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An amphipathic trans-acting phosphorothioate
RNA element delivers an uncharged
phosphorodiamidate morpholino sequence in mdx
mouse myotubes
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An efficient method for the delivery of uncharged polyA-tailed phosphorodiamidate morpholino sequences
(PMO) in mammalian cells consists of employing a synthetic 8-mer amphipathic trans-acting poly-2'-O-
methyluridylic thiophosphate triester element (2’-OMeUtaPS) as a transfection reagent. Unlike the
dTtaPS DNA-based element, this RNA element is potent at delivering polyA-tailed PMO sequences to
Hela pLuc 705 cells or to myotube muscle cells. However, much like dTtaPS, the 2’-OMeUtaPS-
mediated internalization of PMO sequences occurs through an energy-dependent mechanism;

macropinocytosis appears to be the predominant endocytic pathway used for cellular uptake. The
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DOI: 10.1039/c7ra04247g muscle cells of the mdx mouse model of muscular dystrophy with an efficiency comparable to that of

rsc.li/rsc-advances commercial cationic lipid reagents but without detrimental cytotoxicity.

Introduction

Human genes undergo alternative splicing events, which are
activated by a complex and highly regulated machinery
requiring the sequence-specific binding of multiple proteins to
nuclear pre-mRNAs."* Alternative splicing events are crucial to
the treatment of Duchenne muscular dystrophy (DMD), which
is the most common form of muscular dystrophy. This disease
leads to progressive deterioration of muscle function and is
caused mainly by a frameshift deletion, non-sense or duplica-
tion mutations in the DMD gene encoding the protein dystro-
phin.*® Thus, skipping an exon that contains a nonsense
coding mutation or an out-of-frame genomic deletion, would
allow the production of a functional dystrophin protein upon
deletion of the non-sense coding mutation(s) or restoration of
the correct mRNA reading frame.”®
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Steric interference imparted by RNase H-incompetent
oligonucleotide analogues, complementary to specific pre-
mRNA splice sites, has been shown to be efficient at redirect-
ing exon splicing during assembly of mature mRNAs."?
Specifically, uncharged peptide nucleic acids (PNA), phos-
phorodiamidate morpholino (PMO) sequences and negatively
charged 2’-O-methyl and 2’-O-methoxyethyl RNA phosphor-
othioates, locked nucleic acid (LNA), and tricyclo-DNA
sequences have been found effective in exon skipping experi-
ments."” Out of these modified nucleic acid sequences, the 2'-
O-methyl RNA phosphorothioate and PMO sequences have
been extensively investigated in exon-skipping therapies for
DMD; low levels of dystrophin production were reported in two
independent clinical trials.” Of particular relevance, the use of
PMOs leading to the excision of exon 23 from dystrophin
mRNA, produced superior results in the mdx mouse model of
muscular dystrophy, when compared to treatment with 2'-O-
methyl RNA phosphorothioate sequences.® Although PMO
sequences exhibit superior stability and safety relative to other
nucleic acid sequences, the cellular internalization of PMOs is
notoriously poor. The conjugation of cationic cell-penetrating
peptides (CPP) or a tetraguanidinium-linked nonpeptidic
transporter to PMOs led to improved cellular uptake of these
sequences; CPP conjugates resulted in pre-mRNA splicing
correction activities in mammalian cells and animal models.*
However, the positively charged CPP-PMO conjugates
produced undesirable toxicity."* A less laborious and more
efficient approach to the delivery of PMO sequences is
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necessary to prompt an alternate splicing of exon 23 from
dystrophin mRNA transcripts in mammalian muscle cells and/
or mdx mice. In this context, we have recently reported the use
of a chemically synthesized amphipathic trans-acting poly-
thymidylic thiophosphate triester DNA element (dTtaPS) for
the delivery of polyA-tailed PNA or PMO sequences in several
mammalian cell lines."** The recognition of the polyA-tailed
PNA or PMO sequences by dTtaPS was found to be specific,
necessary and sufficient for internalization of PNA and PMO
sequences in HeLa pLuc 705 cells; restoration of luciferase
activity in this cell line confirmed the correct splicing of
luciferase pre-mRNA transcripts. The dTtaPS-mediated
cellular internalization of PNA sequences was ~10-fold
greater than that of PMO sequences.'” Such a discrepancy in
cellular internalization was tentatively rationalized on the
basis of a presumably greater affinity of dTtaPS for polyA-tailed
PNA than for polyA-tailed PMO sequences. Thus, the devel-
opment of a trans-acting nucleic acid element that would
exhibit a higher affinity for polyA-tailed PMO sequences
became a matter of urgency. Given that PMO sequences have
shown high binding affinity for complementary RNA
sequences™ and given the fact that PMO-RNA duplexes have
been found to be more stable than DNA-RNA duplexes,* we
hypothesized that a trans-acting 2’-OMe RNA element might
exhibit higher affinity for polyA-tailed PMO sequences than
dTtaPS. With the intent of substantiating our hypothesis, the
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Fig. 1 Chemical structure of a chimeric 2'-OMeUtaPS transfection
reagent.
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chemical synthesis of 2’-OMeUtaPS, an octameric 2’-O-meth-
yluridylic acid functionalized with three N,N-dimethylamino-
propyl and four octyl thiophosphate triester functions (Fig. 1)
was carried out. The purpose of this investigation is to: (i)
validate the functionality of these sequences by restoring
luciferase production in HeLa pLuc 705 cells through alternate
splicing and, (ii) demonstrate efficient excision of exon 23
from dystrophin pre-mRNA in mdx mouse myotubes.

