RSC Advances

PAPER

Cite this: RSC Adv., 2017, 7, 27938

Rigid NON-donor pincer ligand complexes of lutetium and lanthanum: synthesis and hydroamination catalysis†

Kelly S. A. Motolko,a David J. H. Emsliea and James F. Brittenb

Reaction of H2XN2 {4,5-bis(2,4,6-trisopropylanilino)-2,7-di-tert-butyl-9,9-dimethylxanthene} with [Lu(CH2SiMe3)5(THF)2] and crystallization from O(SiMe3)2 yielded [XN2]Lu(CH2SiMe3)(THF)·[O(SiMe3)2]1.5 (1·O(SiMe3)2)2.3. Lanthanum complexes of the XN2 dianion were also prepared by salt metathesis; treatment of H2XN2 with excess KH in DME produced the dipotassium salt, [K2(XN2)(DME)]x (x = 2–2.5), and subsequent reaction with [LaCl[(THF)]3] afforded [[(XN2)LaCl(THF)]3(2·O(SiMe3)2)x]···(2·O(SiMe3)2)x (x = 1 or 2) after crystallization from O(SiMe3)2. Compound 2 reacted with two equivalents of LiCH2SiMe3 to form the dialky-ate complex, [Li(THF)]2[(XN2)La(CH2SiMe3)2]·toluene·LiCl (3-tolueneketene·LiCl; x = 3). Both 1 and 3 (x = 4) were structurally characterized, and were evaluated as catalysts for intramolecular hydroamination; while 3 showed poor activity, 1 is highly active for both intramolecular hydroamination and more challenging intermolecular hydroamination. Reactions with unsymmetrical alkynes yielded Markovnikov products, and the activity of 1 surpassed that of the previously reported yttrium analogue in the reaction of diphenylacetylene with 4-tert-butylbenzylamine.

1 Introduction

A variety of rare earth alkyl and amido complexes have demonstrated high activity for alkene and alkyne hydroamination catalysis, typically exceeding that achievable with transition metal catalysts. However, the ease with which hydroamination reactions occur varies greatly as a function of the substrate. In particular, intramolecular hydroamination reactions are much more facile than intermolecular variants, and intramolecular hydroamination reactions are generally more favorable for (a) alkynes vs. alkenes, (b) substrates leading to 5- vs. 6- vs. 7-membered ring formation, (c) 1-aminoalkenes and 1-aminoalkynes di-substituted at the 2-position (Thorpe–Ingold effect; bulkier phenyl substituents are more effective than methyl substituents), and (d) aminoalkenes without additional alkene substitution (e.g. H2NCH2CH2CH2CH2CR=CHR where R = R’ = H).1-3 Intramolecular reactions with unactivated alkynes are particularly challenging, and only a handful of effective catalysts have been reported for these substrates, including rare earth ansa-cyclopentadienyl complexes (a in Fig. 1) developed by Marks et al.6-7 yttrium complexes of both bidentate and tridentate 1,1′-binaphthalene-backbone ligands (b and c in Fig. 1) reported by Hultzsch,4,9 and an yttrium complex of a rigid xanthene-backbone NON-donor pincer ligand (d in Fig. 1) developed recently by the Emslie group.10

For trivalent rare earth catalyzed alkene hydroamination, catalytic activity typically increases in parallel with metal ionic radius. For example, in cyclization reactions with H2C=CHCH2CMe2CH2NH2, the activity of [Cp3Ln(CH(SiMe3)2)], [[Me5Si(C8Me18)2]Ln(CH(SiMe3)2)] (b in Fig. 1) and [[(L)Ln

Fig. 1 Highly active rare earth catalysts for intermolecular hydroamination of unactivated alkenes (Ln = Nd; Ln’ = Y).

† Electronic supplementary information (ESI) available: NMR spectra for new compounds, and NMR and mass spectra for hydroamination reaction products. CCDC 1544724 and 1544725. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7ra04432a

*Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4M1, Canada. E-mail: emslie@mcmaster.ca; Fax: +1-905-522-2509; Tel: +1-905-525-9140 extn 23307

McMaster Analytical X-Ray (MAX) Diffraction Facility, Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4M1, Canada.

