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Chemoselective acylation of 2-amino-8-quinolinol
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Two different ways to carry out the chemoselective acylation of 2-amino-8-quinolinol with unique features
to generate C2-amides or C8-esters were developed. The coupling reaction with a variety of carboxylic
acids using EDCI and DMAP provided C8-ester derivatives, whereas N-heteroaromatic acids were not
introduced on the C8-hydroxy group, but rather on the C2-amino group under the same conditions. To
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Introduction

Ester and amide functionalities are important structural
components that serve as key motifs in a variety of bioactive
natural products and pharmaceuticals. Amide and ester for-
mation are fundamental reactions in chemical synthesis.
Typically, carbodiimides such as dicyclohexylcarbodiimide
(DCC) and 1-ethyl-3-(3’-dimethylaminopropyl)-carbodiimide
(EDCI) are applied as coupling reagents for esterification and
amidation reactions. To increase the overall rate of the cou-
pling reaction, DMAP (4-dimethylaminopyridine), 1-hydroxy-
1H-benzotriazole (HOBt) and 1-hydroxy-7-azabenzotriazole
(HOAt) are commonly used for carbodiimide-mediated reac-
tions in either stoichiometric or catalytic fashions. Mean-
while, 1,1"-carbonyl diimidazole (CDI) is used because of the en-
hanced stability relative to that of acid halides and viability in
large-scale syntheses.” In addition, numerous other methods
have been developed for ester and amide bond formation.
Quinolines are valuable synthons and precursors in
synthetic organic chemistry, as they comprise important
heterocyclic pharmacophores with a broad spectrum of bio-
logical and me-dicinal activities. In particular, 8-hydrox-
yquinoline (8-HQ) is a well-known metal ion chelator and
represents an excellent scaffold with a wide spectrum of phar-
macological applica-tions.* Similarly, 2-aminoquinoline (2-AQ)
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exhibits various biological activities such as anthelmintic,
antiprotozoal, anti-depressant, some effectiveness in the treat-
ment of Alzheimer's disease.* Toward that end, we paid atten-
tion to unique 2-amino-8-quinolinol (1), which contains
important structural components of 8-HQ and 2-AQ.> The
synthesis of its derivatives may prove to be useful, owing to the
utility of the parent compounds; however, the previous works
for O- and N-acylation of 1 have hardly been reported to date.®
We sought the synthesis of its derivatives, especially the ester-
ification on C8 and the amidation on C2 (Fig. 1).

Recently, we reported an acyl derivative of 2-amino-8-
quinolinol (1) called SG-HQ2. This compound is an anti-
allergic inflammatory agent.” Unfortunately, NMR spectro-
scopic studies cast doubt on the originally proposed structure,
which was regarded as the amide form. To prove that the
ester form was obtained as the major product of the EDCI-
mediated coupling reaction of 2-amino-8-quinolinol (1) and
3,4,5-tris(benzyloxy)benzoic acid, we reexamined the acylation
and analyzed the structure of SG-HQ1 via NMR spectroscopy
and X-ray crystallography.® SG-HQ2 from the catalytic hydroge-
nation of SG-HG1 was determined to be the C8-ester instead of
the amide as reported previously (Scheme 1).

Results and discussion

Encouraged by the chemoselective O-acylation of 2-amino-8-
quinolinol, our synthetic investigations regarding C2-amide
derivatives began with initial studies of the 2 step synthesis
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Fig.1 2-Amino-8-quinolinol (1) and its acyl derivatives.
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Scheme 1 Synthesis of SG-HQ1l and SG-HQ2 and their revised
structures.®

comprised of the diacylation with excess of aromatic acid (up to
5 equiv.) and the hydrolysis of the ester moiety (Scheme 2). C2-
amides of various aromatic acids were prepared, and the
structures of 3b and 4b were confirmed by X-ray crystallog-
raphy.® Interestingly, the acylation with heteroaromatic acids
such as 2-picolinic acid and pyrazinecarboxylic acid afforded
only the C2-amides (4h and 4i), excluding C8-ester and diacyl
compounds, albeit in low yield. Thus, the selective and efficient
introduction of various carboxylic acids on 2-amino-8-
quinolinol remains a challenge,® although some C2 and
C8-acyl derivatives were prepared successfully. Inspired by the
unique characteristics of 2-amino-8-quinolinol, herein we
present the optimization of the chemoselective O- or
N-acylation.