Results and discussion
The chemical synthesis of 2’-OMeUtaPS

The phosphordiamidites 1 and 2 needed for the preparation of
the ribonucleoside phosphoramidites 3 and 4 (Fig. 2) were
prepared as reported earlier.">'* Treatment of commercially
available 5-0-(4,4’-dimethoxytriyl)-2’-O-methyluridine with
the phosphordiamidite 1 or 2 and 1H-tetrazole in a molar ratio
of 1:2:1, respectively, in anhydrous MeCN afforded the
ribonucleoside phosphoramidite 3 or 4, in yields of ca. 80-85%
after purification by chromatography on silica gel and subse-
quent lyophilization from dry benzene. The identity of phos-
phoramidites 3 and 4 was confirmed by *'P-NMR spectroscopy
and high-resolution mass spectrometry. (HRMS, data shown
as ESIL.f) The solid-phase synthesis of 2’-OMeUtaPS on an
appropriately functionalized controlled-pore glass (CPG)
support loaded with 5'-0-(4,4’-dimethoxytrityl)-2'-deoxy-
thymidine as the leader nucleoside was easily achieved using
the ribonucleoside phosphoramidites 3 and 4 as 0.1 M solu-
tions in MeCN. The coupling time of the 1H-tetrazole-activated
phosphoramidites 3 and 4 was extended to 10 min to maxi-
mize stepwise coupling efficiencies, which were determined to
be in the order of 98-99% with an overall synthesis yield of 92
+ 5% based on the 4,4’-dimethoxytrityl cation assay.'® Upon
exposure to pressurized gaseous amines and release from the
CPG support, the purity of diastereomeric 2’-OMeUtaPS was
assessed by C4-RP-HPLC analysis. Similar to the chromato-
graphic profile of dTtaPS,"* 2’-OMeUtaPS displayed numerous
broad unresolved product peaks consistent with the diaste-
reomeric and amphiphilic features of this class of compounds
(data not shown). The purity of 2’-OMeUtaPS was nonetheless
highly comparable to that of dTtaPS and was deemed adequate
to support our investigations.
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Fig. 2 Chemical illustrations of the phosphordiamidites 1 and 2 and
ribonucleoside phosphoramidites 3 and 4 needed for the solid-phase
synthesis of 2’-OMeUtaPS. DMTr, 4,4’ -dimethoxytrityl; i-Pr, isopropyl.
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Concentration-dependence of the 2'-OMeUtaPS-assisted
internalization of PMO sequences in live HeLa pLuc 705 cells
for restoration of luciferase activity

The efficiency of dTtaPS in mediating the cellular uptake of
polyA-tailed PNA and polyA-tailed PMO sequences into various
mammalian cell lines was assessed earlier by flow cytometry
and through a splice correction assay performed in HeLa pLuc
705 cells.”* While the cellular internalization of polyA-tailed
PMO sequences 5 and 6 (Table 1) exceeded 60% of the total
number of cells in three out of the four cell lines investigated,
the cellular uptake of PMO sequence 7, lacking the polyA tail,
occurred in only 10-15% of the total number of cells in all cell
lines under study."** When assayed in HeLa pLuc 705 cells, the
dTtaPS-assisted delivery of the PNA sequence 9 was found more
efficient (8-10-fold) than that of PMO sequence 10 on the basis
of luciferase activity production (Fig. 3A). However, when 2’-
OMeUtaPS was used for the delivery of each sequence in HeLa
pLuc 705 cells, uptake of the PMO sequence 10 (Table 1) was
more efficient (8-10 fold) than that of the PNA sequence 9 based
on restoration of luciferase activity (Fig. 3B).

Flow cytometry analysis of the dTtaPS-mediated cellular
uptake of the control PMO sequence 6 is significantly less than
that of the control PNA sequence 8 as determined by the level of
fluorescence per cell (Fig. 4A); this is consistent with the lucif-
erase assay results obtained from the delivery of the PNA and
PMO sequences 9 and 10, respectively (Fig. 3A). However, flow
cytometry analysis of the 2-OMeUtaPS-assisted delivery of
polyA-tailed PMO and PNA sequences 6 and 8, respectively,
revealed a marginally higher level of fluorescence per cell for the
PNA sequence 8 when compared to that of the PMO sequence 6
(Fig. 4B). The results of this experiment suggest that the 2'-
OMeUtaPS-assisted delivery of polyA-tailed PNA sequence 8 is
comparably efficient to that of the PMO sequence 6 but the
affinity of 2’-OMeUtaPS for the polyA-tail of PNA sequence 9
appears to interfere with either endosomal release of the
sequence or nuclear membrane penetration; either outcome
can lead to poor exon skipping activity in HeLa pLuc 705 cells
when compared to that produced from the 2'-OMeUtaPS-
mediated delivery of polyA-tailed PMO sequence 10 (Fig. 3B).

Table 1 Commercial PMO and PNA sequences

Sequence  Type 5’'-Sequence-3'“

5 PMO CCTCTTACCTCAGTTACA-AAAAAA-FI

6 PMO GTGGCCGTTTACGTCGCC-AAAAAA-FI

7 PMO CTTCTTACCTCAGTTACA-FI

8 PNA FI-GTGGCCGTTTACGTCGCC-AAAAAA-NH,
9 PNA H-CCTCTTACCTCAGTTACA-AAAAAA-NH,
10 PMO CCTCTTACCTCAGTTACA-AAAAAA

11 PMO CCTCTTACCTCAGTTACA-AATAAA

12 PMO CCTCTTACCTCAGTTACA-TTTTTT-FI

13 PMO CCTCTTACCTCAGTTACA-CCCCCC-F1

14 PMO GGCCAAACCTCGGCTTACCTG-AAAAAA

15 PNA H-GGCCAAACCTCGGCTTACCTG-AAAAAA-NH,
16 2/-OMe GGCCAAACCUCGGCUUACCUGAAAU

“ Fl, fluorescein; 16 is a fully phosphorothioated RNA sequence.

This journal is © The Royal Society of Chemistry 2017
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Fig. 3 (A) dTtaPS-mediated delivery of polyA-tailed PNA and PMO
sequences 9 and 10, respectively, in HelLa pLuc 705 cells cultured in
serum-containing medium. (B) 2’-OMeUtaPS-mediated delivery of
polyA-tailed PNA and PMO sequences 9 and 10, respectively, under
conditions identical to those used in (A). In all experiments, the
concentration of each sequence was kept at 1.0 uM whereas the
concentration of dTtaPS or 2’-OMeUtaPS was kept at 2.0 uM. Error
bars represent the mean =+ SD of three independent experiments. RLU,
relative light units.
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Fig. 4 (A) Flow cytometry analysis of the dTtaPS-assisted cellular
uptake of the control PMO sequence 6 (peak area with an orange
border) and PNA sequence 8 (peak area with a cyan border) in Hela
pLuc 705 cells. (B) Same as in (A) but using 2’-OMeUtaPS as the

delivery reagent. Gray peak area, untreated Hela pLuc 705 cells.
Experimental conditions are described in the Experimental section.

The 2’-OMeUtaPS-assisted internalization of PMO sequence 10
in HeLa pLuc 705 cells is concentration-dependent. Fig. 5,
clearly shows that the PMO sequence induced splice correction
of the pre-mRNA encoding luciferase; the production of lucif-
erase activity increased commensurately with the concentration
of PMO sequence 10.