† Electronic supplementary information (ESI) available: NMR spectra for new compounds, and NMR and mass spectra for hydroamination reaction products. CCDC 1544724 and 1544725. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7ra04432a
the rigid XN2 pincer ligand to support robust alkyl derivatives of 
\[\text{C}_8\text{H}_4(\text{CH}_2\text{NMe}_2)\text{SiMe}_3\text{C}_14\text{H}_2\text{SiMe}_3\] in benzene at 24 °C. Lu < Y, decomposition products. The \[\text{H}^1\text{NMR spectrum of \[\text{NMe}_2\text{Lu}\{\text{N(SiMe}_3)_2\}\] (Ind = 1-indenyl) increased in the order \(\text{Sc} < \text{Lu} < \text{Y} < \text{Y} < \text{Y}_3\). Similarly, with \(\text{E-PhHC}=\text{CHCH}_2\text{PPh}_2\text{CH}_2\text{NH}_2\) as the substrate, the activity of \([\{(\text{Ind})\text{CH}_2\text{N}(\text{c-C}_6\text{H}_4\text{NMe}_2)\}\text{Ln}\{\text{N(SiMe}_3)_2\}]\) (Ind = 1-indenyl) increased in the order \(\text{Sc} < \text{Lu} < \text{Y} < \text{Y} < \text{Y} < \text{Y}_3\). By contrast, for alkyl hydroamination, this trend is reversed, and higher activity is commonly observed for smaller rare earth elements, and to assess the activity of these lanthanide analogues, we report the synthesis of lutetium and lanthanum XN2 complexes. These complexes were targeted in order to probe the electronic and structural effects of the rare earth metal.

**Results and discussion**

The alkane elimination reaction between \(\text{H}_2\text{XN}_2\) and \([\text{Lu}(\text{CH}_2\text{SiMe}_3)\text{C}(\text{THF})]_3\) yielded \([\text{XN}_2\text{Lu}(\text{CH}_2\text{SiMe}_3)\text{C}(\text{THF})]_3\) (vide supra) in 59% yield, after recrystallization from \(\text{O(SiMe}_3)_2\) (Scheme 1). By contrast, in benzene at 24 °C was unsuccessful, resulting only in unreacted proligand and \([\text{Sc}(\text{CH}_2\text{SiMe}_3)\text{C}(\text{THF})]_3\) thermal decomposition products. The \(\text{H}^1\text{NMR spectrum of I} is largely analogous to that of \([\text{XN}_2\text{Y}(\text{CH}_2\text{SiMe}_3)\text{C}(\text{THF})]_3\), which we previously reported, and \(\text{Sc} < \text{Lu} < \text{Y} < \text{Y} < \text{Y} < \text{Y}_3\) and is indicative of \(\text{C}_5\) symmetry in solution, with two \(\text{Ar} \neq \text{H}, \text{ortho-CHMe}_2\) and \(\text{CMe}_2\) peaks. Compound I was found to be fairly thermally stable, being only 25% decomposed after 24 h at 90 °C.

Crystals of \(1 \cdot \text{C}_8\text{H}_4\text{O}(\text{SiMe}_3)_2\) (lattice solvent is residual benzene from the synthesis) were grown by cooling a concentrated \(\text{O(SiMe}_3)_2\) solution to -30 °C (Fig. 2). In the solid state, the XN2 backbone is slightly bent with a 26° angle away from planarity, based on the orientation of the two xanthene aryl rings. This orientation is mirrored in \([\text{XN}_2\text{Y}(\text{CH}_2\text{SiMe}_3)\text{C}(\text{THF})]_3\), which displayed a backbone angle of 25° and a very similar geometry at the rare earth metal. Lu is 5-coordinate with the three anionic donors and coordinated THF arranged in an approximate tetrahedron around the metal center. The largest angle in this approximate tetrahedron is the \(\{1\} \cdot \text{Lu} \cdot \text{N}(2)\) angle of 130°, and the smallest is the \(\{2\} \cdot \text{Lu} \cdot \text{C}(54)\) angle of 97°, while the other angles are between 102° and 110°. The oxygen donor on the xanthene backbone is coordinated on the 
\(\{1\} \cdot \text{Lu} \cdot \text{N}(2)\) face of the tetrahedron closest to the nitrogen donors. Lutetium lies 0.74 Å out of the plane of the XN2 ligand donor atoms, leading to a 53° angle between the NON and the NLUiN planes. The neutral oxygen donor on the xanthene backbone is located 0.5 Å out of the N(1)/C(4)/C(5)/N(2) plane in order to coordinate with N-Lu-O(1) angles of 69 and 70°. Additionally, the nitrogen donors on the XN2 ligand are bent towards lutetium, illustrated by the C(1)-C(8), C(4)-C(5) and N(1)-N(2) distances of 5.02 Å, 4.57 Å and 4.04 Å respectively, which are comparable with those in \([\text{XN}_2\text{Y}(\text{CH}_2\text{SiMe}_3)\text{C}(\text{THF})]_3\) (4.98 Å, 4.56 Å and 4.06 Å).