To investigate possible synthetic routes towards C2-amide
and C8-ester derivatives of 2-amino-8-quinolinol, we first
examined various acylation conditions with 4-methoxybenzoic
acid (Table 1). THF was selected as the most favorable solvent in
terms of solubility and purification. The use of carbodiimides
provided the C8-ester 3a preferentially as the major product.

B o) EDCI, HOBt
. Eoouron Q\/\/L Q\A/L
P .
N NH, R OH iPrNEt, THF
2a-g

OH 1 . 3a~3g 5a~5g
EDCI, HOBt O (15~65%) o (50~65%)
iProNEt, THF "C8-ester" "C2,C8-diacyl"

LiOH
THF/H,0
j (60~80%)
i ( ) "C2 amide"

4b T (X-ray)

Scheme 2 Initial synthesis of C8-ester and C2-amide derivatives of 2-
amino-8-quinolinol. Aromatic acids including 4-methoxybenzoic (a),
4-chlorobenzoic (b), 4-(trifluoromethyl)benzoic (c), 4-tert-butylben-
zoic (d), 3-methoxybenzoic (e), 3,4,5-tris(benzyloxy)benzoic (f), 2-
furoic (g), picolinic (h), and pyrazinecarboxylic (i) acids.
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DMAP as an additive increased the chemical yield and ester
selectivity (entry 1 and 7). However, when HOBt was employed,
the formation of diacyl derivative 5a increased with that of
C8-ester (entry 3-5). Though the use of HOAt provided the C2-
ester selectively, the isolated yield of 3a was not satisfactory
(entry 6). Uranium (HATU) and phosphonium (PyBop) salts did
not exhibit significant effects (entry 8 and 9). The use of
4-methoxybenzoyl chloride with iPr,NEt gave the C8-ester as the
major product (entry 10). The yield decreased slightly when
pyridine was used as a solvent (entry 11). Finally, we chose CDI
for the amidation through the acyl imidazolide, leading to the
formation of C2-amide 4a although the C8-ester formed as the
major product. Higher temperature increased the formation of
C2-amide slightly (entry 12-14). C2-amide 4a could be obtained
in 75% yield with the ratio of 5:88:7, when the anionic
nucleophile by the treatment of 2-amino-8-quinolinol with NaH
reacted with the acyl imidazolide derived from 4-methox-
ybenzoic acid and CDI (entry 15).

The optimized acylation conditions were further investigated
using a cheap and readily available ester instead of acyl imi-
dazolide 6 with other strong bases (Table 2).° Methyl 4-
methoxybenzoate 7 was used as an acyl donor. Even though the
use of the methyl ester provided a lower yield than acyl imida-
zolide 6, the acylation resulted in the selective formation of
C2-amide. When NaH and n-BuLi were used to generate the
anionic intermediate of 2-amino-8-quinolinol, the excellent
selectivity was observed (entries 2 and 3). The use of iPrMgCl as
a base resulted in a significant loss of reactivity and selectivity
(entry 4). The formation of C2-amide 4a was improved as the
amount of #-BuOK was increased (entry 5-8). The anionic
nucleophile of 2-amino-8-quinolinol could mostly be converted
into C2-amide rather than C8-ester.

Additive effect on reactivity and selectivity was evaluated in
order to reveal the role of acyl imidazolide in C8-acylation. Some
amines (such as pyridine, DMAP, and HOBt) and their HCI salts
were treated in the reaction of 1 with the isolated acyl imida-
zolide 6 (Table 3). Without additives, C2-amide (4a) was ob-
tained even though the reaction yield and ratio was slightly
different with CDI-mediated acylation. However, the use of
pyridine and DMAP at reflux provided C8-ester (3a) reversely.
The use of their HCI salt (Pyr-HCl and DMAP-HCI) and HOBt
provided selectively the C8-ester in good yield even at room
temperature.