Recognition of the PMO-polyA stretch by 2'-OMeUtaPS is
sequence specific

Recognition of the PMO-polyA tail of sequence 10 by either
dTtaPS or 2'-OMeUtaPS is necessary for cellular internalization
in mammalian cells. This was first demonstrated by replacing
one PMO-A with a PMO-T in the polyA stretch of sequence 10. As
shown in Fig. 6, the presence of a PMO-T in the middle of the
polyA tail of PMO sequence 11 resulted in a statistically signif-
icant decrease in luciferase activity that is consistent with

RSC Adv., 2017, 7, 42519-42528 | 42521
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Fig. 5 Concentration-dependence of the 2’-OMeUtaPS-mediated
delivery of PMO sequence 10 on luciferase activity production in
serum-containing media. The concentration of 2’-OMeUtaPS was
kept at 2.0 uM in all experiments. Error bars represent the mean + SD
of three independent experiments. RLU, relative light units.
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Fig. 6 Decreased recognition and internalization of PMO sequence 11
by 2’-OMeUtaPS in Hela pLuc 705 cells resulting from an A — T
substitution in the polyA tail of PMO sequence 10. The concentrations
of 2/-OMeUtaPS was kept at 2.0 uM. Error bars represent the mean +
SD of three independent experiments. RLU, relative light units.

a weaker binding of 2’-OMeUtaPS to the modified polyA stretch
of PMO sequence 11. Moreover, replacing the polyA stretch of 5
with a PMO polyT or a polyC tail led to dismal uptake of PMO
sequence 12 or 13 in HeLa pLuc 705 cells, as demonstrated by
flow cytometry analyses (Fig. 7). The results of this experiment
show that the 2’-OMeUtaPS-mediated internalization of PMO
sequence 12 or 13 is comparable to that of PMO sequence 7,
lacking the polyA tail, or that of PMO sequence 5 in the absence
of 2’-OMeUtaPS.

The 2’-OMeUtaPS-mediated internalization of polyA-tailed
PMO sequence 10 in HeLa pLuc 705 cells is inhibited by urea

With the aim of further demonstrating that the polyA tail of PMO
sequence 5 is required for its 2-OMeUtaPS-mediated internali-
zation in HeLa pLuc 705 cells, a cellular uptake experiment was
conducted in the presence of urea, which by virtue of its dena-
turing properties was expected to interfere with the ability of 2'-
OMeUtaPS to recognize the polyA tail of the PMO sequence and
lead to a significant decrease in cellular uptake. As anticipated,
flow cytometry analysis revealed (Fig. 8) that the 2’-OMeUtaPS-
assisted internalization of the PMO sequence 5, when per-
formed in the presence of 2.0 M urea, resulted in a decreased

42522 | RSC Adv., 2017, 7, 42519-42528
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Fig. 7 Flow cytometry analysis of the 2’-OMeUtaPS-assisted cellular
uptake of the PMO sequence 5 (peak area with a black border), control
PMO sequence 6 (peak area with an orange border), PMO sequence 12
(peak area with a red border) and PMO sequence 13 (peak area with
a cyan border) in Hela pLuc 705 cells. Gray peak area accounts for
untreated Hela pLuc 705 cells.
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Fig. 8 Flow cytometry analysis of the 2'-OMeUtaPS-mediated inter-
nalization of PMO sequence 5 (peak area with a solid line border) in the
presence of urea (peak area with a dotted line border) in HelLa pLuc
705 cells. Gray peak area accounts for untreated Hela pLuc 705 cells.
The concentration of 5 and 2’-OMeUtaPS was 1.0 uM and 2.0 uM,
respectively, while the concentration of urea is 2.0 M during the course
of complex formation.

cellular uptake in the order of ~80-90% relative to that of the
control experiment performed in the absence of urea. These
results suggest that the recognition of polyA-tailed PMO
sequences by 2'-OMeUtaPS is sequence-specific, necessary and
sufficient for efficient cellular uptake in live HeLa pLuc 705 cells.

Mechanistic authentication of the 2’-OMeUtaPS-assisted
internalization of PMO sequences

With the aim of assessing whether the 2’-OMeUtaPS-mediated
internalization of PMO sequence 10 in HeLa pLuc 705 cells
proceeded through an energy dependent mechanism, a cellular
uptake experiment was carried out at 37 °C while another
experiment was similarly conducted at 4 °C (Fig. 9). The results of
this investigation show that when the cellular uptake experiment

This journal is © The Royal Society of Chemistry 2017
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was carried out at 4 °C, restoration of luciferase activity decreased
by more than 40% relative to that measured when the experiment
was carried out at 37 °C. These findings are in agreement with an
endocytic uptake mechanism." Identification of the most prob-
able endocytic pathway leading to the 2'-OMeUtaPS-mediated
uptake of PMO sequence 10 was initiated. For this purpose,
chlorpromazine for inhibition of clathrin-coated pits-mediated
endocytosis,"”*® nystatin and cytochalasin D for inhibition of
caveolae-mediated endocytosis,"”** latrunculin for inhibition of
both clathrin-coated pits- and caveolae-mediated endocytosis
and 5-(N-ethyl-N-isopropyl)amiloride (EIPA) for inhibition of
macropinocytosis'”*® were employed at concentrations that are
known to not significantly cause cell cytotoxicity.'® Although, the
clathrin-coated pits-mediated endocytosis pathway appears to
moderately inhibit the 2’-OMeUtaPS-assisted internalization of
PMO sequence 10 in HeLa pLuc 705 cells, macropinocytosis is
clearly the prevailing endocytic pathway used for this internali-
zation process (Fig. 9).

The 2'-OMeUtaPS-mediated internalization of polyA-tailed
PMO sequence 14 in mdx mouse myotubes induced efficient
excision of exon 23 from dystrophin pre-mRNA

Total RNA was extracted from myotubes using TRIzol (Life
Technologies) as per the manufacturer's recommendations and
was isolated by precipitation in cold (—20 °C) isopropanol. The
total RNA was then subjected to reverse-transcription using
gScript cDNA SuperMix; the cDNA was amplified using mouse-
specific TagMan probes designed to amplify the splice junction
at exon 22-24 and the region spanning exons 23-24 of the non-
skipped exon product.

