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nd multilayer perceptron for
predicting the dielectric loss of polyimide
nanocomposite films

H. Guo, *a J. Y. Zhaoab and J. H. Yinc

As a new insulating material, nanoscale thin dielectric films have been widely used in variable frequency

motors, electron devices and other fields. Dielectric loss is a key performance parameter of this material.

Currently, studies on the dielectric properties of polymer matrix nanocomposite films are based mostly

on experiments that are costly and time-consuming. In this article, an integrated method that combines

experiment and ensemble learning is applied. In situ polymerization is employed to prepare 32 polyimide

matrix nanocomposite films that have different weight ratios, sizes and thicknesses and that are doped

with different inorganic nanoscale particles. The dielectric losses of these 32 prepared films are

measured as well. Ten multilayer perceptrons are integrated into a random forest and multilayer

perceptron (RF-MLP) model using the random forest (RF) method. As shown in the experimental results,

under the 10-fold cross validation, the correlation coefficient, the mean absolute error, the root mean

squared error and the root relative squared error of the RF-MLP model are 0.9447, 0.0007, 0.0013 and

32.0972%, respectively. The deviation between the predicted value and the measured value is small. The

RF-MLP model has a better prediction performance than other single models, such as linear regression,

backpropagation neural network, radial basis function neural network, support vector regression and

multilayer perceptron as well as other ensemble learning methods, such as bagging, boosting and RF-

decision stump. Therefore, the RF-MLP model is a fast and reliable method applicable to predicting the

properties of the new nano-dielectric material and other materials.
Introduction

Polyimide is a polymer of the imidemonomer unit (–CO–N–CO–
), as a part of the main chain. Among the polyimides, phthali-
mide is the most important structure. As a specially engineered
material, polyimide has been commonly used in many elds,
including aerospace, aviation, variable frequency motors,
microelectronics, nanometre, liquid crystals, separating
membranes, lasers and so on. Polyimide has now been globally
researched, developed and utilized and is listed as one of the
most promising engineering plastics in the 21st century.1,2 In
recent years, polyimide matrix nanocomposite lms have
attracted a great deal of academic attention. By doping different
inorganic nanoparticles into the polyimide, many researchers
and scholars have acquired better electrical, thermal and
mechanical properties of the material.3–8 As a key electric
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property of nanocomposite lm, dielectric loss can be affected
by a number of factors, such as the type, the dielectric constant,
the electrical resistivity, the thermal conductivity, the size and
the specic surface area of the doped nanoparticle as well as by
the doping ratio and the lm thickness.9–12 In 1997, the E. I. Du
Pont Company, ABB and Siemens spent a great deal of effort
and time on testing over 4000 materials and nally synthesized
the CR-corona resistant polyimide lms, such as Kapton-CR
and Kapton-FCR, which have been widely used in European
high-speed electric locomotives. Their corona resistance is 500
times as high as that of a conventional polyimide lms. It is for
this reason that developing a fast and efficient method to
predict the dielectric loss of polyimide nanocomposite lms is
urgent and important.

ANNs (articial neural networks) has been extensively
applied for predicting lm properties. Bahramian Alireza et al.
simulated and predicted the growth rate of TiO2 nanostructured
thin lms by using a feed-forward back-propagation network.13

