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le Pd containing sphere-to-
bridge-shaped peptide nanostructure for
cross-coupling reactions†

Seongsoo Kim, ‡a Hong-Jun Cho,‡b Namhun Lee,a Yoon-Sik Lee,*b

Dong-Sik Shin *c and Sang-Myung Lee*a

A sphere-to-bridge-shaped peptide nanostructure was constructed from a tyrosine-rich peptide (H-

YYACAYY-OH) via mediating Pd2+ ions as well as changing temperature. This novel assembly technique

provided a recyclable Pd nano-catalyst with a function of reversible thermal phase transition between

the homogeneous and heterogeneous states for cross-coupling reactions.
Natural peptides coordinated with various metal ions via amide
bonds and functional groups on side chains can form various
self-assembled structures.1 For example, ferritin is a natural
intracellular protein which takes a specic conformation
through interactions between peptide building blocks and Fe2+

ions. Articial peptides that provide natural or non-natural
metal binding sites have been developed to construct metal
ion-induced self-assemblies of nanostructures including
tubular-, bre-, vesicle-, spherical-, and rod-coil-type ones.2 Such
metal coordination can initiate intermolecular self-assembly by
bringing two or more peptides into close proximity.3 Further-
more, several metal ions coordinated with peptides have been
involved in a redox reaction to induce irreversible peptide cross-
linking via covalent bonding e.g., dityrosine formation.4–7

Based on a peptide template, various types of metal-peptide
nanostructures have been designed and utilized as electro-
chemical sensors,8 biological scaffolds,9,10 and catalysts.11–13 In
particular, signicant effort has been devoted in developing
metal nanoparticles (NPs)-incorporated peptide nanostructures
which can then be used as catalysts in C–C coupling reaction. To
facilitate the reaction, for instant, Knecht group synthesized
various shapes of Pd nanostructures with a large surface area by
using a self-assembling peptide template composed of R5
peptide.14 Moreover, peptide amphiphiles possessing both
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hydrophobic carbon-chain and ionic peptide sequences are
promising as bio-inspired-templates for growing PdNPs-
incorporated nanobers. Recently, several groups have
demonstrated nanober incorporated with PdNPs using a self-
assembled peptide amphiphile. The peptide-templated PdNPs
showed high catalytic activity for the Suzuki coupling reaction
under environmentally-friendly conditions.15,16 Although these
peptide-templated PdNPs can afford efficient catalytic activities
for the C–C coupling reactions, drawbacks originated from the
heterogeneous state limits its broad and practical application of
the catalyst.

A recent report has revealed that a tyrosine-rich peptide,
YYACAYY (YC7), can be self-assembled into a two-dimensional
peptide nanostructure via interaction of tyrosines and cyste-
ines leading to cross-linking at an air/water interface.17 Based
on this nding, we have successfully designed Pd2+-ion-
mediated sphere-to-bridge-shaped peptide nanostructures
(YC7@Pd2+) through thermally induced phase transition.
During the transition, the Pd2+ ions have interacted with the
YC7 peptide molecules through coordination, which might be
a crucial driving force for leading to a distinctive self-assembled
sphere-to-bridge peptide nanostructure. More interestingly, the
self-assembled YC7@Pd2+ is dissolved into the aqueous solution
via thermal transition during cross-coupling process over phase
transition temperature and followed by re-assembly under the
critical temperature achieving the PdNP-captured astrocyte-
shaped peptide nanostructures (YC7@PdNP). This provides
a great opportunity to take advantage of YC7@Pd2+ as a versatile
and recyclable catalyst, capitalizing both of its homogeneous
characteristic over critical temperature and heterogeneous
characteristic under the same temperature. Herein, we
demonstrate the feasibility of YC7@Pd2+ as a new type of cata-
lyst under environmentally friendly conditions: (a) as a nano-
catalyst during C–C coupling reactions; and (b) as a heteroge-
neous catalyst for separation, especially in Suzuki and
This journal is © The Royal Society of Chemistry 2017
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Fig. 1 (a) TEM image and (b) SEM image of YC7@Pd2+ nanostructure.
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Sonogashira coupling reactions. YC7@Pd2+, this catalytic
system via switchable phase enabled reusable catalyst. To the
best of our knowledge, this kind of the reassembly process is
rst demonstrated in this paper.