The Lu–N distances of 2.221(2) Å and 2.228(2) Å are slightly shorter than those in \([\text{XN}_2\text{Y}(\text{CH}_2\text{SiMe}_3)\text{C}(\text{THF})]_3\) (2.252(3) Å), consistent with the smaller ionic radius of \(\text{Lu}^{III}\) compared to \(\text{Y}^{III}\) (0.861 Å vs. 0.900 Å). Additionally, the Lu–N distances in I fall within the range reported for related compounds such as \([\{(2\cdot \text{ArN} \neq \text{CMe})[6\cdot \text{ArNCMe}_3]_2\text{C}_6\text{H}_4\text{NMe}_2\text{Lu}(\text{CH}_2\text{SiMe}_3)\text{C}(\text{THF})]_3\} (\text{Ar} = \text{C}_6\text{H}_4\text{Pr}_2\text{Pr}_2\cdot \text{2,6}; 2.188(4) \text{ Å}) and \([\{(1,8-(\text{Pz})_2\text{Me})\text{N}_2\text{Lu}(\text{CH}_2\text{SiMe}_3)\text{C}(\text{THF})]_3\} (\text{Pz} = 1-\text{isopropyl)pyrazolyl}; \text{Cz} = 3,6\text{-dimethylcarbazole}; 2.233(3) \text{ Å})

The Lu–C distance of 2.326(2) Å is shorter than that in \([\text{XN}_2\text{Y}(\text{CH}_2\text{SiMe}_3)\text{C}(\text{THF})]_3\) (2.364(3) Å), also in keeping with the relative sizes of ytrrium and lutetium (vide supra). Additionally, this distance falls within the range of Lu–C distances reported in the literature. For example, the Lu–C distances in the aforementioned alkyl complexes range from 2.329(6) Å to 2.374(3) Å,

and \(\text{Lu} \cdot \text{C}(54)\) distance of 2.323(14) Å. The \([\text{XN}_2\text{L}(\text{CH}_2\text{SiMe}_3)\text{C}(\text{THF})]_3\) (\(\text{O(SiMe}_3)_2\)) \(1 \cdot \text{O(SiMe}_3)_2\)) was tested as an ethylene polymerization catalyst at 24 °C and 80 °C (toluene, 1 atm ethylene, 1 h) but exhibited negligible activity. Compound I was also investigated as a catalyst for both intra- and inter-molecular hydroamination and the results are summarized in Tables 1 and 2. Compound I catalyzed intra-molecular hydroamination of a range of substrates in benzene at 24 °C, proceeding to >99% completion in all cases. The time required to reach >99% completion was slightly increased compared to reactions catalyzed by the yttrium complex, \([\text{XN}_2\text{Y}(\text{CH}_2\text{SiMe}_3)\text{C}(\text{THF})]_3\), which is consistent with the majority of previous reports (vide supra), in which hydroamination activity increases with increasing rare earth metal size. This is particularly evident in entries 2 and 4 in Table 1, as \([\text{XN}_2\text{Y}(\text{CH}_2\text{SiMe}_3)\text{C}(\text{THF})]_3\) achieved >99% conversion after 1.5 h and...
whereas 1 required 2.75 h and 48 h respectively. Nevertheless, the ability of 1 and the yttrium analogue to catalyze these more challenging intramolecular hydroamination reactions at room temperature stands these catalysts apart from most others.