The percentage of exon 23 skipping was calculated as
described in the Experimental section of this report. Fig. 10
demonstrates that the 2’-OMeUtaPS-mediated internalization of
PMO sequence 14 in mdx mouse myotubes appears to be dose-

120+
B 0% FBS
1004 Il 10% FBS
g 80
3 60-
(74
404
20+
o-
o £ (¢] & Q e
‘&9& & > c,\\\ & & fs"\o ‘o\qv.
« & & F S
® V o‘y &
O
o) S

Fig. 9 Inhibition of luciferase activity production at 4 °C or 37 °C by
endocytic pathway inhibitors upon 2’-OMeUtaPS-mediated internali-
zation of PMO sequence 10 in both serum-containing and serum-free
media. For each experiment, the extracellular concentrations of 2’-
OMeUtaPS and sequence 10 are 2.0 puM and 1.0 uM, respectively,
whereas the extracellular concentrations of nystatin, latrunculin,
cytochalasin D, chlorpromazine and EIPA are 30 uM, 2 uM, 2 uM, 50 uM
and 0.5 mM, respectively. Error bars represent the mean + SD of three
independent experiments. EIPA, 5-(N-ethyl-N-isopropyl)amiloride;
RLU, relative light units; FBS, fetal bovine serum.
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dependent, leading to the excision of exon 23 from 60% of the
pre-mRNA transcripts at a PMO sequence concentration of
250 nM in serum-containing medium. The result of this exon
skipping experiment is vastly superior to that obtained with the
transfection of PNA sequence 15 by 2'-OMeUtaPS, at a sequence
concentration of 1.00 uM in serum-containing medium, while
being comparable to that obtained with the Lipofectamine®
2000-mediated transfection of the positive control 2'-OMe RNA
sequence 16 at a concentration of 250 nM in serum-free
medium (Fig. 10). The efficiency of 2’-OMeUtaPS at skipping
exon 23 from the mdx mouse dystrophin pre-mRNA was also
demonstrated by performing a nested RT-PCR assay consisting
of reverse-transcribing total RNA, isolated from mdx mouse
myotubes, and amplifying the cDNA encoding exons 20-26 with
appropriate DNA primers. Re-amplification of the primary PCR
product encoding exons 20 to 24 was then initiated using
another set of DNA primers; the secondary PCR products were
separated by electrophoresis on a 1.5% agarose gel (Fig. 11). The
633 bp secondary PCR product corresponds to the unspliced
pre-mRNA exon 23, whereas the shorter 420 bp PCR product
corresponds to the correctly spliced exon 23 in agreement with
the 213 bp difference between the secondary PCR products re-
ported by others.”® As expected, the dTtaPS-mediated trans-
fection of PMO sequence 14 in mdx mouse myotubes was
considerably less efficient at correctly splicing exon 23 even at
a PMO concentration of 1.00 uM. Contrary to expectations, the
dTtaPS-mediated transfection of PNA sequence 15 in mdx
mouse myotubes was found relatively inefficient at correctly
splicing exon 23 even at a PNA concentration of 1.00 pM.

Cytotoxicity studies

The cytotoxicity of PMO sequence 14 and 2’-OMeUtaPS in HeLa
pLuc 705 cells was evaluated in serum containing (10% FBS)
DMEM medium over a period of 18 h using a commercial cell-
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Fig. 10 Efficiency of 2’-OMeUtaPS at inducing the excision of the
exon 23 from the mdx mouse dystrophin pre-mRNA upon transfection
of PMO and PNA sequences 14 and 15, respectively, in mdx mouse
myotubes. The concentration of 2'-OMeUtaPS was kept at 2 uM. All
experiments were performed in serum-containing medium with the
exception of the transfection of 2’-OMe RNA sequence 16, which was
carried out using Lipofectamine® 2000 as the transfection reagent in
serum-free-containing medium. Error bars represent the mean + SD
of three independent experiments. M, medium.
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Fig.11 Efficiency of 2’-OMeUtaPS and dTtaPS at inducing the excision
of exon 23 from the mdx mouse dystrophin pre-mRNA upon trans-
fection of the PMO or PNA sequence 14 or 15, respectively, in mdx
mouse myotubes. The concentration of 2'-OMeUtaPS or dTtaPS was
kept at 2 uM in serum containing medium. Lipofectamine® 2000 (LF)
was used as a transfection reagent in serum free-medium at
a concentration recommended by the supplier. Total RNA was
extracted from transfected myotubes and amplified by nested RT-PCR
using appropriate sets of DNA primers (see Experimental section). Two
major PCR products were separated by electrophoresis on an agarose
gel; the larger 633 bp and shorter 420 bp secondary PCR products
correspond to the unspliced and correctly spliced pre-mRNA exon 23,
respectively. SM, size marker.
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Fig. 12 Cytotoxicity of PMO sequence 14 (A) and 2’-OMeUtaPS (B) in
Hela pLuc 705 cells when increasing their respective concentrations.
Each cytotoxicity study was evaluated over a period of 18 h in serum-
containing (10% FBS) DMEM medium, using a commercial cell-
counting kit, and expressed as a percentage of the viable cells. Error
bars represent the mean + SD of three independent experiments. M,
medium.

counting kit. Increasing the concentration of PMO 14 from
100 nM to 2.0 uM (Fig. 124A) or 2’-OMeUtaPS from 0.5 pM to 5.0
uM (Fig. 12B) did not induce significant cytotoxicity at
concentrations optimal for transfection experiments.

Experimental
Materials and methods

Common chemicals and solvents including acetonitrile,
benzene, triethylamine, dichloromethane, hexane, acetone,
DMSO, 3-(N,N-dimethylamino)propan-1-ol, 1-octanol, bis(N,N-
diisopropylamino)chlorophosphine, = anhydrous  solvents
(MeCN, CH,Cl,, CcH,) and deuterated solvents (C¢Dg, DMSO-d)
were all purchased from commercial sources and used without
further purification. 5-O-(4,4’-Dimethoxytrityl)-2’-O-methylur-
idine was commercially available and used as received. All
ancillary reagents commonly used in solid-phase DNA/RNA
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synthesis including 3-(dimethylaminomethylidene)amino-3H-
1,2,4-dithiazole-3-thione or 3H-1,2-benzodithiol-3-one 1,1-
dioxide and the succinylated long chain alkylamine controlled-
pore glass (CPG) support, loaded with 2’-deoxythymidine as the
leader nucleoside, were commercially available and used
without further purification. The PNA and PMO sequences lis-
ted in Table 1 or mentioned anywhere in the text were
purchased from PNA Bio Inc. and Gene Tools LLC, respectively,
and used as received.