YC7 is a random coil-dominant peptide, which self-
assembles in an aqueous phase into a two-dimensional nano-
structure.17 From this peptide, we synthesized sphere-to-bridge-
type peptide nanostructures (YC7@Pd2+) via thermally
controlled and Pd2+-ion-mediated ionic interactions
(Scheme 1). During heating the peptide up to 90 �C for 1 h, it
was allowed to completely dissolve in water. As the peptide
solution was gradually cooled to 60 �C, YC7 underwent a rapid
transition into a secondary, a-helix-dominant structure. At this
stage, Pd2+ ions were injected to induce distinctive Pd-peptide
secondary structures via ionic interactions between phenolate
anions of tyrosyl residues (or C terminal carboxylate anions)
and Pd2+ ions. Without Pd2+ ions, YC7 molecules were self-
assembled into irregular shaped nanostructures and nano-
sheets during the thermodynamic transition (90 �C/ 60 �C) via
interactions between tyrosines and cysteine crosslinking
(Fig. S1†). However, the YC7@Pd2+, which was self-assembled by
interactions with Pd2+ ions, was uniform and spherical with an
average diameter of 88� 31 nm (count: 100) and further formed
linked networks of sphere-to-bridge shapes (Fig. 1a and b).
Physicochemical characterization of the nanostructure was
performed with several analytical methods. First, the constit-
uent elements of YC7@Pd2+, including Pd, N, O, S and Cl, were
analysed by energy-dispersive X-ray microanalysis mapping
(Fig. S2†). The results demonstrated that YC7@Pd2+ was
composed of Pd2+ ions, evenly distributed within the YC7

matrix.
To analyse the structure of YC7@Pd2+ and the interactions

between Pd2+ ions and the peptides, it was further characterized
by infrared (IR) spectroscopy (Fig. 2). Bands from n(C–O), n(CC),
d(COH) of Tyr in YC7 peptide were observed at 1070–1270 cm�1,
Scheme 1 Proposed mechanism of YC7@Pd2+ synthesis by thermal pha

This journal is © The Royal Society of Chemistry 2017
which exhibited relatively strong intensity due to its polar char-
acter (Fig. 2). These peaks are unique in Tyr not in other residues
of YC7 peptide. When the C–O stretching vibration bands of the
self-assembled YC7 and YC7@Pd2+ were compared, YC7@Pd2+

gave strong peaks at 1232 cm�1 involving two stretching modes
of n(C]C) and n(C–O) in Tyr–OH, which are attributed to
stronger polarity of phenolate (Tyr residue) in the presence of
Pd2+.18–21 These results clearly show that there are strong inter-
actions between Pd2+ ions and tyrosine groups of YC7@Pd2+. In
addition, a new C]O stretching vibration from the carboxylate of
YC7@Pd2+ appeared at 1557 cm�1 which corresponds to the
asymmetric stretching vibration of metal carboxylates.22

Additionally, the X-ray photoelectron spectroscopy (XPS)
data of YC7@Pd2+ clearly revealed Pd peaks (3d2/5 and 3d3/5) at
343.20 and 337.95 eV which corresponded to Pd(II) (Fig. S3†).23

Taken together, YC7@Pd2+ is a non-crystalline peptide complex
coordinated with Pd(II) at tyrosine residues, and has a potential
as a Pd catalyst used in C–C coupling reactions. Consequently,
Pd2+-ion-mediated peptide self-assembly was well characterized
with IR and XPS.

Hence, this proves that the phenolate and carboxylate groups
of YC7@Pd2+ were primarily involved in coordination with Pd2+
se transition of dissolved YC7 and Pd2+-ion-driven self-assembly.

RSC Adv., 2017, 7, 33162–33165 | 33163
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Fig. 2 FT-IR spectra of YC7@Pd2+ and YC7 peptide.

Table 1 Suzuki–Miyaura coupling reactions for various aryl iodides in
the presence of YC7@Pd2+ catalysta

Entry R Time (h) Yieldc (%)

1 COCH3 1 98.7
2 OH 3 99.6
3 OCH3 3 92.8
4 H 3/3b 88.8/99.9b

5 CH3 6/3b 70.8/96.0b

6 2-Iodothiophene 6/3b 40.0/91.3b

a Conditions: aryl iodine and heterocyclic halides (0.155 mmol),
phenylboronic acid (0.186 mmol), YC7@Pd2+ (0.1 mol%), K2CO3 (0.274
mmol) in water (1 mL) at 80 �C. b GC yields when 0.5 eq. of CTAB was
used. c GC yields.
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ions leading to the formation of a distinctive Pd-peptide
nanostructure. Inductively coupled plasma atomic emission
spectroscopy (ICP-OES) analysis revealed that the palladium
content of YC7@Pd2+ was calculated to be 1.86 mmol Pd per g
catalyst.

The X-ray diffraction (XRD) patterns of self-assembled YC7

exhibited distinctive peaks at 10� and 18� originating from the
intersheet reections of peptide sheets, respectively (Fig. S4†).
In contrast, peptide sheet-originated regular sharp peaks of
face-centered cubic Pd crystals did not appear in the XRD
pattern of YC7@Pd2+ (Fig. S5†). This result supports that Pd2+

ions were able to collapse the intrinsic YC7 structure, leading to
the irregular shaped peptide arrangement inside the sphere-to-
bridge-shaped peptide nanostructure.