Compound 1 also catalyzed intermolecular hydroamination with 4-tert-butylaniline, 4-tert-butylbenzylamine and octylamine in combination with 1-octene and diphenylacetylene, and in all reactions with 1-octene, the Markovnikov product was formed selectively. These reactions were performed in toluene at 110 °C and the degree of conversion was determined by GC-MS (Table 2). Over a 24 h time period, the reaction of 1-octene with octylamine (entry 3) resulted in a turnover frequency ($N_t$) of 0.41 h$^{-1}$, which is greater than that obtained for the reaction with 4-tert-butylbenzylamine (entry 2, 0.35 h$^{-1}$), which in turn is significantly greater than that obtained for the reaction with 4-tert-butylaniline (entry 1, 0.04 h$^{-1}$). These results are consistent with the increased donor ability and reduced steric bulk of the former amines. The same trend was previously observed for $\left(\text{XN}_2\right)_2\text{Y}(\text{CH}_2\text{SiMe}_3)(\text{THF})$, and the ability of 1 to catalyze intermolecular hydroamination of 1-octene (an unactivated alkene) places it in a select group of catalysts with this capability (vide supra). The intermolecular hydroamination activity of 1 closely mirrors that of the yttrium analogue, although for entries 2 and 5 in Table 2, compound 1 afforded lower and higher activities, respectively ($N_t = 0.35$ vs. 0.40 and 0.42 vs. 0.33). The intermolecular reactions with the largest conversions after 24 h at 110 °C (10 mol% catalyst) were those utilizing diphenylacetylene (entries 4–6), as the amounts of unreacted 4-tert-butylaniline, 4-tert-butylbenzylamine and octylamine were below the detection limit of the GC instrument.

In order to further explore the effectiveness of the $\text{XN}_2$ ligand for rare earth coordination, and the impact of metal ionic radius on hydroamination activity, the synthesis of lanthanum $\text{XN}_2$ complexes was undertaken. As the lanthanum trialkyl compound, $[\text{La}(\text{CH}_2\text{SiMe}_3)_3(\text{THF})]_x$ is not readily accessible, the synthesis of lanthanum $\text{XN}_2$ complexes was undertaken. As the lanthanum trialkyl compound, $[\text{La}(\text{CH}_2\text{SiMe}_3)_3(\text{THF})]_x$ is not readily accessible.
Salt metathesis was employed for ligand attachment in the place of alkane elimination. Stirring $\text{H}_2\text{XN}_2$ with excess KH in DME at 24 °C produced the dipotassium salt of the 4,5-bis(2,4,6-triisopropylanilido)-2,7-di-$\text{tert}$-butyl-9,9-dimethylxanthene ligand, $[\text{K}_2(\text{XN}_2)(\text{DME})_x]$, as a beige solid in 80% isolated yield. $[\text{K}_2(\text{XN}_2)(\text{DME})_2]$ was reacted with $[\text{LaCl}_3(\text{THF})_3]$ in THF at 24 °C, and a nearly recrystallization from O(SiMe$_3$)$_2$, $[\text{(XN}_2\text{LaCl(THF)}_2]_0.25\times(2\cdot\text{O(SiMe}_3)_2)_0.25; x = 1 \text{ or } 2$ was obtained in 51% yield as an off-white solid (Scheme 2).

Attempts to synthesize a lanthanum monoalkyl complex were undertaken via reactions of trimethylsilylmethyl lithium and methyl lithium with $[\text{(XN}_2\text{LaCl(THF)}_2]_0.25\times(2\cdot\text{O(SiMe}_3)_2)_0.25; x = 1 \text{ or } 2$. NMR-scale reactions were performed in $\text{d}_8$-THF at 24 °C and both resulted in the formation of a dialkyl-‘ate’ complex, based on the integrations of the respective alkyl peaks, regardless of whether one equivalent (per La) or an excess of the alkali-metal-alkyl reagent was added. The reaction utilizing trimethylsilylmethyl lithium was pursued

<table>
<thead>
<tr>
<th>Entry</th>
<th>Amine</th>
<th>Alkene or alkyne</th>
<th>Product</th>
<th>Temp. (°C)</th>
<th>Time (h)</th>
<th>Product formation$^{b,c}$</th>
<th>% Markovnikov product$^c$</th>
<th>$N_f^{d}$ (h$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>110</td>
<td>11%</td>
<td>97</td>
<td>0.04</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>110</td>
<td>83%</td>
<td>&gt;99</td>
<td>0.35</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>110</td>
<td>98%</td>
<td>&gt;99</td>
<td>0.41</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>110</td>
<td>&gt;99$^e$</td>
<td>N/A</td>
<td>0.42</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>110</td>
<td>&gt;99$^e$</td>
<td>N/A</td>
<td>0.42</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>110</td>
<td>&gt;99$^e$</td>
<td>N/A</td>
<td>0.42</td>
</tr>
</tbody>
</table>

