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Natural peptides coordinated with various metal ions via amide
bonds and functional groups on side chains can form various
self-assembled structures." For example, ferritin is a natural
intracellular protein which takes a specific conformation
through interactions between peptide building blocks and Fe**
ions. Artificial peptides that provide natural or non-natural
metal binding sites have been developed to construct metal
ion-induced self-assemblies of nanostructures including
tubular-, fibre-, vesicle-, spherical-, and rod-coil-type ones.> Such
metal coordination can initiate intermolecular self-assembly by
bringing two or more peptides into close proximity.> Further-
more, several metal ions coordinated with peptides have been
involved in a redox reaction to induce irreversible peptide cross-
linking via covalent bonding e.g., dityrosine formation.*”
Based on a peptide template, various types of metal-peptide
nanostructures have been designed and utilized as electro-
chemical sensors,® biological scaffolds,>'® and catalysts."** In
particular, significant effort has been devoted in developing
metal nanoparticles (NPs)-incorporated peptide nanostructures
which can then be used as catalysts in C-C coupling reaction. To
facilitate the reaction, for instant, Knecht group synthesized
various shapes of Pd nanostructures with a large surface area by
using a self-assembling peptide template composed of R5
peptide.** Moreover, peptide amphiphiles possessing both
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provided a recyclable Pd nano-catalyst with a function of reversible thermal phase transition between
the homogeneous and heterogeneous states for cross-coupling reactions.

hydrophobic carbon-chain and ionic peptide sequences are
promising as bio-inspired-templates for growing PdNPs-
incorporated nanofibers. Recently, groups have
demonstrated nanofiber incorporated with PANPs using a self-
assembled peptide amphiphile. The peptide-templated PANPs
showed high catalytic activity for the Suzuki coupling reaction
under environmentally-friendly conditions.'*** Although these
peptide-templated PANPs can afford efficient catalytic activities
for the C-C coupling reactions, drawbacks originated from the
heterogeneous state limits its broad and practical application of
the catalyst.

A recent report has revealed that a tyrosine-rich peptide,
YYACAYY (YC;), can be self-assembled into a two-dimensional
peptide nanostructure via interaction of tyrosines and cyste-
ines leading to cross-linking at an air/water interface.”” Based
on this finding, we have successfully designed Pd**-ion-
mediated sphere-to-bridge-shaped peptide nanostructures
(YC,@Pd®>") through thermally induced phase transition.
During the transition, the Pd>" ions have interacted with the
YC, peptide molecules through coordination, which might be
a crucial driving force for leading to a distinctive self-assembled
sphere-to-bridge peptide nanostructure. More interestingly, the
self-assembled YC,@Pd?" is dissolved into the aqueous solution
via thermal transition during cross-coupling process over phase
transition temperature and followed by re-assembly under the
critical temperature achieving the PdNP-captured astrocyte-
shaped peptide nanostructures (YC,@PdNP). This provides
a great opportunity to take advantage of YC,@Pd>" as a versatile
and recyclable catalyst, capitalizing both of its homogeneous
characteristic over critical temperature and heterogeneous
characteristic under the same temperature. Herein, we
demonstrate the feasibility of YC,@Pd>" as a new type of cata-
lyst under environmentally friendly conditions: (a) as a nano-
catalyst during C-C coupling reactions; and (b) as a heteroge-
neous catalyst for separation, especially in Suzuki and
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Sonogashira coupling reactions. YC,@Pd>', this catalytic
system via switchable phase enabled reusable catalyst. To the
best of our knowledge, this kind of the reassembly process is
first demonstrated in this paper.

YC,; is a random coil-dominant peptide, which self-
assembles in an aqueous phase into a two-dimensional nano-
structure.'” From this peptide, we synthesized sphere-to-bridge-
type peptide nanostructures (YC,@Pd>") via thermally
controlled and Pd*'-ion-mediated ionic interactions
(Scheme 1). During heating the peptide up to 90 °C for 1 h, it
was allowed to completely dissolve in water. As the peptide
solution was gradually cooled to 60 °C, YC, underwent a rapid
transition into a secondary, a-helix-dominant structure. At this
stage, Pd*" ions were injected to induce distinctive Pd-peptide
secondary structures via ionic interactions between phenolate
anions of tyrosyl residues (or C terminal carboxylate anions)
and Pd*" jons. Without Pd*" ions, YC, molecules were self-
assembled into irregular shaped nanostructures and nano-
sheets during the thermodynamic transition (90 °C — 60 °C) via
interactions between tyrosines and cysteine -crosslinking
(Fig. S11). However, the YC,@Pd>", which was self-assembled by
interactions with Pd>" ions, was uniform and spherical with an
average diameter of 88 + 31 nm (count: 100) and further formed
linked networks of sphere-to-bridge shapes (Fig. 1a and b).
Physicochemical characterization of the nanostructure was
performed with several analytical methods. First, the constit-
uent elements of YC,@Pd>", including Pd, N, O, S and CI, were
analysed by energy-dispersive X-ray microanalysis mapping
(Fig. S21). The results demonstrated that YC,@Pd>" was
composed of Pd*>" ions, evenly distributed within the YC,
matrix.