A variety of carboxylic acids were introduced on 2-amino-8-
quinolinol under the optimized acylation conditions. Either
condition A (EDCI, iPr,NEt and catalytic DMAP) or condition B
(PyBop and iPr,NEt) was used for the synthesis of the C8-esters
(Table 4). Various substituted-benzoic acids and furoic acid
(i.e. 3a-3f, 3j and 3k) were introduced on the C8 position in
good yields, regardless of electron-withdrawing and donating
groups. However, N-heteroaromatic acids were not incorporated
on the phenol group in the C8 position; C2-amides (4h-4i, 41-
4m) were isolated even in low yields instead. Interestingly, Boc-
leucinyl C8-ester (3n) seems to be unstable during flash column
chromatography like heteroaromatic acid, however Boc-valinyl
C8-ester (30) was obtained in moderate yield.

This journal is © The Royal Society of Chemistry 2017
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Table 1 Optimization of acylation conditions®
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RCO,H (2a)
(1.2 equiv)

Q\/j\NHZ (condmons)

R =A©\ ) O (C8- ester) (C2- amlde)
OCH,

(C2 CS dlacyl)

% yield”
Entry Activator (equiv.) Base Time (h) 3a 4a Ratio® (3a: 4a: 5a)
1 DCC (1.3), DMAP (0.5) 24 54 0 >99:0: <1
2 EDCI (1.3) iPr,NEt 24 21 0 >99:0: <1
3 EDCI (1.3), HOBt (0.5) iPr,NEt 24 60 0 67:1:32
44 EDCI (1.3), HOBt (0.5) iPr,NEt 24 65 4 73:5:22
5 EDCI (1.3), HOBt (0.5) Et;N 24 58 1 79:1:20
6 EDCI (1.3), HOAt (0.5) iPr,NEt 24 35 0 93:0:7
7 EDCI (1.3), DMAP (0.5) iPr,NEt 3 922 ] 99:0:1
8 HATU (1.3) iPr,NEt 24 65 0 83:0:17
9 PyBOP (1.3) iPr,NEt 4 50 1 58:1:41
10° Et;N 4 82 1 86:1:13
11¢ Pyridine 24 65 0 81:0:19
12 CDI (1.3) 24 30 9 70:22:8
139 CDI (1.3) 24 40 14 56:19: 24
144 CDI (1.0) 24 36 19 44 :23:33
15 CDI (1.3) NaH 3 4 75 5:88:7

“ The reactions were carried out three times.
HPLC analysis. ¢ At reflux.
added to 2-amino-8-quinolinol and NaH (2 equiv.) in THF.

Table 2 The amidation of 2-amino-8-quinolinol with acyl imidazole
and ester under anionic conditions

b Isolated yield of 3a and 4a after column chromatography.  Ratio of 3a, 4a and 5a determined by
4-Methoxybenzoyl chloride was used.  Reaction conditions: a THF solution of CDI and 4-methoxybenzoic acid was

Table 3 The effect on additives in the reaction of 2-amino-8-qui-
nolinol with acyl imidazole

strong base, THF, rt ij Q
1 (1 equiv) =
/©)LN/\\N or /©)LOM8 4a OMe
</
MeO MeO 7
(1.3 equiv) (1.2 equiv)

Entry Acyl donor Base (equiv.) Time (h) % yield® Ratio”

1 6 NaH (2.0) 4 75 5:88:7
2 7 NaH (2.0) 24 25 2:98:0
3 7 n-BuLi (2.0) 4 56 0:99:1
4 7 iPrMgCl (2.0) 24 8 0:86:14
5 7 +BuOK (1.0) 24 11 4:93:3
6 7 t-BuOK (2.0) 2 63 3:96:0
7 7 t-BuOK (2.5) 1 72 1:93:7
8 7 #BuOK (3.0) 0.5 85 1:96:3

“ Isolated yield of amide 3a. ” Ratio (3a : 4a : 5a) determined by HPLC

analysis.