Ko Young-Don et al. made use of PCA (principle component
analysis)-based neural networks to predict the physical and
material properties of an HfO2 thin lm.14 Nobrega Marcelo
Medre et al. predicted the mechanical and barrier properties of
biodegradable lms by using the SOMs (self-organizing maps)
neural network. The deviation between the predicted value and
RSC Adv., 2017, 7, 30999–31008 | 30999
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Fig. 1 Preparation of polyimidematrix inorganic nanocomposite films.
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the measured value was not higher than 24%.15 M. Payandeh-
doost et al. optimized the group method of data handling
(GMDH)-type neural networks by means of genetic algorithms
to predict present separate polynomial relations for the area-
weighted average lm cooling heat transfer coefficient.16 Also
using a neural network, Piliougine Michel et al. characterized
the electrical parameters of several thin-lm photovoltaic
module technologies.17 Yang Yu-Sen applied a generalized
regression neural network (GRNN) for predicting the friction
coefficient of deposited Cr1�xAlxC lms on high-speed steel
substrates via direct current magnetron sputtering systems.18 By
taking advantage of the neural network, these researchers did
well in predicting lm properties. However, there are still
problems: (1) only conventional lms are used for the predic-
tions, and no studies on predicting properties of new nano-
composite lms have been reported; (2) only single lms are
used for regression prediction, and very few studies have been
conducted on predicting the properties of lms doped with
different particles, and; (3) the accuracy of the single neural
network prediction model needs to be further improved.

Polymeric nanocomposites are a new type of dielectric.
However, there is no report on using intelligent computing
together with neural networks technology to predict its dielec-
tric loss. On an experimental basis, this paper makes use of
a RF-optimized MLP ensemble learning model to predict the
dielectric loss of the polyimide nanocomposite lms. In the
following, materials and experimental procedures are intro-
duced rst. The construction of the sample library and the
predictionmodel are described next. Then, experimental results
are described and the establishment of the RF-MLP model with
10-fold cross validation results is carried out. The 10-fold cross
validation are also progressed for discussing the accuracy of the
RF-MLP model and the single prediction models, including BP
(back-propagation) neural network, RBF (radical basis function)
neural network, SMO-SVR (sequential minimal optimization-
support vector machine), MLP (multilayer perceptron) neural
network and linear regression. Comparisons to other ensemble
learning methods are also made. Finally, the paper concludes
with a summary of this study.

Experimental
Film preparation

In situ polymerization was employed to prepare the polyimide
matrix inorganic nanocomposite lms. The experimental
materials were as follows: 4,40-ODA (oxy dianiline), PMDA
(pyromellitic dianhydride), N,N-DMAC (dimethylacetamide),
BaTiO3, Rutile TiO2, SiO2, a-Al2O3, Al2O3 and C2H6O. First,
PMDA was added to the solution of 4,40-ODA and N,N-DMAC to
prepare the ployamic acid. Next, different nanoparticles were
added to the prepared acid, which was then processed by paving
membrane heat treatment and imidization. Fig. 1 shows the
detailed preparation process of the polyimide matrix inorganic
nanocomposite lms.

In this study, 32 polyimide matrix inorganic nanocomposite
lms with different weight ratios, sizes and thicknesses and
doped with different inorganic nanoparticles (BaTiO3, Rutile
31000 | RSC Adv., 2017, 7, 30999–31008
TO2, SiO2, a-Al2O3 and Al2O3) were prepared. The lm samples
are listed in Table 1.
Experiment condition & test devices

A broadband dielectric spectrometer (Novelcontrol, Germany)
was used to obtain the dielectric spectrums of 40 sample pairs
with the following settings: frequency 50 Hz, impedance 0.01 U

to 100 TU and capacitance 1 fF to 1 F, with the accuracy of phase
difference at 2 � 10�3 and the accuracy of dielectric loss (tan d)
less than 10�5.

A transmission electron microscope (Trcnai G2 F30) was
used to observe the micro-structures of the prepared composite
lm samples at a resolution ratio of 0.205 nm and accelerating
voltages of 50–300 kV.