Cell culture media and reagents including OptiMEM,
DMEM, DMEM high glucose, r-glutamine, sodium pyruvate,
penicillin, GlutaMAX, streptomycin, hygromycin, monensin,
trypan blue, 5% horse serum, mouse-specific TagMan probes
and pMAT vectors were acquired from Life Technologies; 20%
heat-inactivated FBS was bought from Atlanta Biologicals,
whereas 2% chick embryo extract and IFN-y were obtained from
United States Biological and R&D Systems, respectively. Cell
lysis and Bright glow reagents needed for the luciferase assay
protocol were acquired from Promega. Trypsin, TriZol and
Platinum TaqPCRx DNA Polymerase were purchased from
Thermo Fisher and qScript cDNA SuperMix from Quanta Bio. A
High Capacity cDNA Reverse Transcription Kit was obtained
from Applied Biosystems; forward and reverse DNA primers
were acquired from Integrated DNA Technologies.

Flash chromatography purifications were performed on glass
columns (6.0 cm or 2.5 cm L.D.) packed with silica gel 60 (EMD,
230-400 mesh), whereas analytical thin-layer chromatography
(TLC) analyses were conducted on 2.5 cm x 7.5 cm glass plates
coated with a 0.25 mm thick layer of silica gel 60 F,5, (EMD).
Analytical RP-HPLC analysis of 2’-OMeUtaPS was performed
using a 5 um Vydac C-4 wide pore (300 A) column (25 cm x 4.6
mm). A linear gradient running from MeCN : H,O : AcOH
(199: 799 : 2, v/v/v to 799 : 199 : 2, v/v/v) was pumped at a flow
rate of 1 mL min~" for 20 min and was found adequate for its
intended purpose. 'H-Decoupled *'P NMR analyses of the
deoxyribonucleoside phosphoramidites 3 and 4 were performed
using an NMR spectrometer operating at 121.5 MHz (300 MHz
for 'H). Samples were maintained at a temperature of 298 K; all
spectra were recorded in deuterated solvents and chemical shifts
¢ were reported in parts per million (ppm) relative to appropriate
internal references. High resolution mass analyses of 3 and 4 and
low-resolution MS analysis of 2'-OMeUtaPS were carried out
under contract at a reputable mass spectrometry core facility.

Synthesis of N,N,N',N'-tetraisopropyl-O-[3-(N,N-
dimethylamino)prop-1-yl]phosphordiamidite (1) and
N,N,N',N'-tetraisopropyl-O-[octan-1-yl|phosphordiamidite (2)

To a stirred solution of 3-(N,N-dimethylamino)propan-1-ol
(436 pL, 3.70 mmol) and bis(N,N-diisopropylamino) chlor-
ophosphine (1.00 g, 3.70 mmol) in anhydrous benzene (20 mL)
was added, under inert atmosphere, Et;N (1.00 mL, 7.17 mmol).
Progress of the reaction was monitored by *'P-NMR spectros-
copy; formation of the product (ép 122.4 ppm) was found to be
complete within 2 h at ~25 °C. The suspension was passed
through a glass column packed with silica gel (~15 g), which
had been pre-equilibrated in benzene : Et;N (9:1 v/v); the
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filtrate was evaporated to an oil under reduced pressure. The
oily material was dissolved in dry benzene (10 mL) and the
resulting solution was swirled in a dry ice-acetone bath. The
frozen material was lyophilized under high vacuum to give the
phosphordiamidite 1 as a viscous oil (1.01 g, 3.03 mmol, 82%).
'H NMR (300 MHz, C¢Dg): 6 3.70 (dt, J = 7.3, 6.4 Hz, 2H), 3.55
(sept, J = 6.8 Hz, 2H), 3.52 (sept, / = 6.8 Hz, 2H), 2.36 (t, ] =
7.1 Hz, 2H), 2.11 (s, 6H), 1.77 (quint, ] = 6.8 Hz, 2H), 1.25 (d, ] =
6.8 Hz, 12H), 1.20 (d, ] = 6.8 Hz, 12H). *C NMR (75 MHz, C¢Dy):
062.8 (d, *Jcp = 21.8 Hz), 56.9, 45.6, 44.6 (d, >Jcp = 12.6 Hz), 30.4
(d,Jcp = 8.6 Hz), 24.8 (d, Jcp = 8.6 Hz), 24.1 (d, Jcp = 5.6 Hz). *'P
NMR (121 MHz, C¢Dg): 6 123.3.

The preparation of phosphordiamidite 2 was performed at the
same scale and under conditions similar to those employed for the
synthesis of 1 with the exception of using 1-octanol (583 pL,
3.70 mmol) instead of 3-(N,N-dimethylamino)propan-1-ol. The
phosphordiamidite 2 was isolated as a viscous oil, (1.17 g,
3.24 mmol, 88%). “H NMR (300 MHz, C¢Dy): 6 3.65 (dt, J = 7.1,
6.4 Hz, 2H), 3.57 (sept, J = 6.8 Hz, 2H), 3.53 (sept, /] = 6.8 Hz,
2H), 1.65 (dq,J = 6.6, 6.4 Hz, 2H), 1.43 (m, 2H), 1.34-1.18 (br m,
8H), 1.27 (d,J = 6.8 Hz, 12H), 1.22 (d,J = 6.8 Hz, 12H), 0.89 (dd,
J = 6.8, 6.4 Hz, 3H). **C NMR (75 MHz, Cg¢Ds): 6 64.7 (d, *Jcp =
21.8 Hz), 44.6 (d, %Jcp = 12.6 Hz), 32.2, 32.1 (d, Jcp = 8.6 Hz),
29.8,29.7, 26.6, 24.8 (d, Jop = 8.5 Hz), 24.1 (d, Jcp = 5.6 Hz), 23.1,
14.3. *'P NMR (121 MHz, C¢Dg): 6 123.2.

General procedure for the preparation of deoxyribonucleoside
phosphoramidites 3 and 4

To a stirred solution of N,N,N',N'-tetraisopropyl-O-[3-(N,N-
dimethylamino)prop-1-yl|phosphordiamidite (1, 667 mg,
2.00 mmol) or  N,N,N N'-tetraisopropyl-O-{octan-1-yl]
phosphordiamidite (2, 721 mg, 2.00 mmol) in MeCN (20 mL)
was added 4,4'-dimethoxytrityl 2'-O-methyluridine (561 mg,
1.00 mmol) along with 0.45 M 1H-tetrazole in MeCN (2.2 mL,
1.0 mmol). The reaction mixture was stirred for 18 h at ~25 °C.
The reaction mixture was then concentrated under reduced
pressure to a gummy material; the crude ribonucleoside phos-
phoramidite was purified by chromatography on silica gel
(~25 g), which was equilibrated in a solution of hexane : Et;N
(95 :5 v/v). The product was eluted from the column using
a gradient of CH,Cl, (0 — 95%) in hexane : Et;N (95 : 5 v/v).
Fractions containing the pure ribonucleoside phosphor-
amidite, as detected by TLC, were pooled together and were
evaporated to dryness under low pressure. The foamy material was
dissolved in dry benzene (5 mL) and the resulting solution was
manually stirred in a dry ice-acetone bath. The frozen material was
then lyophilized under high vacuum to give the ribonucleoside
phosphoramidite 3 or 4, each as a white powder in yields of 85% or
80%, respectively. 3: *'P NMR (121 mHz, C¢Dg): 6 149.5, 149.1 ppm,
+HRMS: caled for C,;ClH5N,OoP [M + CI|” 827.355, found
827.351. 4: >'P NMR (121 mHz, C¢Ds): 6 148.6, 148.3 ppm, +HRMS:
caled for C,5CIHg,N;00P [M + Cl]~ 854.391, found 854.393.