To analyse the structure of YC,@Pd>" and the interactions
between Pd>" ions and the peptides, it was further characterized
by infrared (IR) spectroscopy (Fig. 2). Bands from »(C-O), »(CC),
6(COH) of Tyr in YC, peptide were observed at 1070-1270 cm ™,
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Fig. 1 (a) TEM image and (b) SEM image of YC,@Pd?* nanostructure.

which exhibited relatively strong intensity due to its polar char-
acter (Fig. 2). These peaks are unique in Tyr not in other residues
of YC, peptide. When the C-O stretching vibration bands of the
self-assembled YC, and YC,@Pd>" were compared, YC,@Pd>*
gave strong peaks at 1232 cm ™' involving two stretching modes
of »y(C=C) and »(C-O) in Tyr-OH, which are attributed to
stronger polarity of phenolate (Tyr residue) in the presence of
Pd**.!®2! These results clearly show that there are strong inter-
actions between Pd>" ions and tyrosine groups of YC,@Pd>". In
addition, a new C=0 stretching vibration from the carboxylate of
YC,@Pd>" appeared at 1557 cm~ ' which corresponds to the
asymmetric stretching vibration of metal carboxylates.”

Additionally, the X-ray photoelectron spectroscopy (XPS)
data of YC,@Pd>" clearly revealed Pd peaks (3d,/s and 3ds5) at
343.20 and 337.95 eV which corresponded to Pd(u) (Fig. S3t).>*
Taken together, YC,@Pd*" is a non-crystalline peptide complex
coordinated with Pd(u) at tyrosine residues, and has a potential
as a Pd catalyst used in C-C coupling reactions. Consequently,
Pd**-ion-mediated peptide self-assembly was well characterized
with IR and XPS.

Hence, this proves that the phenolate and carboxylate groups
of YC,@Pd>" were primarily involved in coordination with Pd**

Proposed mechanism of YC,@Pd?* synthesis by thermal phase transition of dissolved YC, and Pd?*-ion-driven self-assembly.
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Fig. 2 FT-IR spectra of YC,@Pd?*" and YC; peptide.

ions leading to the formation of a distinctive Pd-peptide
nanostructure. Inductively coupled plasma atomic emission
spectroscopy (ICP-OES) analysis revealed that the palladium
content of YC,@Pd>" was calculated to be 1.86 mmol Pd per g
catalyst.

The X-ray diffraction (XRD) patterns of self-assembled YC,
exhibited distinctive peaks at 10° and 18° originating from the
intersheet reflections of peptide sheets, respectively (Fig. S47).
In contrast, peptide sheet-originated regular sharp peaks of
face-centered cubic Pd crystals did not appear in the XRD
pattern of YC,@Pd>" (Fig. S57). This result supports that Pd**
ions were able to collapse the intrinsic YC; structure, leading to
the irregular shaped peptide arrangement inside the sphere-to-
bridge-shaped peptide nanostructure.

We investigated the catalytic activity of the YC,@Pd>" by
evaluating the efficiency of C-C coupling reactions including
Suzuki, Heck and Sonogashira coupling reactions.** Actually,
YC,@Pd>" nanostructures are decomposed into the solution at
coupling reaction temperature, and then PdNPs instantly
reduced from Pd** ions participate in the three kinds of
coupling reactions. First, various bases for each coupling reac-
tion were screened in aqueous solution.”® K,CO; and pyrroli-
dine were selected as the best base in the Suzuki and the
Sonogashira reactions, respectively. (Tables S1 and S27).
However, the catalytic activity of YC,@Pd>" in the Heck
coupling reactions gave unfavourable yields (<2%) even in the
presence of cetyl trimethyl ammonium bromide (CTAB) (Table
S3t).2¢ Therefore, YC,@Pd>** was further used as a catalyst for
the Suzuki and the Sonogashira coupling reactions of aryl
iodides with phenylboronic acid or phenylacetylene in an
aqueous solvent system at 80 °C, where YC,@Pd>" can be
transformed into the homogeneous phase.

