neoplasms 110 0.9436 0.8339 0.9751
Ovarian neoplasms 114 0.9286 0.9630 0.9271
Pancreatic neoplasms 99 0.9312 0.8991 0.9126
Prostatic neoplasms 118 0.9209 0.8665 0.883
Stomach neoplasms 174 0.9104 0.8217 0.8984
Urinary bladder neoplasms 92 0.9227 0.8493 0.8732
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associated with prostate neoplasms and evidence for the asso-
ciations with prostate are listed in Table 2. Among the top 20
predicted prostate-related miRNAs, 18 have been conrmed by
dbDEMC or miRCancer. Unconrmed potential miRNA with
the highest rank is has-mir-17 (ranked 4th). However, we found
in the literature41,42 that the miR-17 family is over expressed in
prostate neoplasms by targeting the p300/CBP-associated factor
and modulating androgen receptor transcriptional activity in
cultured prostate neoplasms cells.
Table 2 The top 20 potential prostate neoplasms-related miRNAs
predicted by NSIM and the confirmation of these associations. Eigh-
teen of the top 20 prostate neoplasms-related miRNAs have been
confirmed based on the miRCancer and dbDEMC databases

Rank miRNA Evdances

1 Hsa-mir-182 dbDEMC, miRCancer
2 Hsa-mir-143 dbDEMC, miRCancer
3 Hsa-mir-21 dbDEMC, miRCancer
4 Hsa-mir-17 PMID: 27650539
5 Hsa-mir-34a dbDEMC, C
6 Hsa-mir-100 dbDEMC, miRCancer
7 Hsa-mir-126 dbDEMC
8 Hsa-mir-150 dbDEMC
9 Hsa-mir-20a miRCancer
10 Hsa-mir-142 Unconrmed
11 Hsa-mir-200a dbDEMC
12 Hsa-mir-203 miRCancer
13 Hsa-mir-141 miRCancer
14 Hsa-mir-31 dbDEMC, miRCancer
15 Hsa-mir-146a miRCancer
16 Hsa-mir-96 dbDEMC, miRCancer
17 Hsa-mir-200c dbDEMC
18 Hsa-mir-200b miRCancer
19 Hsa-mir-223 dbDEMC, miRCancer
20 Hsa-mir-9 dbDEMC

This journal is © The Royal Society of Chemistry 2017
Breast neoplasm is themost common invasive cancer among
women especially in developed countries, accounting for 25% of
cancer cases among women. MiRNAs play regulatory roles in
the invasion and metastasis of breast neoplasms. For example,
miR-182, miR-21 are over expressed in breast neoplasms,12,35

and miR-205, miR-200c, miR-141, and miR-429 are down
regulated in breast cancer.43 The top 20 potential miRNAs
associated with breast neoplasms and evidence for the associ-
ations with breast are listed in Table 3. Among these candidate
miRNAs, only 4 were not conrmed in the dbDEMC or miR-
Cancer dataset. However, the literature44 provided information
that miRNA hsa-mir-542 induces angiogenic inhibition in
breast neoplasms.

Colon neoplasm is the third most common cancer in the
digestive tract worldwide. MiRNAs can be accurately diagnosed
as biomarkers of colon neoplasms and can help predict colon
neoplasms.45,46 MiRNA differential expression provides a prom-
ising application for early diagnosis and screening of colon
neoplasms. For example, miR-21, miR-155, miR-31, miR-92a,
and miR-17 are involved in the development of colon
neoplasms.47 The top 20 potential miRNAs associated with
colon neoplasms and evidence for the associations with colon
neoplasms are listed in Table 4. Among these candidate miR-
NAs, 5 were not conrmed by the dbDEMC or miRCancer
dataset. Nevertheless, they all have been identied in the liter-
ature. The PMID of the literature is shown in the tables.

The above results demonstrate that the NSIM performs well
in predicting potential disease-associated miRNA candidates.
Application of NSIM to predict isolated diseases

An isolated disease refers to a disease without any known
related miRNAs. To demonstrate the predictive ability of NSIM
on diseases without any known related miRNA, we removed the
RSC Adv., 2017, 7, 32216–32224 | 32221
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Table 3 The top 20 potential breast neoplasms-related miRNAs
predicted by NSIM and the confirmation of these associations. Sixteen
of the top 20 breast neoplasms-related miRNAs have been confirmed
based on the mirCancer and dbDEMC databases

Rank miRNA Evidences

1 Hsa-mir-99a dbDEMC, miRCancer
2 Hsa-mir-138 dbDEMC
3 Hsa-mir-142 miRCancer
4 Hsa-mir-106a dbDEMC
5 Hsa-mir-130a dbDEMC, miRCancer
6 Hsa-mir-378a Unconrmed
7 Hsa-mir-150 dbDEMC, miRCancer
8 Hsa-mir-185 dbDEMC, miRCancer
9 Hsa-mir-15b dbDEMC
10 Hsa-mir-98 dbDEMC, miRCancer
11 Hsa-mir-192 dbDEMC
12 Hsa-mir-542 PMID: 26272182
13 Hsa-mir-196b dbDEMC
14 Hsa-mir-92b dbDEMC
15 Hsa-mir-186 dbDEMC
16 Hsa-mir-30e Unconrmed
17 Hsa-mir-372 dbDEMC
18 Hsa-mir-130b dbDEMC
19 Hsa-mir-370 dbDEMC
20 Hsa-mir-449a Unconrmed

Table 4 The top 20 potential colon neoplasms-related miRNAs pre-
dicted by NSIM and the confirmation of these associations. All of the
top 20 colon neoplasms-related miRNAs have been confirmed based
on the miRCancer and dbDEMC databases