Solid-phase synthesis of chimeric 2'-OMeUtaPS

The solid-phase synthesis of 2’-OMeUtaPS was performed on
a 0.2 pmole scale using a succinylated long chain alkylamine
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controlled-pore glass (CPG) support loaded with 5'-O-(4,4'-
dimethoxytrityl)-2'-deoxythymidine as the leader nucleoside.
The synthesis of the trans-acting RNA element was carried out
using a DNA/RNA synthesizer and the appropriate phosphor-
amidites (3 or 4) as 0.1 M solutions in dry MeCN. The synthetic
cycle recommended for the preparation of 2'-OMeUtaPS differs
from the conventional cycle used for synthesis of unmodified
oligonucleotides in that the “capping step” is performed after
the oxidative sulfuration reaction.”* The reaction time of each of
the following synthesis cycle steps has been extended to ensure
optimal production of 2’-OMeUtaPS: (i) 5’-deblocking reaction
(3% TCA in CH,Cl,, 60 s); (ii) 1H-tetrazole-mediated phos-
phoramidite coupling reaction (600 s); (iii) oxidation reaction
(sulfuration solution, 600 s); and (iv) capping reaction (Cap A and
Cap B solutions, 120 s). Upon complete assembly of 2'-OMeU-
taPS, spectrophotometric (498 nm) measurements of the DMTr
cation, released from the final synthesis cycle, revealed an overall
synthesis yield of 92 £+ 5%. The synthesis column was placed into
a stainless steel pressure vessel and exposed to pressurized
methylamine gas (~2.5 bar, 25 °C, 3 min). Upon removal of
residual methylamine gas from the pressure container, 2'-
OMeUtaPS was eluted off the synthesis column using 500 pL of
a solution consisting of Et;N : MeCN : H,O (1 : 60 : 39 v/v/v). The
eluate was then evaporated to dryness using a stream of air. Air-
dried 2-OMeUtaPS can be stored indefinitely at —20 °C. 2'-
OMeUtaPS was characterized by mass spectrometry; +ESI-MS:
caled for Ci;Hy05N10054P;S; [M + 2H]”" corresponding to
a calculated mass of 3301.0, found 3300.9.

Cell culture

The HeLa pLuc 705 cell line was exponentially grown in Dulbecco’s
Minimum Essential Medium (DMEM) supplemented with 10%
heat-inactivated fetal bovine serum (FBS), 1.5 mM r-glutamine,
1.0 mM sodium pyruvate, 100 U penicillin, 100 ug mL ™" strepto-
mycin and 200 ug mL~" hygromycin; the cell culture was main-
tained at 37 °C in a humidified incubator under 5% CO,.

Complex formation between PNA or PMO sequences and
dTtaPS or 2’-OMeUtaPS

An appropriate volume (1 pL) of a 100 uM PNA or PMO sequence
stock solution was added to serum-free OptiMEM (20 pL). To
this solution was added 2 pL of a 100 uM dTtaPS or 2’-OMeU-
taPS stock solution and OptiMEM (27 pL) to produce a 2x stock
solution of the complexes. The solution was incubated at 37 °C
for 30 min and then stored at 4 °C for 15 min prior to immediate
use in all cellular uptake experiments. Under these conditions,
the extracellular concentration of the PNA/PMO sequence and
2/-OMeUtaPS/dTtaPs is 1.0 uM and 2.0 pM, respectively.

Flow cytometry analysis of cellular uptake in HeLa pLuc 705
cells

The internalization of fluorescently-labelled PNA or PMO
sequence 8 or 6 in HeLa pLuc 705 cells using either dTtaPS or 2’-
OMeUtaPS, as the delivery reagent, was assessed by flow
cytometry. Cells were seeded in a 96-well plate (10" cells per
well) and allowed to grow at 37 °C for 24 h in 10% FBS-MEM.
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The culture medium of each well was then replaced with fresh
medium (100 pL) containing the fluorescently-labelled PNA or
PMO sequence 8 or 6, each at a final concentration of 1 uM.
After an 18 h-incubation at 37 °C, the medium was removed
from each well by suction and 0.25% trypsin (50 pL) was added.
Upon complete cell detachment, a solution (100 pL) of ice-cold
2% FBS in phosphate-buffered saline (PBS, pH 7.4) was added to
each well. The cells were collected into tubes, to which was
added 0.4% trypan blue (50 uL) and 200 uM monensin (20 uL),
and analyzed by fluorescence-activated cell sorting (FACS) using
a BD FACScan™ flow cytometer. A total of 5000 events were
counted; histograms demonstrating cellular internalization of
the fluorescently-labelled PNA and PMO sequences are pre-
sented in Fig. 4A and B, 7 and 8.

Luciferase assay protocol

HeLa pLuc 705 cells were seeded in a 96-well plate (2 x 10* cells
per well) and allowed to grow at 37 °C for 18 h in 10% FBS-
DMEM. The culture medium of each well was then replaced
with either fresh serum-free or 20% serum-containing Opti-
MEM (50 pL) for experiments intended to be performed in
serum-free or in 10% serum-containing media. A 2x solution of
PNA or PMO sequence:2’-OMeUtaPS or dTtaPS complexes
(50 pL) was added to the cells in order to achieve pre-
determined complex concentrations, as indicated in the figure
captions. After a 4 hour incubation at 37 °C, 20% FBS in Opti-
MEM (100 pL) was added to serum-free experiments and cells
were incubated for an additional 18 h at 37 °C. The media was
then removed by suction and the cells were mixed with a cell
lysis reagent (50 pL) and agitated at ambient temperature for 10
minutes. The cell lysate (30 pL) was placed in a white 96-well
plate and Bright-Glow reagent (20 uL) was added. Luciferase
activity was measured using a microplate reader. For each well,
luminescence was integrated over a period of 1 s and recorded
as relative light units (RLU). Luminescence measurements were
normalized to the amount of protein present in the test sample.