Next, we turned our attention to the amidation of 2-amino-8-
quinolinol on the C2 position. The CDI-mediated amidation of
some aromatic acids with electron-withdrawing substituents
provided C2-amides as the major product in contrast to
carbodiimide-mediated acylation (condition C, Table 5).
Nevertheless, this general amidation was accompanied by the
formation of the C8-ester species, which was difficult to

This journal is © The Royal Society of Chemistry 2017

6
(1.2 equiv)

o] additive? X
. (1.5equiv) o P
(1equiv)  MeO THF o

Entry Additive (equiv.) Temp (°C) 3a 4a Ratio®(3a:4a: 5a)

14¢ — 65 9 15 15:25:60
24 Pyridine (1.5) 65 67 0 80:0:20
3¢ DMAP (1.5) 65 63 0 73:0:27
4 HOBt (1.5) rt 56 0 80:0:20
5 Pyr-HCI (1.5) rt 78 0 87:0:13
6 DMAP-HCI (1.5) rt 75 0 87:0:13

“ Reaction conditions: 2-amino-8-quinolinol (1 equiv.), acyl imidazolide
£1.2 equiv.), an additive (1.5 equiv.), THF (4 mL), at room temperature

Isolated yield. © Ratio determined by HPLC analysis. ¢ At reflux.
¢ Added iPr,NEt (3 equiv.).

separate. With the optimized reaction conditions in hand, the
substrate scope was examined (condition D, Table 5). 4-
Methoxybenzoyl derivatives (2a) was obtained in 75% yield,
whereas the isolated yields of other substituted benzoic acids
and heteroaromatic acids were improved up to 99% (4a vs. 4b-
4m). Interestingly amides with N-protected amino acids (4n and

RSC Adv., 2017, 7, 41955-41961 | 41957


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra05287a

Open Access Article. Published on 30 August 2017. Downloaded on 11/22/2025 8:43:55 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

Table 4 Scope of C8-ester formation®?

View Article Online

Paper

Table 5 Scope of C2-amide formation®?

<condition A>
EDCI, DMAP

= iProNEt, THF ~
_ P
N"ONH, T RCOM - N” "NH,
(1.2 equiv)  <condition B>
OH PyBop, iPNEt <y O
2a-20 yBop, iProNEt \ﬂ/ 3a-3v
THF

A 91% Q( A 91% \©Y A 92%

B: 85% B: 84%

@fﬁ @@ @@

B: 87%

A: 92%
B: 82%

X
/ \ Q\/NJ\NH
HRA:

A 90% o

A: 94%
B: 82%

Bl

A: 90%
B: 73%

AT @? SV

O A:-% (4h, 58%)°
B: -% (4h, <10%)°

1@

A % (4i, 47%)°
=% (4], 45%)°

A: 89%
B: 81%

O A% (41, <10%)° O A: % (4m, <10%)°
B: -% (41, <10%)° B: -% (4m, <10%)°

X
B N B N Z
oc oc N NH,
/

A %(4n <10%)°
B: 60%

“ Reaction conditions: 1 (0.2 mmol), carboxylic acid (0.4 mmol), EDCI
£2.5 equiv.), DMAP (10 mol%), iPr,NEt (3 equiv.), THF (1 mL).

Isolated yield by flash column chromatography. ¢ Not obtained C8-
ester; isolated yield of C2-amide in parenthesis.

40) were easily prepared from the corresponding acyl
imidazolides.