FEI Quanta 200, at an accelerating voltage of 20 keV, was
used to observe the surface and the fracture topographies of the
composite lm samples. The samples were directly observed
under an electron microscope without surface treatment.
Results and discussion
Microstructure characterization

Both a transmission electron microscope and a scanning elec-
tronmicroscope were used to observe themicrostructures of the
surface and the fracture surface of the polyimide (PI) composite
lms, as shown in Fig. 2. Fig. 2a shows the microstructure of PI/
Al2O3 (15 wt%) and Fig. 2b, c and d show the surface topogra-
phies of PI/BaTiO3 (20 wt%), PI/TiO2 (20 wt%) and PI/SiO2

(15wt%), respectively. Fracture and surface topographies of the
different composite lms were investigated. The results show
that the inorganic nanoparticles have good dispersion in the 32
prepared lms. These lms have uniform thicknesses, and the
particles bind closely with the PI matrix.
This journal is © The Royal Society of Chemistry 2017
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Table 1 32 nanocomposite PI films

Nanoparticles Particle size (nm) Doped proportion (wt%) Film thickness (mm)

BaTiO3 100 10, 15, 20, 25, 30, 50, 60, 70 25
Rutile TiO2 35 1, 3, 4, 5, 7 25
SiO2 40 5, 10, 15, 20, 25 25
SiO2 7 10, 15, 20, 25 30
a-Al2O3 30 4, 8, 12, 16, 20, 24 30
Al2O3 13 15, 20, 25 30
PI 0 0 25

Fig. 2 Microstructures of nanocomposite films (a) TEM image of the
PI/Al2O3 15 wt%; (b) SEM image of the PI/BaTiO3 20wt%; (c) SEM image
of the PI/TiO2 20 wt%; (d) SEM image of the PI/SiO2 15 wt%.
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Dielectric loss results

Studies show that the physical properties of the doped inor-
ganic nanoparticles are key factors that impact the dielectric
loss of the composite lms. On the basis of previous studies,
this paper has built a library that contains 32 PI (polyimide)
matrix composite lms, with parameters such as inorganic
nanoparticle type, dielectric constant, electrical resistivity,
thermal conductivity, particle size, specic surface area and
nanocomposite lm thickness. The dielectric losses of the
composite lms in Table 1 are tested at room temperature at
a frequency of 50 Hz, and the test results are shown in Table 2.

Ensemble learning prediction model

Ensemble learning has been proposed by many researchers as
a solution to both the over-tting and the low accuracy of model
regression and classication. Currently, it is a hotspot in the
elds of machine learning and intelligent computing.19–23

Ensemble learning can be used to convert a number of weak
classiers into a strong one. Common ensemble learning
methods include boosting, bagging and random forest. Boost-
ing constantly upgrades its weight during data extraction and
corrects the dataset weight for the former misclassication such
This journal is © The Royal Society of Chemistry 2017
that a strong classier or a strong regressionmodel can be built.
Bagging includes the weighting of multiple classiers that are
generated from a training set. As an improved version of
boosting, random forest is stronger for regression and can
prevent over-tted predictions.

Articial neural networks have been widely used for pre-
dicting and identifying material properties in recent years.24–26 A
multilayer perceptron (MLP) is a feedforward articial neural
network model that maps sets of input data onto a set of
appropriate outputs.27 AnMLP consists of three parts, which are
the input layer, hidden layer and output layer. Fig. 3 is a stan-
dard three-layer feedforward MLP where i ¼ 1, 2, ., n, j ¼ 1, 2,
., h, r ¼ 1, 2, ., p, and s ¼ 1, 2, ., m. For each layer, there is
a synaptic weight matrix that connects the former layer to the
next layer. The denitions of a nonlinear input–output map and
a nonlinear diagonal matrix are given as follows:

f(l)(*) ¼ diag[f(1)[*], f(2)[*], ., f(l)[*]] (1)

for which the dimension is related to l according to the
following conditions: when l ¼ 1, f(1)[*] is a h � h diagonal
matrix; when l ¼ 2, f(2)[*] is a p � p matrix; and when l ¼ 3, it is
a m � m matrix. For a given input vector x˛Rn�1 the output of
the rst layer is as follows:

xout1 ¼ f(1)[n(1)] ¼ f(1)[W(1)x] (2)

