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Lightweight, interconnected VO, nanoflowers
hydrothermally grown on 3D graphene networks
for wide-voltage-window supercapacitorsy
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Highly stable and interconnected VO, nanoflowers were uniformly grown on flexible three dimensional
graphene networks, which directly served as a lightweight and high conductivity supercapacitor
electrode (VO, NF@3DG). The uniform VO, NF@3DG hybrid provided direct and stable pathways for
rapid electron and ion transport. The hybrid produced an improved areal specific capacitance of 466 mF
cm™2 and 2832 mF cm™2 for the three- and the two-electrode configurations, respectively. A
capacitance retention of 63.5% after 3000 cycles showed that the VO, NF@3DG hybrid had a stable
cycling performance at a high specific capacitance. A high energy density of 279.6 mW h m~2 and a high
power density of 60 000 mW m~2 were achieved in symmetrical supercapacitors. The effective strategy

could be applied to improve the performance of supercapacitors with high efficiency, wide potential

rsc.li/rsc-advances windows and long life.

1. Introduction

Energy storage technologies have attracted global attention
emanating from the ever-growing demands for renewable
energy and the environmental crisis. Supercapacitors, as an
essential energy storage device, have been studied because of
their high-power density, long cycle life and fast charge/
discharge rate.'® Typically, supercapacitors can be classified
as electric double-layer capacitors (EDLCs) and pseudocapaci-
tors.*® Pseudocapacitors with metal oxide or conducting poly-
mer electrodes offer a better capacitive behavior, and store
energy by employing a fastreversible redox reaction at the
interfaces between the electrodes and electroactive species in
the electrolyte.” In general, the most important factor is the
electrode materials, which influence the capacitive behavior of
supercapacitors. Various transition-metal oxides have been
studied as electrode materials for pseudocapacitors, such as
MoOj3," MnO,," Fe,03,"” VO,," and C0;0,.**

Among various oxides, vanadium oxides has been suggested
as one of the most promising pseudocapacitance electrode
materials due to its high energy density, low cost, and wide
potential windows, arising from vanadium multivalent states
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(V**, v**, v** and v°").’1¢ Based on the basic principle of energy
storage, the nanostructures of vanadium oxides become an
inevitable way to improve the performance of supercapacitors.
The various nanostructures of vanadium oxides for super-
capacitors had been realized, such as nanobelts,"” nanoflakes,"®
nanowires,' nanotextiles.>* However, vanadium oxides did not
usually deliver ideal specific capacitance behavior because of its
low electrical conductivity and the poor structural stability.**
Therefore, a strategy has been employed to be a hybrid by
introducing excellent conductive materials with high structure
stability into vanadium oxides, such as graphene. Graphene has
a unique superior electrical conductivity, large specific surface
area, high mechanical flexibility and chemical stability.>?

In this work, three dimensional graphene (3DG) networks
grown by chemical vapor deposition (CVD) acted as a current
collector, VO, nanoflowers were hydrothermally anchored on
3DG networks (VO, NF@3DG) using dodecylamine as
a reducing agent. As a binder-free, conductive-agent-free and
self-supported supercapacitor electrode, the VO, NF@3DG
hybrid had been investigated the electrochemical performances
in detail. The results showed that the VO, NF@3DG electrode
possessed high areal specific capacity (466 mF cm™?),
outstanding cycling stability (the retention of 63.5% after 3000
cycles) and high energy densities (279.6 mW h m™2).

2. Experimental section

A schematic diagram of preparation process for the VO,
NF@3DG hybrid electrode was illustrated in Fig. 1. Above all,
3DG was synthesized by CVD technique, which had been

This journal is © The Royal Society of Chemistry 2017
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described in our previous reports.>>* In brief, Ni foam slice (110
pores per inch, ~380 g m~? and ~1.5 mm thick, pressed to ~0.5
mm) was heated up to 1000 °C in a tube furnace under H,/Ar
ambience. Ethanol was introduced by flowing H,/Ar (20 sccm/
100 sccm) gas to the furnace under atmospheric pressure.
After 20 min reaction, the quartz tube was quickly cooled down
to room temperature, 3DG grown on Ni foam slice was ob-
tained. Afterwards, the samples were eliminated by 3 M HCI
aqueous solution for 6 h at 60 °C to gain lightweight free-
supported 3DG networks.