By using EDCI-mediated acylation, the bulky aliphatic acyl
moieties such as piperidinylcarboxy, isovaleroyl, pivaloyl and 1-
adamantylcarbonyl were introduced on the C8-hydroxy group
successfully (3p-3s) as shown in Scheme 3. Similarly, sulfonyl
chloride, benzyl chloroformate and Boc,O were used to prepare
the sulfonate and carbonate derivatives (3t-3v) on the C8-
position in good yield, respectively. Meanwhile, the C2-amides
with bulky aliphatic amides bearing piperidinylcarboxy, iso-
valeroyl, pivaloyl and 1-adamantylcarbonyl (4p-4s), were easily
prepared from the corresponding acyl imidazolides. Finally,
a similar method was used to prepare two carbamates with Cbz
and Boc on C2 position, in spite of the unsatisfactory result
obtained with p-toluenesulfonamide (4t vs. 4u and 4v).

Additive effects besides imidazole are shown in Table 3 to
shed light on the mechanism of the chemoselective synthesis of
C8-ester and C2-amide derivatives. Thus, representative amines
(such as pyridine, DMAP, and HOBt) and their HCI salts were
treated with the imidazolide 6 to afford the C8-ester (Scheme 4).
With reactive acyl donors, C8-ester was regarded as the kinetic
product. On the contrary, two C8-esters (3a and 3k) were
refluxed with imidazole to afford the corresponding amides (4a

41958 | RSC Adv., 2017, 7, 41955-41961

<condition C>

RCO,H, CDI
X A
. RCOH THF, reflux j)]\

7 . Z

N7 NH, (12 equiv) <condition D> N N R
OH - OH
1 2a-20 1) NaH, THF 4a-do
2) RCO,H, CDI

Pty Pt Gy

C:43% 3] 15%)°
D: 98%

@@@Q*@ Lo,

C:41% (3e, 21%)°
D: 99%

C: 45% (3a, 9%)°
D: 75%

C:37% (3d, C: 44% (3b, 7%)° C:83% (3¢, 6%)°
D: 91% D- 88% b 93%

X o

cl

N N ){L)
OH

4k
C: 43% (3k, 15%)° ©! c: 28% (3f, 32%)° OBn c 81%

D:77% D: 90%

N o N o
7 7
YO LYY
OH = OH N
4 4
C: 40% C: 80%
D: 75% D: 85%

Pty @QM

C 75%
D: 78%

D: 90%

N o

Pz N

N
OH =

C:87%

D: 95%

A o

pZ N

Y
OH P

D 93%

¢ Reaction conditions: a mixture of the carboxylic acid (1.2 equiv.) and
CDI (1.3 equiv.) was added to a THF (4 mL) solution of 1 (0.20 mmol)
and NaH (2 equiv.) at room temperature. ” Isolated yield from flash
column chromatography.  Isolated yield based on recovered starting
material in parenthesis.

and 4Kk) in 40% and 82% yields, respectively. The observed
conversion from the C8-ester to the C2-amide revealed that the
C2-amide was the thermodynamically stable product. The
conversion of 3k to 4k was superior to that of 3a, because of the
electronic effect on substituents of benzene ring. This result is
relevant to the lack of formation of C8-esters with N-hetero-
aromatic carbonyls (3h-3n) under most of conditions, as shown
in Scheme 3. In order to determine the origin of the unique
reactivity of 2-amino-8-quinolinol, 8-hydroxyquinoline (8) and
2-aminoquinoline (9) reacted with 4-methoxybenzoic acid
under various coupling conditions. The yields with EDCI,
PyBop, HBTU, and CDI were not satisfactory, but the acylation
was successful with using the reactive acid chloride in good
yields (up to 92%). As the weak reactivity of 8 and 9, it is
considered to have a beneficial effect between the 2-amino and
8-hydroxy moieties for the introduction of an acyl group to 1.