Protein concentration measurements

Protein concentration is measured, employing the Pierce Coo-
massie (Bradford) protein assay kit and a fraction (5 pL) of cell
lysate prepared above for the luciferase assay, as per the
manufacturer's instructions.

Energy-dependence of the 2'-OMeUtaPS-assisted
internalization of PMO sequence 10 in HeLa pLuc 705 cells

HeLa pLuc 705 cells were seeded in a 96-well plate (2 x 10* cells
per well) and allowed to grow at 37 °C for 18 h in 10% FBS-
DMEM. While the cell culture was maintained at 37 °C or
4°C, a 2x solution of a PMO sequence 10:2’-OMeUtaPS complex
was prepared as described above. The cell culture medium was
replaced with the PMO sequence 10:2-OMeUtaPS complex
solution to provide a final concentration of 1.0 uM and 2.0 uM,
in PMO sequence and 2'-OMeUtaPS, respectively. After an
incubation of 1 h at 37 °C or 4 °C, the medium was removed by
suction and luciferase activity was measured as per the above
luciferase assay protocol. Luminescence measurements were
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normalized to the amounts of protein present in the test
samples and reported as a percentage of the luminescence
produced relative to that measured from the experiment per-
formed at 37 °C. The results of these experiments performed in
the presence or absence of FBS are depicted in Fig. 9.

Endocytic pathways associated with the 2’-OMeUtaPS-
mediated internalization of the PMO sequence 10 in HeLa
pLuc 705 cells

HeLa pLuc 705 cells were seeded in a 96-well plate and grown in
10% FBS-DMEM, as described above. The cell culture was then
pre-incubated for 30 min at 37 °C in the presence of nystatin or
latrunculin, cytochalasin D, chlorpromazine, EIPA (5-(N-ethyl-
N-isopropyl)amiloride), the final concentration of which was 30
uM or 2 uM, 2 uM, 50 uM, 0.5 mM, respectively. A 2 x solution of
PMO sequence 10:2’-OMeUtaPS complex was added to the cells
to produce a final concentration of 1.0 uM and 2.0 pM in PMO
sequence 10 and 2’-OMeUtaPS, respectively. The cells were then
incubated for an additional 30 min at 37 °C, whereupon lucif-
erase activity was measured as per the above luciferase assay
protocol. Luminescence measurements were normalized to the
amounts of protein present in the test samples and reported as
the percentage of the luminescence produced relative to that
measured in the absence of endocytic pathway inhibitors. The
results of these experiments performed in the presence or
absence of FBS are depicted in Fig. 9.

Transfection inhibition assay

An arbitrary amount of PMO sequence 5 was solubilized in
serum-free OptiMEM (10 pL); 2'-OMeUtaPS S was added to the
solution to achieve a final concentration that is twice that of the
sequence. A solution of 4 M urea in serum-free OptiMEM (10 pL)
was added to produce a final urea concentration of 2 M. After
a 30 min incubation at 37 °C, the PMO sequence 5:2'-OMeUtaPS
complexes were stored at 4 °C for 15 minutes or until used.
Stock solutions (2x) of the complexes were made by adding
OptiMEM to appropriate volumes (300 pL). HeLa pLuc 705 cells
were seeded in a 96-well plate (2 x 10* cells per well) and
allowed to grow at 37 °C for 18 h in 10% FBS-DMEM, as
described above. The cell culture of each well was replaced with
fresh 20% serum-containing OptiMEM (50 pL) to which was
added 50 pL of the 2x stock solution of the PMO sequence 5:2'-
OMeUtaPS complexes to produce an extracellular urea concen-
tration of 67 mM. After a 4 hour incubation at 37 °C, the
medium was replaced with fresh 10% FBS-DMEM,; cells were
allowed to grow for 18 h at 37 °C. The medium was removed
from each well by suction and 0.25% trypsin (50 uL) was added.
Upon complete cell detachment, the cells were processed as
described above in the protocol for flow cytometry analysis. A
total of 5000 events were counted. The FACS histogram pre-
sented as Fig. 8 illustrates the outcome of this experiment.

Cytotoxicity studies

The cytotoxicity of PMO sequence 14 and 2’-OMeUtaPS in HeLa
pLuc 705 cells was evaluated over a period of 18 h in serum-
containing (10% FBS) DMEM medium, using a commercial
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cell-counting kit. Increasing the concentration of 14 from
0.01 puM to 2.0 uM or 2’-OMeUtaPS from 0.5 uM to 5.0 uM did not
induce significant cytotoxicity based on cell viability measure-
ments (Fig. 12A and B) when compared to that of the medium.

Procedure for the culture and differentiation of myoblasts

H-2KP-tsA58 (H2K) mdx myoblasts**?> were maintained in
DMEM, high glucose (4500 mg L"), pyruvate (100 mg L™ ') and
GlutaMAX supplemented with 20% heat inactivated FBS, 2%
chick embryo extract and 1% penicillin/streptomycin
(100 U mL™") on 0.4% gelatin coated plates. Myoblasts
proliferation (5000 cells per cm?®) was carried out at 33 °C in
the presence of IFN-y (20 ng mL™ ") and 10% CO,. Myoblasts
(26 000 cells per cm?) were plated on 24-well 0.4% gelatin
coated plates. Within 24 h, the media was aspirated from the
cells and replaced with DMEM, high glucose (4500 mg L™ %),
pyruvate (100 mg L™") and GlutaMAX supplemented with 5%
horse serum and 1% penicillin/streptomycin (100 U mL ™). The
cells were allowed to differentiate over three days at 37 °C under
5% CO,.

Myotube transfection assays

Myotubes were transfected in duplicate in serum-containing
media using the PMO sequence 14 at a sequence concentra-
tion of 0.125-, 0.250- and 1.00 uM and 2’-OMeUtaPS (2.0 uM).
Myotubes were also transfected in duplicate in serum-
containing media using the PNA sequence 15 at a sequence
concentration of 0.125-, 0.250- and 1.00 uM and dTtaP$ (2.0 uM)
for comparison purposes. The positive control 2-OMe RNA
phosphorothioate sequence 16 (0.25 uM) was delivered
employing Lipofectamine® 2000, as the transfection reagent, in
serum-free medium at a concentration recommended by the
manufacturer.