VO, nanoflowers were synthesized on 3DG networks by
a simple hydrothermal method. Initially, 0.5 g of V,05 was
dissolved in 25 ml deionized water followed by slow addition of
25 ml hydrogen peroxide (30%) solution with strongly string for
3 h at 0 °C. The resultant solution (V,05-nH,0) was obtained
after standing at ambient temperature for 12 hours. In this
process, the chemical reactions was as follows:

VzOs + HzOz i 2HVO4 + HQO (1)
HVO4 + (I’l — l)Hzo i V205'I1H20 + 02 (2)

Then, 0.255 g of dodecylamine was dissolved in 2 ml ethanol
with strongly string for 1 h and added drop wise to the above-
prepared solution. The resultant solution was stirred for 24
hours at 0 °C, and then transferred into a 50 ml Teflon-liner
autoclave within a piece of 3DG networks. The reaction was
completed at 180 °C for different time (12, 24, 36, 48 h). Finally,
the samples were washed with deionized water for several
times, dried at 60 °C for 8 h. The lightweight VO, NF@3DG
hybrid were obtained.

The morphology of the samples was characterized by field
emission scanning electron microscopy (FE-SEM, TESCAN
MIRA3 XMU). The microstructure was characterized using high
resolution transmission electron microscopy (HRTEM, FEI
Tecnai F30, operated at 300 kV). The crystal structures were
examined by X-ray diffraction (XRD, Philips, X'pert pro, Cu Ka,
0.154056 nm) and Raman spectroscopy (JY-HR800 micro-
Raman, using a 532 nm wavelength YAG laser with a laser
spot diameter of ~600 nm). The mass of active materials was

I Ni Foam
[ 3DG Networks
B VO, Nanoflowers

Fig. 1 The schematic diagram of preparation process for VO,
NF@3DG hybrid.
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measured by a microbalance (Mettler Toledo, XSE) with an
accuracy of 0.01 mg. The loaded quantity was obtained by the
mass difference of the samples between the before and the after
hydrothermal reaction. The mass of VO, nanoflowers on 3D
graphene was around 0.91 mg cm ™2 3DG has the mass density
of ~8.22 mg cm ™2, Electrochemical measurements (CHI 660E)
were accomplished in three-electrode and two-electrode
configurations at room temperature in a 0.5 M K,SO, aqueous
electrolyte. A platinum sheet was used as counter electrode, and
a saturated calomel electrode (SCE) was used as reference
electrode. The VO, NF@3DG hybrid was directly utilized as the
working electrode. The nominal area of the VO, NF@3DG
hybrid immersed into the electrolyte was controlled to be
around 1 cm x 1 cm. Electrochemical impedance spectroscopy
(EIS) was applied with 5 mV AC perturbation amplitude in the
frequency range from 1 MHz to 0.01 Hz. The areal-specific
capacitance (C,, mF cm™?) of the three-electrode configuration
was calculated by the following equation.

1t
"= Sav G)

where, I is the charge-discharge current (A), ¢ is the discharge
time (s), S is the electrode area and AV is the potential (V).

3. Results and discussion

Fig. 1 shows the schematic diagram of preparation for VO,
NF@3DG hybrid, which demonstrates the two procedures,
including the growth of lightweight self-supported 3DG
networks by combining CVD and HCI corrosion, and the
anchoring of VO, nanoflowers by hydrothermal process. Fig. 2
shows the typical SEM and TEM images of VO, nanoflowers,
which are interconnected and distributed on 3DG networks. (1)
The nanoflowers were made of small VO, nanobelts. Fig. S1}
shows the SEM images of VO, nanoflowers grown at different
hydrothermal time. More details can be seen in the high-
resolution TEM image in Fig. 2d. The lattice fringe with
a spacing distance of 0.186 nm was indexed to the (312) crystal
planes of VO, phase (JCPDS card no. 31-1438). Fig. 2e shows the
crystal phase and structure information of the VO, NF@3DG
hybrid, VO, NF and 3DG. The XRD peaks of VO, NF were all
indexed to VO, phase (JCPDS card no. 31-1438). A sharp
diffraction peak located at 49.496° was clearly visible and
assigned to VO, (312) reflections, which was consistent with the
HRTEM result. Therefore, VO, NF@3DG hybrid has been
prepared successfully. The micro-zone Raman spectra of VO,
NF@3DG hybrid, VO, NF and 3DG have been shown in Fig. 2f.
The Raman spectrum of VO, NF displayed the bending vibra-
tions of V=0, the triply coordinated oxygen of V;-O, the doubly
coordinated oxygen of V,-O and terminal V=0 bond, which
were identified to the Raman-shift peaks of 183, 265, 527, 693
and 923 cm ™ '.**** The Raman spectrum of 3DG networks shows
a G peak at 1580 cm ™" and a 2D peak at 2716 cm ™ *. The G peak
originated from the vibration of carbon atoms in the hexagonal
graphene lattice, and the 2D peak corresponded to the second
order of zone-boundary phonons. The lack of D peak for gra-
phene suggested few defects and the high quality 3DG
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Fig. 2
NF and 3DG.