To investigate the acylation pattern of 1, we monitored the
progress of C2-amide and C8-ester formation via CDI-mediated
acylation by HPLC. Ester 3a formed faster than amide 4a (0-6 h).
After 24 h, 4a was the major component, while starting material
1, 3a, and 5a were formed in similar amounts (almost 20%,
Table 6).®

This journal is © The Royal Society of Chemistry 2017
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<condition A®> <condition D°>
N RCO,H, EDCI NaH (2 eq)
iPrNEt,, DMAP

i X
P < ! N/ NH —>
THF, rt Q
) OH JL 2 eq
o)

N” NH,
3r, 76%

0L,

N-acyl derivatives

@@

3t, 87%¢

X
P
NH, N” NH,

O O-acyl derivatives

<condition A®>
AC\NO\EJ\/\/L

3p, 85%

m%@

t-BuO._O
o 3q,72% O  3s,83% o 3u, 85% O 3v,92%"
<condition D®>
X
o \//O
P
OH
4p, 82% 4r 90% at, 'y'
X o X o X o ‘ N (o}
o o o o~
NTON N ”% N g)koan N Hko‘-au
OH OH OH OH

4q, 88% 4s, 45% (83%)° 4u, 91%" 4v, 95%F

Scheme 3 The introduction of aliphaticacyl, sulfonyl and alkox-
ycarbonyl groups. ?Reaction conditions: 1 (0.2 mmol), carboxylic acid
(0.4 mmol), EDCI (2.5 equiv.), DMAP (10 mol%), iProNEt (3 equiv.), THF
(1 mL). PReaction conditions: a mixture of the carboxylic acid (1.2
equiv.) and CDI (1.3 equiv.) was added to a THF (4 mL) solution of 1
(0.20 mmol) and NaH (2 equiv.). “Isolated yield by flash column
chromatography. “p-toluenesulfonyl chloride, benzyl chloroformate
and Boc,O were used for 3t, 3u, and 3v respectively. ¢Isolated yield
based on recovered starting material in parenthesis. ‘o-Toluene-
sulfonyl chloride, benzyl chloroformate and Boc,O were used with
imidazole for 4t, 4u, and 4v respectively, but 4t was not isolated.

imidazole X 0
(2 equiv) _ )L
THF, reflux NN
24 h OH
O 3aR= OCHS) 4a (40%)
3k(R= cr) 4k (82%)

(conditions A)

RCOZH CDI, reflux X @\/j\
/
R

(condltlons B)

RCOCI, Et;N
8(R1-OH, Ry=H) s
9 (Ry=H, Rp=NH

(Rq 2=NH>) (R=

<10% for A
88% for B

<10% for A
92% for B

OCHj )

Scheme 4 Mechanistic investigation.

Based on the above mechanistic investigation, a proposed
reaction pathway is outlined in Scheme 5. Notably, Joussef et al.
reported the chemoselectivity O-sulfonylation at C8."* For the
C8-ester formation, the nitrogen nucleophile at N1 induced
from the lone pair of the amino at C2 attacks acyl donors such
as acid chlorides preferentially; this step is followed by an intra-
or intermolecular acyl transfer to the neighboring hydroxy at
C8."> Meanwhile, the formation of C2-amides involves the
anions of 1, generated by strong bases such as NaH. We spec-
ulated that a sodium ion which interacts with the anion at C8
might coordinate to the nitrogen atom at N1, whereas the

This journal is © The Royal Society of Chemistry 2017
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Table 6 The representative time-course data (HPLC) for the forma-
tion of C8-ester and C2-amide under CDI-mediated condition®

4 G0

RCO,H (2a) (1 equiv)

X cDI(1.3 equw
N NH, THF reﬂux
OH

1
R =/<©\ ) O (C8- ester) (C2- amlde) O (c2, C8 dlacy[)
OCH,
0.35 e @— 2-amino-8-quinolinol
03 4 ~——{— C8-ester
025 —a— C2-amide
- €2,C8-diacyl
o 02
£
E 0.15
0.1
0.05
0 = —TT—TTTTTTT—TT—T—T—T1TT
101 3 6 12 24
Time
Time (h) 1 (mmol) 3a (mmol) 4a (mmol) 5a (mmol)
0 0.3000 0 0 0
1 0.2780 0.0201 0.0014 0.0005
3 0.2096 0.0593 0.0252 0.0060
6 0.1666 0.0697 0.0512 0.0125
12 0.0753 0.0628 0.1201 0.0418
24 0.0681 0.0656 0.1087 0.0576

“ Reaction conditions: a THF (4 mL) solution of 2-amino-8-quinolinol (1
equiv.), p-methoxybenzoic acid (1 equiv.), and CDI (1.3 equiv.) was
stirred at reflux.