If eqn (2) is taken as the input of the second layer, then the
output of the second layer is as follows:

xout2 ¼ f(2)[n(2)] ¼ f(2)[W(2)xout1] (3)

If eqn (3) is taken as the input of the third layer, then the
output of the third layer is as follows:

y ¼ xout3 ¼ f(3)[n(3)] ¼ f(3)[W(3)xout2] (4)

Substituting eqn (2) into (3) and (4), we obtain the nal
network:

y ¼ f(3)[W(3)f(2)[W(2)f(1)[W(1)x]]] ¼ U[x] (5)

The RF (random forests) algorithm was proposed by Leo
Breiman in 2001.28 The algorithm contains a multitude of
decision trees, and random forests are generated from
RSC Adv., 2017, 7, 30999–31008 | 31001
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Table 2 Samples for predicting dielectric losses of the composite filmsa

Sample Type of nanoparticles

Input Output

X1 X2 X3 X4 X5 X6 X7 Y

1 BaTiO3 1400 1 � 105 25 0.50 10 100 12 0.00140
2 BaTiO3 1400 1 � 105 25 0.50 15 100 12 0.00200
3 BaTiO3 1400 1 � 105 25 0.50 20 100 12 0.00246
4 BaTiO3 1400 1 � 105 25 0.50 25 100 12 0.00276
5 BaTiO3 1400 1 � 105 25 0.50 30 100 12 0.00296
6 BaTiO3 1400 1 � 105 25 0.50 50 100 12 0.00652
7 BaTiO3 1400 1 � 105 25 0.50 60 100 12 0.01647
8 BaTiO3 1400 1 � 105 25 0.50 70 100 12 0.01839
9 Rutile TiO2 100 9 � 107 25 0.40 0 35 70 0.00177
10 Rutile TiO2 100 9 � 107 25 0.63 1 35 70 0.00165
11 Rutile TiO2 100 9 � 107 25 0.63 3 35 70 0.00199
12 Rutile TiO2 100 9 � 107 25 0.63 4 35 70 0.00156
13 Rutile TiO2 100 9 � 107 25 0.63 5 35 70 0.00278
14 Rutile TiO2 100 9 � 107 25 0.63 7 35 70 0.00283
15 SiO2 1.56 1 � 1016 25 160 5 40 300 0.00150
16 SiO2 1.56 1 � 1016 25 160 10 40 300 0.00200
17 SiO2 1.56 1 � 1016 25 160 15 40 300 0.00180
18 SiO2 1.56 1 � 1016 25 160 20 40 300 0.00150
19 SiO2 1.56 1 � 1016 25 160 25 40 300 0.00160
20 a-Al2O3 10 1 � 1014 30 4.10 4 30 25 0.00300
21 a-Al2O3 10 1 � 1014 30 4.10 8 30 25 0.00450
22 a-Al2O3 10 1 � 1014 30 4.10 12 30 25 0.00500
23 a-Al2O3 10 1 � 1014 30 4.10 16 30 25 0.00700
24 a-Al2O3 10 1 � 1014 30 4.10 20 30 25 0.00800
25 a-Al2O3 10 1 � 1014 30 4.10 24 30 25 0.00850
26 Al2O3 8 1 � 1014 30 29.31 15 13 100 0.00266
27 Al2O3 8 1 � 1014 30 29.31 20 13 100 0.00285
28 Al2O3 8 1 � 1014 30 29.31 25 13 100 0.00305
29 SiO2 1.56 1 � 1016 30 160 10 7 350 0.00335
30 SiO2 1.56 1 � 1016 30 160 15 7 350 0.00372
31 SiO2 1.56 1 � 1016 30 160 20 7 350 0.00413
32 SiO2 1.56 1 � 1016 30 160 25 7 350 0.00460