$^a$ Alkene/alkyne present in 20 fold excess relative to the amine. $^b$ Conversion determined by product: unreacted amine ratio. $^c$ Determined by GC-MS. $^d$ Turnover frequency. $^e$ In entry 4 the product is formed as a single isomer, whereas in entries 5 and 6 the products are formed as 1 : 0.35 and 1 : 0.24 mixtures of the E and Z isomers (based on literature assignments for similar compounds).
further, as it provides a direct comparison with the lutetium and yttrium trimethylsilylmethyl complexes of the \( X_2 \) ligand. 

\[
\{[(XN_2)LaCl(THF)]_2 \cdot (O(SiMe_3)_2)_{0.255} \cdot (2 \cdot O(SiMe_3)_2)_{0.255} \cdot x = 1 \text{ or } 2\} \text{ reacted with 2 equivalents of trimethylsilylmethyl lithium in THF at 24 °C, and after removal of the salts by centrifugation in toluene and layering with hexanes at –30 °C, } ![\text{Li(THF)_4}][[(XN_2)La(CH_2SiMe_3)_2] \cdot \text{toluene} \cdot \text{LiCl}](\text{3-toluene-LiCl; } x = 3) \text{ was isolated as a pale yellow solid in 55% yield (Scheme 2). Compound 3 is sparingly soluble in benzene and other non-polar solvents such as hexanes and pentane, so all characterization was carried out in d_6-THF. The } ^1H \text{ NMR spectrum of 3 revealed the expected signals for the } X_2 \text{ ligand backbone and only one set of signals for the two alkyl groups was observed between 25 and –80 °C (a singlet with an integration of 18 for LaCH_2SiMe_3). The neutral oxygen donor of the xanthene backbone is located 0.64 Å out of the plane of the } X_2 \text{ ligand donor atoms, leading to a 50° angle between the NON and NLaN planes. The XN_2 backbone is bent with a 35° angle away from planarity, based on the orientation of the two aryl rings of the xanthene backbone. The neutral oxygen donor of the xanthene backbone is located 0.64 Å out of the N(1)/C(4)/C(5)/N(2) plane in order to coordinate to lanthanum to the extent that they are in 1, illustrated by the C(1)–C(8), C(4)–C(5) and N(1)–N(2) distances in 3 of 4.90 Å, 4.57 Å and 4.21 Å respectively, compared to 5.02 Å, 4.57 Å and 4.04 Å in 1.

The } La-N \text{ distances of 2.462(5) Å and 2.445(5) Å are substantially lengthened relative to those in } [(XN_2)Y(CH_2SiMe_3)(THF)] \text{ and } [(XN_2)Lu(CH_2SiMe_3)(THF)] \text{, consistent with the large ionic radius of lanthanum compared to yttrium and lutetium, combined with increased steric hindrance and an overall negative charge in 3, resulting in a less electrophilic metal centre. For analogous reasons, the } La-C \text{ distances of 2.573(7) Å and 2.613(7) Å are also greatly elongated compared to those in } [(XN_2)Y(CH_2SiMe_3)(THF)] \text{, } [(XN_2)Lu(CH_2SiMe_3)(THF)] \text{, } [(XN_2)La(CH_2SiMe_3)_2] \text{, and } [(XN_2)La(CH_2SiMe_3)(THF)] \text{, such as hexanes and pentane, so all characterization was carried out in d_6-THF. The } ^1H \text{ NMR spectrum of 3 revealed the expected signals for the } X_2 \text{ ligand backbone and only one set of signals for the two alkyl groups was observed between 25 and –80 °C (a singlet with an integration of 18 for LaCH_2SiMe_3). The neutral oxygen donor of the xanthene backbone is located 0.64 Å out of the plane of the } X_2 \text{ ligand donor atoms, leading to a 50° angle between the NON and NLaN planes. The XN_2 backbone is bent with a 35° angle away from planarity, based on the orientation of the two aryl rings of the xanthene backbone. The neutral oxygen donor of the xanthene backbone is located 0.64 Å out of the N(1)/C(4)/C(5)/N(2) plane in order to coordinate to lanthanum to the extent that they are in 1, illustrated by the C(1)–C(8), C(4)–C(5) and N(1)–N(2) distances in 3 of 4.90 Å, 4.57 Å and 4.21 Å respectively, compared to 5.02 Å, 4.57 Å and 4.04 Å in 1.