N
/\ i P
N72 NH2 LNHz N) NH, ? N~ "NH,
H R

Q:? o WO C8-ester
NaH (’ 2, O
(=2 equiv) / HN/\\N
=/

z@Z
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= <—1+
N ol I @

- 02N @
Na Na R C2-amide

Scheme 5 Proposed reaction pathways.

second anion at C2 might attack acyl donors such as acyl imi-
dazolides and esters. As with the unstable C8-ester (i.e. 3Kk)
could be converted into the C2-amide by imidazole, the reac-
tivity of the amino at C2 with acyl imidazolides under neutral
conditions remains to be elucidated.

Conclusions

In conclusion, we developed chemoselective acylation of 2-
amino-8-quinolinol on amino group at C2 and hydroxy group at
C8. The coupling reaction with a variety of carboxylic acids
using EDCI and DMAP provided C8-ester derivatives in excellent
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yield. When the dianion of 2-amino-8-quinolinol reacts with
less reactive acylimidazoles and esters, the corresponding C2-
amides and carbamate derivatives could be prepared as the
major product. Biological evaluations of the C2-amide and C8-
ester derivatives of 2-amino-8-quinolinol are underway in our
laboratory and will be reported in due course.

Experimental

All the starting materials, solvents and reagents were obtained
from commercial suppliers and were used without further
purification. Flash column chromatography was performed
using silica gel 60 (230-400 mesh, Merck) with the indicated
solvents. Thin-layer chromatography was performed using
0.25 mm silica gel plates (Merck). "H and "*C NMR spectra were
recorded on a Bruker 600 MHz spectrometer as solutions in
deuterated CDCl;, methanol-d, or DMSO-ds. "H NMR data were
reported in the order of chemical shift, multiplicity (s, singlet; d,
doublet; t, triplet; m, multiplet and/or multiple resonances),
number of protons, and coupling constant (J) in hertz (Hz).
High-resolution mass spectra (HRMS) were recorded on a JEOL
JMS-700 (FAB and EI) and an Agilent 6530 Q-TOF LC/MS/MS
system (ESI). For conversion measurements, the samples
prepared for the HPLC were analyzed at 256 nm using an Agi-
lent 1260 HPLC system equipped with a 6 mm x 50 mm Sunfire
5 C18 column, in which the mobile phase was a gradient from
water to acetonitrile for 30 min.

General procedure of condition A (Table 4) for O-acylation at
C8

To a solution of 2-amino-8-quinolinol (30 mg, 0.19 mmol) and
a carboxylic acid (1.2 equiv.) in anhydrous tetrahydrofuran (4
mL) were added EDCI (1.3 equiv.), DMAP (0.5 equiv.) and N,N-
diisopropylethylamine (3.0 equiv.) under N, atmosphere with
an ice bath. After stirring for 3 h at ambient temperature, the
mixture was diluted with dichloromethane, washed by sat.
NH,CI, sat. NaHCO3;, and brine, dried by MgSO,, filtered, and
concentrated. The residue was purified by silica gel column
chromatography to afford the desired product.

General procedure of condition B (Table 4) for O-acylation at
C8

To a solution of 2-amino-8-quinolinol (30 mg, 0.19 mmol) and
a carboxylic acid (1.2 equiv.) in anhydrous tetrahydrofuran were
added PyBop (1.3 equiv.) and N,N-diisopropylethylamine
(3.0 equiv.) under N, atmosphere with an ice bath and stirring
for 4 h at ambient temperature. The reaction mixture was
diluted with dichloromethane, washed by NH,CI, saturated
NaHCOj;, and brine, dried by MgSO,, filtered, and concentrated.
The residue was purified by flash column chromatography to
the desired product.