a X1: dielectric constant of the nanoparticle; X2: electrical resistivity of the nanoparticle (U m); X3: lm thickness (mm); X4: thermal conductivity of
the nanoparticle (W cm�1 K�1); X5: doping ratio of the nanoparticle (wt%); X6: size of the nanoparticle (nm); X7: specic surface area of the
nanoparticle (m2 g�1), and; Y: dielectric loss of the nanocomposite lm.
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a number of combined optimization decision trees. RF is a fast
and efficient machine learning method for classication and
regression. It has many advantages. It can effectively prevent
over-ttings, quickly process high dimensional data, and
maintain high accuracy when the dataset is not complete. By
virtue of the idea of random forests, we use an MLP (multilayer
perceptron) neural network to replace the decision tree to
construct an RF-MLP (random forest andmultilayer perceptron)
model, as shown in Fig. 4. Calculation steps of the RF-MLP
model are as follows:

Step 1: Randomly extracting N samples from the training
samples of the nanocomposite lms;

Step 2: Randomly extracting K samples from the explanatory
variables and using the Gini value to select the variable that
leads to the minimal variability of the divided internal subset;

Step 3: Using the variable obtained in step 2 to divide the
training set into two subsets;

Step 4: Repeating step 3 and training the MLP by using the
divided subsets;

Step 5: Averaging the MLP regression models.
31002 | RSC Adv., 2017, 7, 30999–31008
Model assessment

Many indexes can be used to assess the prediction performance,
such as MAPE (mean absolute percentage error), MAE (mean
absolute error), RMSE (root mean squared error), CC (correla-
tion coefficient), RAE (relative absolute error) and RRSE (root
relative squared error), etc. In this study, the four indexes, CC,
MAE, RMSE and RRSE, were used.

The CC (correlation coefficient) represents how close the
linear regression relation between fi (independent variable) and
yi (response variable) is. It is directly proportional to prediction
accuracy.

MAE (mean absolute error) is the diversity between the pre-
dicted value and themeasured value. It is inversely proportional
to prediction accuracy. MAE can be expressed as follows:

MAE ¼ 1

n

Xn

i¼1

j fi � yij ¼ 1

n

Xn

i¼1

jeij (6)

where fi is the predicted value and yi is the measured value.
This journal is © The Royal Society of Chemistry 2017
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Fig. 3 Architecture of a feedforward three-layer perceptron.
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RMSE (root mean squared error) is inversely proportional to
prediction accuracy. In other words, the smaller the value of RMSE
is, themore accurate the predictor will be. It is expressed as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

n�1

ð fi � yiÞ2

n� 1

vuuut
(7)

The expression of RRSE (root relative squared error) is as
follows:

RRSE ¼

Xn

i¼1

j fi � yij2

Xn

i¼1

j f i � yij2
(8)
Fig. 4 RF-MLP model.

This journal is © The Royal Society of Chemistry 2017
It is inversely proportional to prediction accuracy, which
means that the smaller the value of RSSE is, the more accurate
the predictor will be.
Results of the prediction model

The computer was a Mac Book Pro Intel I7 CPU with 16 GB DDR-
RAM. The programming soware used was Java and WEKA.29 A
10-fold cross validation was used for the accuracy test. The
dataset was divided into ten subsets. Nine subsets were taken as
the training set and one subset was used for test. The mean
value of the 10 prediction accuracies was taken as the nal
accuracy. Model parameters include the number of basic
regressions, attribute, r (ridge) and N (number of neurons).
Here, the MLP neural network has ten basic regressions. For
tuning the value manually, Fig. 5 shows the CC curve when both
Fig. 5 Variation of correlation coefficient and N.

RSC Adv., 2017, 7, 30999–31008 | 31003
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N and r are changing. When N ¼ 8 and r ¼ 0.04, CC reached its
maximum value of 0.9447; in this case, the regression perfor-
mance was the best and the prediction accuracy was the
Fig. 6 Variation of MAE and N; (a) N ¼ 2, r changes from 0.003 to 0.06; (b
to 0.06; (d) N ¼ 6, r changes from 0.003 to 0.06.