Fig. 3 Two views of the X-ray crystal structure for 3-THF (x = 4). Ellipsoids are set to 50%. Hydrogen atoms and lattice solvent are omitted. The tert-butyl groups are rotationally disordered over two positions, and only one is shown for clarity. In view A the [Li(THF)_4]^+ cation is omitted for clarity. In view B the 2,4,6-trisopropylphenyl groups and the THF molecules are depicted in wire-frame format. Selected bond lengths [Å] and angles [°]: La–N(1) 2.462(5), La–N(2) 2.445(5), La–C(54) 2.573(7), La–C(58) 2.613(7), La–O(1) 2.643(4), N(1)–La–N(2) 118.22(17), N(1)–La–C(54) 108.9(2), N(1)–La–C(58) 100.9(2), N(2)–La–C(54) 106.3(2), N(2)–La–C(58) 120.7(2), O(1)–La–C(54) 97.63(18), O(1)–La–C(58) 159.7(2), C(54)–La–C(58) 100.0(2), N(1)–La–O(1) 63.59(15), N(2)–La–O(1) 62.72(15).
conversion. Complex 3-toluene-LiCl, \(x = 3\) was tested as a catalyst for intramolecular hydroamination with 1-amino-2,2-diphenyl-4-pentene in \(d_8\)-THF at 24 °C. However, the time required to reach >99% completion (45 h) was significantly increased compared to that required for \([\text{XN}_2]_2\text{CH}_2\text{SiMe}_3\) (THF) and \([\text{XN}_2]\text{Lu(CH}_2\text{SiMe}_3)_2\text{ }(\text{THF})\) \(1\text{.0 M of} \text{SiMe}_3\text{CH}_2\text{Li}\) in pentane, MeLi was obtained by removal of the solvent in vacuo, and solid KH was obtained by filtration and washing with hexanes. \[\text{LuCl}_3(\text{THF})_2\] and \[\text{LaCl}_2(\text{THF})_3\] were obtained by refluxing the anhydrous lutetium/lanthanum trihalide in THF for 24 h followed by removal of the solvent in vacuo. 

4 tert-Butyl-aniline, 4-tert-butylenzylamine, n-ocetylamine and 1-ocetene were purchased from Sigma-Aldrich, dried over molecular sieves and distilled prior to use. Argon (99.999% purity) and ethylene (99.999% purity) were purchased from Praxair.

Combustion elemental analyses were performed both at McMaster University on a Thermo EA1112 CHNS/O analyzer and by Midwest Microlab, LLC, Indianapolis, IN, USA. NMR spectroscopy \(\left\{^1\text{H}, \frac{13\text{C}}{1\text{H}}, \text{DEPT-Q, COSY, HSQC, HMBC}\right\}\) was performed on Bruker DRX-500 and AV-600 spectrometers. All \(^1\text{H}\) NMR and \(^{13}\text{C}\) NMR spectra were referenced relative to SiMe\(_4\) through a resonance of the employed deuterated solvent or proteo impurity of the solvent; \(\text{C}_6\text{D}_6\) (7.16 ppm), \(\text{d}_8\)-Tol (20.43, 125.13, 127.96, 128.87, 137.48 ppm), \(d_8\text{-THF}\) (25.31, 67.21 ppm) for \(^{13}\text{C}\) NMR. Herein, numbered proton and carbon atoms refer to the positions of the xanthene backbone, as shown in Scheme 1. Inequivalent ortho isopropyl protons are labeled A and B, while inequivalent aryl ring protons and inequivalent methyl protons are labeled ‘a’ and ‘b’, so that the corresponding carbon resonances can be identified.

X-ray crystallographic analyses were performed on suitable crystals coated in Paratone oil and mounted on a SMART APEX II diffractometer with a 3 kw sealed tube Mo generator in the McMaster Analytical X-ray (MAX) Diffraction Facility. In all cases, non-hydrogen atoms were refined anisotropically and hydrogen atoms were generated in ideal positions and then updated with each cycle of refinement. GC-MS analyses were performed using an Agilent 6890N gas chromatograph (Santa Clara, CA, USA), equipped with a DB-17ht column (30 m x 0.25 mm i.d. \(\times 0.15 \mu\)m film, J & W Scientific) and a retention gap ( deactivated fused silica, 5 m x 0.53 mm i.d.), and coupled to an Agilent 5973 MSD single-quadrupole mass spectrometer. One microliter of sample was injected using Agilent 7683 autosampler in splitless mode. The injector temperature was 230 °C and carrier gas (helium) flow was 0.7 mL min\(^{-1}\). The transfer line was 250 °C and the MS source temperature was 230 °C. The column temperature started at 50 °C and was raised to 300 °C at 8 °C min\(^{-1}\). It was then held at 300 °C for 15 min to give a total run time of 46.25 min. Full scan mass spectra between m/z 50 and 800 were acquired after a five minute solvent delay.