An activated aryl iodide (4-iodoacetophenone) was well-
converted to the corresponding biaryl compounds in the
Suzuki coupling reaction with over 98% yield in only 1 h with
0.1 mol% of YC,@Pd>" (Table 1, entry 1). Electron-donating
substituents lowered the yields of the corresponding biaryl
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Table 1 Suzuki—Miyaura coupling reactions for various aryl iodides in

the presence of YC,@Pd?* catalyst®
~O—0

YC,@Pd**
—_—
K2CO3, H,0, 80°C

or 2-iodothiophene

Entry R Time (h) Yield” (%)
1 COCH, 1 98.7
2 OH 3 99.6
3 OCH, 3 92.8
4 H 3/3" 88.8/99.9°
5 CH, 6/3% 70.8/96.0°
6 2-lodothiophene 6/3° 40.0/91.3°

“ Conditions: aryl iodine and heterocyclic halides (0.155 mmol),
phenylboronic acid (0.186 mmol), YC,@Pd>* (0.1 mol%), K,CO; (0.274
mmol) in water (1 mL) at 80 °C. ” GC yields when 0.5 eq. of CTAB was
used. ¢ GC yields.

compounds (Table 1, entries 2-5). In particular, the oxygen-
containing substrates (Table 1, entries 2 (OH) and 3 (OMe))
exhibited more efficient coupling than non-oxygen-containing
substrates. These results demonstrated that the hydrogen
bonding facilitated the access of YC,@Pd>" to the substrate
molecules under aqueous conditions providing a compatible
coupling environment for the Suzuki coupling reaction.
Furthermore, the use of CTAB as a phase-transfer catalyst
promoted the interphase transfer of substrates, thereby boost-
ing the coupling yields of the non-oxygen containing substrates
(Table 1, entries 4 (H) and 5 (Me)). As a control experiment,
compared with the coupling reaction catalyzed by YC,@Pd*",
the coupling yields by PdCl, activation were lower than those of
YC,@Pd*" in same condition (Table S4t).

Given the successful catalytic activity of YC,@Pd>" in the
Suzuki coupling reactions, we further investigated the catalytic
activity of YC,@Pd*" in the Sonogashira coupling reactions with
Cul under aqueous conditions.”” The Sonogashira coupling
reaction catalysed by YC,@Pd>" exhibited a high coupling yield
with a strong electron-withdrawing substrate (Table S5,} entry
1). In contrast to the Suzuki coupling reaction, the hydrogen
bonding derived from the electron-donating substrates (Table
S5,1 entries 3 and 6) was not relatively effective on the catalytic
activity in the Sonogashira coupling reaction. CTAB strongly
suppressed the cross-coupling reaction, and instead, acceler-
ated homo-coupling reaction with activated aryl iodide. The
results indicate that CTAB did not afford a compatible cross-
coupling environment between the catalyst and the substrates
in the Sonogashira coupling reaction, whereas it stabilized
phenylacetylene with Cu' ion to activate the homo-coupling
pathway.

During the coupling reaction at 80 °C in an aqueous solvent,
YC,@Pd>" disassembled into a soluble Pd-peptide complex,
which is reduced into the solubilized PANP catalyst. After
cooling down to room temperature, the PANP-peptide complex
was reassembled and transformed into a nanostructure which
is similar with a shape of astrocyte (YC,@PdNP, Fig. S6bt). This
reversible process between homogeneous and heterogeneous

This journal is © The Royal Society of Chemistry 2017
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states facilitated easy isolation and reuse of YC;@PdNP from
the reaction mixture. To evaluate the reusability of YC,@Pd*",
the catalyst was recycled in subsequent Suzuki coupling reac-
tions with 4-iodophenol or 4-iodoacetophenone. While the
coupling yields of the activated substrates (iodoacetophenone)
decreased slightly in the fourth and fifth runs, 4-iodophenol
which can form a hydrogen bonding with YC,@PdNP was
converted to the corresponding biaryl compound in excellent
yields (yield > 98%) even after 5™ use (Fig. $7t).° These results
reconfirm that hydrogen bonding enabled the substrates for
easy access to the Pd-peptide complex as well as possibly
stabilizing the PdNPs for excellent catalytic activity during
a series of Suzuki coupling reactions.

In conclusion, we developed a novel method for the
construction of Pd**-ion-mediated sphere-to-bridge-shaped
peptide nanostructures, YC,@Pd>", of which morphology can
be controlled by temperature in an aqueous phase. Character-
ized by the switchable thermally-reversible phase transition,
YC,@Pd>" acted as a solubilized nano-catalyst during C-C
coupling reactions and reassembled into a heterogeneous
structure for isolation and reuse after each coupling reaction.
YC,@Pd>" showed an excellent activity as a catalyst for the
Suzuki and the Sonogashira coupling reactions under aqueous
conditions. Especially, in the Suzuki coupling reaction,
hydrogen bonding capability of the substrates provided
a favourable coupling environment, enhancing the coupling
yield and reusability of the catalyst. The morphology control-
lable self-assembled Pd**-ion-mediated peptide nanostructure
can open a new avenue as a reusable catalyst for C-C coupling
reactions under environmentally-friendly conditions.
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