RT-qPCR protocol

The transfected myotubes were washed with PBS and pooled in
duplicates for RNA extraction using TriZol. The protocol was
performed in accordance with the manufacturer's recom-
mendation with the following modification: isopropanol
precipitation of total RNA was performed at —20 °C overnight.
The precipitated RNA (500 ng) was reverse-transcribed using
gScript cDNA SuperMix as instructed by the manufacturer.
cDNA (25 ng) was loaded on and analyzed using the 7900HT
Fast Real-Time PCR system; each amplification reaction was
performed in triplicate using mouse-specific TagMan probes.
The TagMan gene expression probe (ID# AIOIXIL) for the
skipped-exon product was designed to amplify the splice
junction at exon 22-24, whereas the TagMan gene expression
probe (Mmo0126935_m1) was used to amplify the region
spanning exons 23-24 of the non-skipped exon product.
Absolute quantitation of muscle-specific gene expression was
calculated using a standard curve derived from a known
quantity of DNA plasmids. The skipped-exon product frag-
ment (ie., exon 22-24) and the non-skipped exon product
fragment (i.e., exon 23-24) were cloned separately into pMAT
vectors, purified and concentrated. The copy number of each
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plasmid was calculated and a standard curve was loaded with
a starting concentration of 300 000 copies, which was then
subjected to successive 10-fold dilution until no plasmid
remained. The percentage of exon skipping was calculated
using the following equation:

% of exon skipping = [(average of triplicate reactions of skipped
DMD exon)/(average of triplicate reactions of skipped DMD
exon + average of triplicate reactions of
non-skipped DMD exon)] x 100

Nested RT-PCR protocol

Total RNA (350 ng) of transfected mdx mouse myotubes was
reverse-transcribed using a High Capacity cDNA Reverse Tran-
scription Kit according to the manufacturer's protocol with the
following modification: the primer mix was replaced with
forward (5-CAGAATTCTGCCAATTCGTGAG) and reverse (5'-
TTCTTCAGCTTGTGTCATCC) DNA primers for amplification of
exons 20 to 26. cDNA (350 ng) was PCR-amplified using the
platinum TaqPCRx DNA polymerase with a hot start at 94 °C for
2 min, followed by 30 cycles of 95 °C (30 s), 55 °C (1 min) and
72 °C (2 min). Approximately 20 ng (3 pL) of the primary PCR
products were re-amplified using the platinum TaqPCRx DNA
polymerase with forward (5-CCCAGTCTACCACCCTATCA-
GAGC) and reverse (5-CAGCCATCCATTTCTGTAAGG) DNA
primers amplifying exons 20 to 24. The secondary PCR was
carried out with a hot start at 94 °C for 2 min, followed by 22
cycles of 95 °C (30 s), 55 °C (1 min) and 72 °C (2 min). Secondary
PCR products were analyzed on a 1.5% agarose gel (see Fig. 11).

Conclusions

The trans-acting phosphorothioate RNA element 2’-OMeUtaPS
is a unique nucleic acid-based transfection reagent for the
delivery of uncharged nucleic acid sequences to either HeLa
pLuc 705 cells or mdx mouse myotube cells. 2-OMeUtaPS is
easily prepared from the 2’-O-methyluridine phosphoramidite
monomers 3 and 4 according to standard solid-phase
synthesis protocols. As expected, the properties of 2’-OMeU-
taPS are similar to those of dTtaPS in terms of recognition of
the polyA stretch of either PNA or PMO sequences that is
necessary for internalization of polyA-tailed PNA or PMO
sequences in mammalian cells. Although FACS studies indi-
cated that the 2’-OMeUtaPS-assisted delivery of PNA sequence
8 was as efficient as that of PMO sequence 6 in HeLa pLuc 705
cells (Fig. 4B), the affinity of 2’-OMeUtaPS for the polyA-tail of
PNA sequence 9 seemingly interfered with either its endo-
somal release or its nuclear membrane penetration; either
outcome resulted in a ~10-fold decrease in the production of
luciferase in HeLa pLuc 705 cells when compared to that ob-
tained with the polyA-tailed PMO sequence 10 (Fig. 3B).
The FACS analyses are inspirational in terms of the require-
ments for endosomal trafficking of uncharged nucleic acid
sequences, which are critical to the production of functional of
nucleic acid-based drugs in the cytoplasm and/or nucleus of
mammalian cells. These findings should encourage further
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investigations on the parameters associated with endosomal
trafficking pathways. Similar to dTtaPS, the 2’-OMeUtaPS-
mediated internalization of polyA-tailed uncharged
sequences occurs through an energy-dependent mechanism
and macropinocytosis appears to be the predominant endo-
cytic pathway for cellular uptake. The recognition of polyA-
tailed PNA or PMO sequences by 2'-OMeUtaPS is specific
(Fig. 7) and likely to occur through weak base-pairing inter-
actions; recognition of the polyA tail of these uncharged
sequences is strongly inhibited in the presence of urea,"**
which is a potent denaturant (Fig. 8). Furthermore, 2’-OMeU-
taPS is nothing like commercial cationic lipid reagents, which
preferably require serum-free media for optimal transfection
performance; 2-OMeUtaPS performed comparably well in
both serum-free and serum-containing media (Fig. 9) at
optimal transfection concentrations.

The functional activity of PMO sequence 10 when delivered
by 2'-OMeUtaPS to HeLa pLuc 705 cells was confirmed by
restoration of luciferase activity through alternate splicing of
the incorrectly spliced pre-mRNA encoding luciferase. Likewise,
the functionality of 2’-OMeUtaPS-mediated delivery of PMO
sequence 14 to mdx mouse myotube cells was demonstrated by
excision of the mutated exon 23 from the pre-mRNA encoding
dystrophin through an alternate splicing event (Fig. 10 and 11).
Efficient delivery of PMO sequences to muscle cells is particu-
larly important for the treatment of DMD.

The findings reported herein strongly underscore the versa-
tility of synthetic nucleic acid-based transfection reagents for
the delivery of antisense nucleic acid-based drugs for the
treatment of human diseases. Future work will focus on the
development of modified amphipathic ¢rans-acting phosphor-
othioate DNA and RNA elements. Specifically, these elements
are intended to be decorated with a variable number of ther-
molytic positively charged and/or lipophilic functions for
thiophosphate/phosphate protection; this should enable in vitro
and in vivo delivery of uncharged and negatively charged nucleic
acid-based drugs to mammalian cells/tissues while maintaining
minimal cytoxicity.
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