\[\text{Lu}(\text{CH}_2\text{SiMe}_3)_2(\text{THF})_2\left(\text{XN}_2\right)_2\text{H}_2\text{XN}_2\] (0.10 g, 0.132 mmol) was dissolved in 2 mL of benzene and added to \[\text{Lu}(\text{CH}_2\text{SiMe}_3)_2(\text{THF})_2\] (0.084 g, 0.145 mmol) which was then stirred at 24 °C in the glove box for 4 weeks. The solvent was removed in vacuo and the yellow solid was recrystallized from O(SiMe\(_3\))\(_2\) at \(-30^\circ\text{C}\) yielding 1-O(SiMe\(_3\))\(_2\)_1.5 as a light yellow powder (0.096 g, 55%). 

\(^{1}\text{H}\) NMR (\(\text{C}_6\text{D}_6\), 600 MHz); \(\delta\) 7.25 (8, 2H, Ar-\(H^2\)), 7.14 (8, 2H, Ar-\(H^2\)), 6.77 (br s, 2H, Xanth-
CH₄), 6.23 (br s, 2H, Xanth-CH₃), 4.24 (sept, 2H, 3J_H,H, 6.73 Hz, A-ortho-CHMe₃), 3.38 (sept, 2H, 3J_H,H, 6.78 Hz, B-ortho-CHMe₃), 2.83 (sept, 2H, 3J_H,H, 6.74 Hz, para-CHMe₃), 2.73 (s, 4H, 1 equiv. THF-C₅H₃), 1.88 (s, 3H, CMe₃), 1.72 (s, 3H, CMe₃), 1.49 (d, 6H, 3J_H,H, 6.73 Hz, A-ortho-CHMe₃), 1.47 (d, 6H, 3J_H,H, 6.73 Hz, A-ortho-CHMe₃), 1.26 (s, 18H, CMe₃), 1.24 (d, 6H, 3J_H,H, 6.78 Hz, B-ortho-CHMe₃), 1.21 (m, 12H, para-CHMe₃), 1.01 (d, 6H, 3J_H,H, 6.78 Hz, B-ortho-CHMe₃), 0.83 (s, 4H, 1 equiv. THF-C₅H₃), 0.35 (s, 9H, LuCl₂SiMe₃). ¹³C NMR (CD₂Cl₂, 126 MHz): δ 147.83 (Xanth-C), 147.72 (Xanth-C), 147.38 (A-ortho-CHMe₃), 146.17 (B-ortho-CHMe₃), 143.33 (para-CHMe₃), 141.82 (Ar-Cipso), 141.30 (Xanth-C), 130.56 (Xanth-C), 122.20 (Ar-CH), 121.85 (Ar-CH), 109.35 (Xanth-C), 106.47 (Xanth-C), 70.85 (THF-C₅H₃), 37.99 (LuCl₂SiMe₃), 35.57 (Xanth-C₂Me₃), 35.25 (CMe₃), 35.05 (CMe₃), 34.50 (para-CHMe₃), 31.91 (CMe₃), 28.39 (B-ortho-CHMe₃), 27.67 (A-ortho-CHMe₃), 27.12 (A-ortho-CHMe₃), 25.85 (B-ortho-CHMe₃), 25.48 (B-ortho-CHMe₃), 25.04 (CMe₃), 24.85 (THF-C₅H₃), 24.62 (A-ortho-CHMe₃), 24.51 (para-CHMe₃), 4.13 (LuCl₂SiMe₃). Anal. calcd for [K₂(XN₂)(DME)]₂: C₈₀H₁₂₈N₂O₄Si₂LaLi₂Cl: C, 67.36; H, 8.63; N, 2.68%. Found: C, 66.89; H, 8.83; N, 2.60%. [Li(THF)]₂[(XN₂)La(CH₂SiMe₃)]₂ (3-tolueno-LiCl). [XN₂]⁻LaCl[THF]⁺[(XN₂)La(CH₂SiMe₃)]₂ was dissolved in 4 mL of THF and added to LiCH₂SiMe₂ (0.015 g, 0.165 mmol), which was stirred at 24 °C for 5 days. The solvent was removed in vacuo and the yellow solid was dissolved in toluene (1 mL), centrifuged and the mother liquor was layered with hexanes and stored at −30 °C. Very small pale yellow crystals of [Li(THF)]₂[(XN₂)La(CH₂SiMe₃)]₂-tolueno-LiCl were obtained (0.064 g, 55%). X-ray quality crystals of [Li(THF)]₂[(XN₂)La(CH₂SiMe₃)]₂·THF were grown from a concentrated THF solution of 3, layered with pentane and cooled to −30 °C. ¹H NMR (d₅-THF, 266 MHz): δ 7.00 (s, 4H, Ar-H), 6.28 (2H, 3J_H,H, 2.16 Hz, Xanth-C), 5.62 (2H, 3J_H,H, 2.18 Hz, Xanth-C), 3.55 (sept, 4H, 3J_H,H, 6.84 Hz, ortho-CHMe₃), 2.86 (sept, 2H, 3J_H,H, 6.93 Hz, para-CHMe₃), 1.61 (s, 6H, CMe₃), 1.25 (d, 12H, 3J_H,H, 6.9 Hz, para-CHMe₃), 1.24 (d, 12H, 3J_H,H, 6.8 Hz, A-ortho-CHMe₃), 1.10 (s, 18H, CMe₃), 1.00 (d, 12H, 3J_H,H, 6.8 Hz, B-ortho-CHMe₃) −0.39 (s, 18H, LaCl₂SiMe₃) −1.17 (br. s, 4H, 4LaH₂SiMe₃). ¹³C NMR (d₅-THF, 126 MHz): δ 149.03 (Xanth-C), 146.12 (ortho-CHMe₃), 145.20 (Xanth-C), 143.09 (para-CHMe₃), 142.71 (Ar-Cipso), 142.38 (Xanth-C), 129.52 (Xanth-C), 121.70 (Ar-CH), 107.97 (Xanth-C), 102.90 (Xanth-C), 48.35 (LaCl₂SiMe₃), 35.30 (CMe₃), 35.07 (para-CHMe₃), 34.93 (Xanth-C), 32.04 (CMe₃), 30.56 (CMe₃), 28.21 (ortho-CHMe₃), 26.39 (B-ortho-CHMe₃), 25.58 (A-ortho-CHMe₃), 24.71 (para-CHMe₃), 4.51 (LaCl₂SiMe₃). Anal. calcd for [Li(THF)]₂[(XN₂)La(CH₂SiMe₃)]₂-tolueno-LiCl: C₃₉H₈₈N₂O₄Si₂LaLiCl: C, 67.36; H, 9.04; N, 2.24%. Found: C, 66.98; H, 8.63; N, 2.53%. General procedure for intramolecular hydroamination