networks, which could shorten transport paths for ions and
electrons, amplify the contact area with electrolyte, and then
elevate the utilization of VO, pseudo-capacitance materials.”**”

A typical XPS spectrum for the VO, NF@3DG hybrid (Fig. 3a)
indicates the existence of C, O and V elements. The high-
resolution XPS spectrum for C can be deconvoluted into three
peaks (Fig. 3b), where the peaks at 284.8, 286 and 288.5 eV
correspond to the reported binding energy for C-O (sp’-
hybridized carbon), C-O and C=0.?**° The corresponding O1s
spectrum is shown in Fig. 3b. The O1s spectrum is broad and
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(a, b) SEM and (c, d) TEM images of VO, NF@3DG hybrid. (e) XRD pattern and (f) micro-zone Raman spectrum of VO, NF@3DG hybrid, VO,

asymmetric, which can be deconvoluted into three peaks,
indicating the existence of three different oxygen species. The
peaks located at the binding energy of 530, 531 eV are attributed
to the V-0 linkage of VO, and V,0s, while the peaks at 532.2 is
due to OH™.***' The V2p;/, spectrum can be deconvoluted into
two peaks (Fig. 3d), where the peaks at 516.3 and 517.2 eV
correspond to the reported binding energy of V2p;, for v** and
V**, respectively.®> The V2p,,, peak is located at 524.1 eV. The
existence of V>* might result from the surface oxidation of the
samples in air. The same phenomenon had also been reported
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Fig. 3 XPS spectra of VO, NF@3DG hybrid. (a) Survey spectrum. High-resolution XPS spectra of (b) C, (c) O and (d) V element.
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by other groups.**** These results further proved that the
nanostructures of VO, had been successfully grown on the
surface of graphene.

Electrochemical measurements were carried out to verify the
potential application of VO, NF@3DG electrode materials.
Fig. 4a shows typical cyclic voltammetry (CV) curves of VO,
NF@3DG hybrids prepared at different hydrothermal time (12,
24, 36, and 48 h). It can be clearly seen that the CV curves, at the
scan rate of 5 mV s~ !, exhibit an approximate rectangular shape
with small redox peaks. Fig. S21 shows the CV curves of VO,
NF@3DG hybrids and 3DG electrodes. These indicated the
faradaic pseudocapacitance behaviors of the hybrid electrodes,
which were caused by the electrochemical K* insertion proce-
dure as follows:****

VO, + xK* + xe~ < 4K, VO, (4)
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(@) CV and (b) GCD curves of VO, NF@3DG hybrid electrodes prepared at different hydrothermal time (12, 24, 36 and 48 h).

In terms of the area of CV curves, related to the capacitance
value, the VO, NF@3DG synthesized for 24 h had the larger,
which represented the more excellent capacitance behavior.
Fig. 4b showed galvanostatic charge-discharge (GCD) curves of
VO, NF@3DG electrodes synthesized at different hydrothermal
time with a current density of 3 mA cm™>. The areal specific
capacitances of VO, NF@3DG hybrid electrodes at different
hydrothermal time (12, 24, 36, and 48 h) were 11.3, 466.5, 277.5,
192.5 mF cm ™ ? respectively. All the results indicated that the
VO, NF@3DG hybrid with hydrothermal 24 h had the most
excellent electrochemical performance. So the VO, NF@3DG
hybrid grown for 24 h was further investigated in the following.

Fig. 5a showed the CV curves of VO, NF@3DG hybrid
prepared for 24 h at different sweep rates. The capacitive
current was enhanced with the increased scan rate, indicating
an excellent electrochemical reversibility and the fast diffusion
of the electrolyte ions into the VO, NF@3DG hybrid electrode.
The GCD was carried out at different current densities (Fig. 5b).
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Fig. 5

(@) CV and (b) GCD curves of VO, NF@3DG hybrid electrode, (c) the areal specific capacitance of VO, NF@3DG as a function of current

density. (d) Electrochemical cycling performance, and (e) the charge—discharge curves during electrochemical cycling process of VO, NF@3DG
hybrid. (f) Nyquist plot and equivalent circuit diagram (the inset) of VO, NF@3DG hybrid.
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The calculated areal capacitance Ca of VO, NF@3DG hybrid was
466 mFcm ™2 (507 Fg™'),278 mFem ™2 (302 Fg™ ), 240 mF cm >
(261 F g™ "), 191 mF cm > (208 F ¢ ') at 3, 5, 8, 10 mA cm 2,
respectively (Fig. 5c¢). The ~41% Ca was remained with the
increasing current density from 3 to 10 mA ecm 2. The rate
performance was better than the reported results. Nie et al.
obtained 27.3% rate capability of VO,@PANi coaxial nanobelts
(from 0.5 A g~ ' to 5.0 A g~ 1),*® Zheng et al. fabricated V,0;@C
core-shell composites and get 32.3% rate performance (0.1 A
g ' to 10 A g ").* Li et al. obtained the rate of 39% for rGO
coated V,05 microspheres (from 1 A g ' to 20 A g ') as the
supercapacitor electrodes.*®