We investigated the catalytic activity of the YC7@Pd2+ by
evaluating the efficiency of C–C coupling reactions including
Suzuki, Heck and Sonogashira coupling reactions.24 Actually,
YC7@Pd2+ nanostructures are decomposed into the solution at
coupling reaction temperature, and then PdNPs instantly
reduced from Pd2+ ions participate in the three kinds of
coupling reactions. First, various bases for each coupling reac-
tion were screened in aqueous solution.25 K2CO3 and pyrroli-
dine were selected as the best base in the Suzuki and the
Sonogashira reactions, respectively. (Tables S1 and S2†).
However, the catalytic activity of YC7@Pd2+ in the Heck
coupling reactions gave unfavourable yields (<2%) even in the
presence of cetyl trimethyl ammonium bromide (CTAB) (Table
S3†).26 Therefore, YC7@Pd2+ was further used as a catalyst for
the Suzuki and the Sonogashira coupling reactions of aryl
iodides with phenylboronic acid or phenylacetylene in an
aqueous solvent system at 80 �C, where YC7@Pd2+ can be
transformed into the homogeneous phase.

An activated aryl iodide (4-iodoacetophenone) was well-
converted to the corresponding biaryl compounds in the
Suzuki coupling reaction with over 98% yield in only 1 h with
0.1 mol% of YC7@Pd2+ (Table 1, entry 1). Electron-donating
substituents lowered the yields of the corresponding biaryl
33164 | RSC Adv., 2017, 7, 33162–33165
compounds (Table 1, entries 2–5). In particular, the oxygen-
containing substrates (Table 1, entries 2 (OH) and 3 (OMe))
exhibited more efficient coupling than non-oxygen-containing
substrates. These results demonstrated that the hydrogen
bonding facilitated the access of YC7@Pd2+ to the substrate
molecules under aqueous conditions providing a compatible
coupling environment for the Suzuki coupling reaction.
Furthermore, the use of CTAB as a phase-transfer catalyst
promoted the interphase transfer of substrates, thereby boost-
ing the coupling yields of the non-oxygen containing substrates
(Table 1, entries 4 (H) and 5 (Me)). As a control experiment,
compared with the coupling reaction catalyzed by YC7@Pd2+,
the coupling yields by PdCl2 activation were lower than those of
YC7@Pd2+ in same condition (Table S4†).

Given the successful catalytic activity of YC7@Pd2+ in the
Suzuki coupling reactions, we further investigated the catalytic
activity of YC7@Pd2+ in the Sonogashira coupling reactions with
CuI under aqueous conditions.27 The Sonogashira coupling
reaction catalysed by YC7@Pd2+ exhibited a high coupling yield
with a strong electron-withdrawing substrate (Table S5,† entry
1). In contrast to the Suzuki coupling reaction, the hydrogen
bonding derived from the electron-donating substrates (Table
S5,† entries 3 and 6) was not relatively effective on the catalytic
activity in the Sonogashira coupling reaction. CTAB strongly
suppressed the cross-coupling reaction, and instead, acceler-
ated homo-coupling reaction with activated aryl iodide. The
results indicate that CTAB did not afford a compatible cross-
coupling environment between the catalyst and the substrates
in the Sonogashira coupling reaction, whereas it stabilized
phenylacetylene with Cu+ ion to activate the homo-coupling
pathway.

During the coupling reaction at 80 �C in an aqueous solvent,
YC7@Pd2+ disassembled into a soluble Pd-peptide complex,
which is reduced into the solubilized PdNP catalyst. Aer
cooling down to room temperature, the PdNP-peptide complex
was reassembled and transformed into a nanostructure which
is similar with a shape of astrocyte (YC7@PdNP, Fig. S6b†). This
reversible process between homogeneous and heterogeneous
This journal is © The Royal Society of Chemistry 2017
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states facilitated easy isolation and reuse of YC7@PdNP from
the reaction mixture. To evaluate the reusability of YC7@Pd2+,
the catalyst was recycled in subsequent Suzuki coupling reac-
tions with 4-iodophenol or 4-iodoacetophenone. While the
coupling yields of the activated substrates (iodoacetophenone)
decreased slightly in the fourth and h runs, 4-iodophenol
which can form a hydrogen bonding with YC7@PdNP was
converted to the corresponding biaryl compound in excellent
yields (yield > 98%) even aer 5th use (Fig. S7†).9 These results
reconrm that hydrogen bonding enabled the substrates for
easy access to the Pd-peptide complex as well as possibly
stabilizing the PdNPs for excellent catalytic activity during
a series of Suzuki coupling reactions.

In conclusion, we developed a novel method for the
construction of Pd2+-ion-mediated sphere-to-bridge-shaped
peptide nanostructures, YC7@Pd2+, of which morphology can
be controlled by temperature in an aqueous phase. Character-
ized by the switchable thermally-reversible phase transition,
YC7@Pd2+ acted as a solubilized nano-catalyst during C–C
coupling reactions and reassembled into a heterogeneous
structure for isolation and reuse aer each coupling reaction.
YC7@Pd2+ showed an excellent activity as a catalyst for the
Suzuki and the Sonogashira coupling reactions under aqueous
conditions. Especially, in the Suzuki coupling reaction,
hydrogen bonding capability of the substrates provided
a favourable coupling environment, enhancing the coupling
yield and reusability of the catalyst. The morphology control-
lable self-assembled Pd2+-ion-mediated peptide nanostructure
can open a new avenue as a reusable catalyst for C–C coupling
reactions under environmentally-friendly conditions.
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