In the glove box, the appropriate amounts of 1 or 3 and the hydroamination substrate were weighed into separate vials, dissolved in CuD₈ or d₅-THF and placed in a teflon-valved J-young NMR tube. The reactions were monitored at 24 °C by ¹H NMR spectroscopy and the expected products were confirmed by their agreement to reported literature spectra.⁴²

General procedure for intermolecular hydroamination

In the glove box, the appropriate amounts of 1, amine, and the alkene/alkyne were weighed into separate vials, dissolved in d₅-
toluene, placed in a Teflon-valved J-young NMR tube and then placed into a preheated oil bath at 110 °C. After heating for the designated amount of time, NMR spectra were obtained and the sample was submitted for analysis by GC-MS.

Acknowledgements

D. J. H. E. thanks NSERC of Canada for a Discovery Grant and an NSERC Strategic Grant in collaboration with NOVA Chemicals. K. S. A. M. thanks the Government of Ontario for an OGS – Queen Elizabeth II Graduate Scholarship in Science and Technology (QEII GSST) scholarship. The authors would like to thank Dr Kirk Green and Dr Fan Fei from the McMaster Regional Centre of Mass Spectrometry (MRCMS) for acquisition and analysis of all the mass spectra.

References

5 A. A. Trifonov, I. V. Basalov and A. A. Kissel, Dalton Trans., 2016, 45, 19172.
7 Y. Li and T. J. Marks, Organometallics, 1996, 15, 3770.
19 For other recent examples of Lu and La hydroamination catalysts see 20–29.