General procedure of condition C (Table 5) for N-acylation at
C2

To a solution of a carboxylic acid (1.2 equiv.) in anhydrous
tetrahydrofuran was added 1,1’-carbodiimidazole (1.3 equiv.).
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After stirring for 1 h under N, atmosphere, 2-amino-8-
quinolinol (30 mg, 0.19 mmol) was added to the reaction
mixture. After stirring for 24 h at reflux, the mixture was diluted
with tetrahydrofuran, washed by NH,CI, saturated NaHCO;,
and brine, dried by MgSO,, filtered, and concentrated. The
residue was purified by flash column chromatography to the
desired product.

General procedure of condition D (Table 5) for N-acylation at
C2

To a solution of carboxylic acid (1.2 equiv.) in anhydrous
tetrahydrofuran (4 mL), 1,1’-carbonyldiimidazole (1.3 equiv.)
was added under N, atmosphere at ambient temperature. After
stirred for 1 h. The mixture was diluted with dichloromethane,
extracted by brine and dichloromethane, dried by MgSO,,
filtered, and concentrated to obtain the acyl imidazolide inter-
mediate. To a solution of 2-amino-8-quinolinol (30 mg,
0.19 mmol) and NaH (2.0 equiv.) in anhydrous tetrahydrofuran
(4 mL) was added the acyl imidazolide intermediate under N,
atmosphere with an ice bath. After stirring for 2 h at ambient
temperature, the reaction was quenched with sat. NH,CI,
washed by dichloromethane and dried by MgSO,, filtered, and
concentrated. The residue was purified by silica gel column
chromatography to afford the desired product.

2-Aminoquinolin-8-yl 4-methoxybenzoate (3a). General
procedure A, white solid, yield: 92%, and purification by column
chromatography (ethyl acetate/n-hexane = 1: 3, Ry = 0.1). 'H-
NMR (600 MHz, CDCl;) 6 8.28 (dd, 2H, J = 9.0 Hz), 7.86 (d,
1H, ] = 9.0 Hz), 7.53 (dd, 1H, J = 8.4 and 1.2 Hz), 7.39 (dd, 1H, J
= 7.8 and 1.2 Hz), 7.26 (t, 1H, ] = 7.8 Hz), 6.99 (dd, 2H, J = 9.0
and 1.8 Hz), 6.66 (d, 1H, J = 9.0 Hz), 4.85 (bs, 2H), 3.89 (s, 3H);
3C-NMR (150 MHz, CDCl;) 6 165.3, 163.7, 157.0, 145.3, 140.7,
137.9, 132.5, 125.4, 125.0, 122.2, 122.1, 121.9, 113.7, 112.3, 55.5;
HRMS (EI): m/z caled for C;;H;4N,03: 294.1004; found:
294.1006.

N-(8-Hydroxyquinolin-2-yl)-4-methoxybenzamide (4a).
General procedure D, white solid, yield: 75%, and purification
by column chromatography (dichloromethane/methanol =
20 : 1, R¢ = 0.25). 'H-NMR (600 MHz, DMSO-d,) 6 10.68 (s, 1H),
9.29 (bs, 1H), 8.34 (d, 1H, J = 9.0 Hz), 8.28 (d, 1H, J = 9.0 Hz),
8.10 (d, 2H, J = 8.4 Hz), 7.38 (d, 1H, J = 7.8 Hz), 7.35 (t, 1H, ] =
7.8 Hz), 7.10 (t 3H, J = 7.5 Hz), 3.86 (s, 3H); '*C-NMR (150 MHz,
DMSO-dg) 6 165.9, 162.8, 152.4, 150.7, 138.4, 137.2, 130.5, 127.0,
126.3, 126.2, 118.2, 116.4, 114.1, 111.9, 55.9; HRMS (EI): m/z
caled for C;;H 4N,05: 294.1004; found: 294.1003.
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