Electrochemical cycle of VO, NF@3DG hybrid electrode was
further carried out, which was shown in Fig. 5e, with the
increase of cycles, the areal-specific capacitance remained
63.5% after 3000 cycles, compared to the initial Ca (466 mF
cm ?), which reflected a good cycling performance of VO,
NF@3DG hybrid electrode. The increase of the Ca at first 500
cycles could be due to the improved wettability and activation
process of the electrodes. In Table 1, our results are compared
with other results on the electrochemical performances of
supercapacitor electrodes.">***** It can be clearly seen that the
capacitance and cycle stability of the VO, NF@3DG hybrid
electrode are comparable or better than those in other works.
What's more, as seen from the EIS curve (Fig. 5f), the intersec-
tion of the curve at the real axis indicates the resistance of the
electrochemical system at the high frequency, and the semi-
circle diameter reflects the charge-transfer resistance (R.).*"*>
Through calculating, the equivalent series resistance (R;) was
a low value of 2.918 Q, and the R, value was 0.468 Q. In the low
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frequency range, the slope of the curve approaching 90°
suggests negligible diffusive resistance for the VO, NF@3DG
hybrid. Therefore, these results confirms that the VO, NF@3DG
hybrid as the supercapacitor electrode has excellent electro-
chemical performances.

To check the practical electrochemical behaviors of the VO,
NF@3DG hybrid in devices, a symmetrical supercapacitor was
assembled by using two pieces of VO, NF@3DG hybrids. Fig. 6a
shows typical CV curves of two-electrode configuration at
various scan rates for potentials between —0.6 and 0.6 V. The
obtained CV curves exhibit rectangular-like shapes without
obvious redox peaks, indicating an ideal capacitive behavior.
The GCD measurements at different current densities were
measured and shown in Fig. 6b. Herein, the areal-specific
capacitance (C,s, mF ¢cm™?), energy density (E), and power
density (P) of the two-electrode configuration were calculated
according to the eqn (5)—(7), respectively.***

It
I (5)

1 2
E= ECaS(A V) (6)
p=" )

The supercapacitor device exhibited an areal specific capac-
itance of 70.8 mF cm ™2 at 0.5 mA cm 2. The calculated results
are shown in the Ragone plots (Fig. 6¢). It is found that the
symmetrical supercapacitors exhibits a high energy density of

Table 1 The electrochemical performance comparison of our results with other works

Material Electrolyte Current density Specific capacitance Stability (cycle) Ref.
V,40, yolk-shell microspheres 1.5 M KOH 0.5Ag" 392Fg! 75% (2000) 37
VO,@PANI nanobelts 0.5 M Na,SO, 05Ag" 246 Fg " 28.6% (1000) 25
Graphene/VO, nanobelts 0.5 M K,SO, 1Ag! 426Fg ! 82% (5000) 13
Graphene/VO, particles 0.5 M K,S0, 025A¢g" 225F g " 81% (1000) 38
Graphene/VO, nanotubes 1 M Na,SO, 1Ag! 210 F g ! 48% (5000) 39
V,05 3D nanosheets 1 M Na,SO, 0.5Ag" 451 Fg ! 90% (4000) 40
V,0s5 microspheres/rGO 8 M LiCl 1Ag! 537 Fg ! 84% (1000) 36
VO, nanoflowers@3DG 0.5 M K,SO, ~33Ag" 507 Fg ' 63.5% (3000) Our work
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Fig. 6
hybrids.
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(a) CV curves, (b) GCD curves and (c) Ragone plot of the symmetrical supercapacitor device assembled by two pieces of VO, NF@3DG
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279.6 mW h m ™2 at a power density of 6000 mW m™ > and a high
power density of 60 000 mW m > at a energy density of 102
mW h m 2 Therefore, the measurement results in two-
electrode configuration have proved the possibility of the
practical application for the VO, NF@3DG hybrid as the
supercapacitor electrode.

4. Conclusions

In this work, the lightweight, flexible and interconnected VO,
nanoflowers was successfully grown on 3DG networks with high
specific surface area and high conductivity, directly served as
supercapacitor electrodes. The large specific capacitance (466
mF cm?), long cycling stability (63.5% after 3000 cycles), high
energy density (279.6 mW h m™?) and high power density
(60 000 mW m™?) were achieved in the VO, NF@3DG hybrid
electrodes. This study provides an effective strategy to improve
the performance of electrode materials for supercapacitors with
a wide potential windows and long life, which makes them
promising candidates for future energy-storage applications.
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