Rank miRNA Evidences

1 Hsa-mir-20a dbDEMC
2 Hsa-mir-18a dbDEMC, miRCancer
3 Hsa-mir-19b dbDEMC
4 Hsa-mir-21 dbDEMC, miRCancer
5 Hsa-mir-143 dbDEMC, miRCancer
6 Hsa-mir-19a dbDEMC
7 Hsa-mir-155 dbDEMC, miRCancer
8 Hsa-mir-92a PMID: 26463716
9 Hsa-mir-125b PMID: 24774301
10 Hsa-mir-29b PMID: 26466603
11 Hsa-mir-34a dbDEMC, miRCancer
12 Hsa-mir-146a dbDEMC
13 Hsa-mir-16 PMID: 22049153
14 Hsa-mir-106b dbDEMC
15 Hsa-let-7a miRCancer
16 Hsa-mir-181a dbDEMC, miRCancer
17 Hsa-mir-31 dbDEMC, miRCancer
18 Hsa-mir-15a dbDEMC
19 Hsa-mir-150 PMID: 24705249
20 Hsa-mir-221 dbDEMC

Table 5 The top 20 potential isolated disease predicted of breast
neoplasms. Fourteen of the top 20 breast neoplasms-related miRNAs
have been confirmed based on the mirCancer and dbDEMC databases

Rank miRNA name Evidences

1 Hsa-mir-99a dbDEMC, miRCancer
2 Hsa-mir-663b Unconrmed
3 Hsa-mir-138 dbDEMC
4 Hsa-mir-331 dbDEMC
5 Hsa-mir-185 dbDEMC, miRCancer
6 Hsa-mir-372 dbDEMC
7 Hsa-mir-378a Unconrmed
8 Hsa-mir-1224 Unconrmed
9 Hsa-mir-130a dbDEMC, miRCancer
10 Hsa-mir-98 dbDEMC, miRCancer
11 Hsa-mir-532 dbDEMC
12 Hsa-mir-370 dbDEMC
13 Hsa-mir-542 Unconrmed
14 Hsa-mir-498 dbDEMC
15 Hsa-mir-371a Unconrmed
16 Hsa-mir-142 miRCancer
17 Hsa-mir-130b dbDEMC
18 Hsa-mir-150 dbDEMC, miRCancer
19 Hsa-mir-449a Unconrmed
20 Hsa-mir-15b dbDEMC
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known veriedmiRNA-disease associations related to predictive
diseases. This operation ensured that we only used known
miRNA-disease association and similarity information of other
diseases to predict candidate miRNAs related to the given
disease while prioritizing these candidate miRNAs.

We take isolated disease j as an example, VDj ¼ ASj ¼ null
vector and NSIM_M(i,j) ¼ 0. The predictor score between
32222 | RSC Adv., 2017, 7, 32216–32224
miRNA i and disease j is calculated by NSIM_D(i,j). The disease
similarity consists of disease semantic similarities (eqn (3) DD)
and disease similarities of known miRNA-disease associations
(eqn (6) DAS). When disease j is an isolated disease, DAS(i,j) ¼
null vector; and DD calculated by disease MeSH DAG, do not
depend on the associated miRNAs. What we call isolated
disease refers to a disease without any known related miRNAs,
and the associations between the disease and other diseases
exists. So we use DD(i,j) as SD(i,j) to calculate NSIM_D(i,j).
Therefore, our method can be applied to predict isolated
disease-related miRNAs.

The average AUC of NSIM to predict isolated diseases is
0.8146. The predicted results of breast neoplasms are listed in
Table 5.
Discussion

The recommendable performance of NSIM could be mainly
attributed to the several factors. First, NSIM is a prediction
method based on experimentally conrmed microRNA-disease
associations. It integrates scores from disease space and
microRNA space to construct a global network, which improves
prediction accuracy. Second, the NSIM is an understandable
method involving only one parameter, which is easy to adjust.
Furthermore, new diseases (isolated diseases without any
known related microRNA) are constantly being discovered.
Thus, computational methods are used to predict isolated
diseases. The NSIM performs well in predicting isolated
diseases.

The current version of NSIM has limitations. Despite its good
performance, the NSIM was constructed on basis of miRNA-
disease associations. The number of associations affected the
This journal is © The Royal Society of Chemistry 2017
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prediction accuracy. The more the number of associations, the
more accurate the prediction is. Hence, the performance of the
NSIM could be improved by obtaining more miRNA-disease
associations. Furthermore, this method only considers the
semantic relation in calculating the disease similarity score.
Information on gene-disease, miRNA-lncRNA, and miRNA-
target gene interactions could further improve the similarity
measure between miRNAs and diseases.

Conclusions

Predicting potential microRNA-disease associations through
computational methods can provide support for experimental
studies on microRNAs. In this study, we proposed the NSIM to
predict miRNA-disease associations by integrating miRNAs
similarities, disease similarities, and known miRNA-disease
associations. The NSIM obtained a high AUC of 0.9475 in
LOOCV. Furthermore, case studies of prostate, breast, and
colon neoplasms were implemented, and 19, 17, and 20 miR-
NAs in the top 20 prediction list were conrmed, respectively.
These results demonstrate that NSIM can effectively identify
potential disease-related miRNAs. NSIM also performs well in
predicting isolated diseases. The results demonstrated that the
performance of the NSIM is superior to that of other existing
prediction methods. The NSIM could be an effective biological
tool that can be extended to research on drug-disease and
environmental factor–disease associations.
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