Fig. 7 Variation of RMSE andN; (a)N¼ 2, r changes from 0.003 to 0.06; (
to 0.06; (d) N ¼ 8, r changes from 0.003 to 0.06.

31004 | RSC Adv., 2017, 7, 30999–31008
highest. Fig. 6, 7, and 8 show the curves of the MAE, RSME and
RRSE, respectively. When N ¼ 8 and r ¼ 0.04, the MAE, RMSE
and RRSE reached their minimum values of 0.0007, 0.0014 and
) N¼ 4, r changes from 0.003 to 0.06; (c) N ¼ 8, r changes from 0.003

b)N¼ 4, r changes from 0.003 to 0.06; (c)N¼ 6, r changes from 0.003

This journal is © The Royal Society of Chemistry 2017
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Fig. 8 Variation of RRSE and N; (a) N ¼ 2, RRSE changes from 0.003 to 0.06; (b) N ¼ 4, RRSE changes from 0.003 to 0.06; (c) N ¼ 6, RRSE
changes from 0.003 to 0.06; (d) N ¼ 8, RRSE changes from 0.003 to 0.06.
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34.89%, respectively, in which situation, the prediction accu-
racy of the model was the highest. The above data show that
when the number of the MLP regression is 10 and N¼ 8 and r¼
0.04, the model had the highest prediction accuracy.

Attribute selection, also called dimensionality reduction, is
a key factor to control the prediction accuracy of the model.
Common attribute selection modes include all-attribute, prin-
cipal component analysis (PCA) and the Haar wavelet trans-
form. In the RF-MLP model, the three modes are experimentally
compared. Table 3 lists the comparison results of the prediction
accuracy when N ¼ 8 and r ¼ 0.04. As Table 3 shows, the CC
value is 0.9447 in the principal component analysis mode,
which is higher than those in the other two modes. In the
principal component analysis mode, the MAE, RMSE and RRSE
are 0.0007, 0.0013 and 32.0972%, respectively, which are all
smaller than those in the all-attribute and Haar wavelet trans-
form modes. Fig. 9 shows the comparison between the pre-
dicted values and the measured values when the model was set
at the optimal parameters (N¼ 8, r¼ 0.04, principal component
and 10-fold cross validation). The well-tting curves show that
the model is effective to predict the dielectric losses of the
nanocomposite lms.
Table 3 Prediction accuracies in different attribute selection modes
(N ¼ 8, r ¼ 0.04)

Assessment Normal PCA Haar wavelet

CC 0.9327 0.9447 0.9419
MAE 0.0009 0.0007 0.0008
RMSE 0.0014 0.0013 0.0013
RRSE (%) 35.2677 32.0972 32.8783

This journal is © The Royal Society of Chemistry 2017
Model comparison

For further verication, the RF-MLP model was experimentally
compared with the LR (linear regression),30 BP (back-
propagation) neural network,31 RBF (radial basis function)
neural network,32 SVR (support vector regression)33 and MLP
(multilayer perceptron) neural network34 under the same
conditions. The comparison results are shown in Table 4 and
Fig. 10. As shown in Fig. 10a, the CC value of the RF-MLP model
is 0.962, which is higher those of LR, RBF, MLP and SVR. This
proves that the linear regression relation of the RF-MLP model
is better than that of the other ve models. According to
Fig. 10b, c and d, the MAE, RMSE and RRSE values of the RF-
Fig. 9 Comparison between the predicted value and the measured
value.
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Table 4 Comparisons between the RF-MLP model and other single prediction models

Assessment RF-MLP BP RBF SMO-SVR MLP Linear regression

CC 0.9447 0.9159 0.9120 0.7555 0.9302 0.7699
MAE 0.0007 0.0012 0.0011 0.0015 0.0010 0.0019
RMSE 0.0013 0.0018 0.0016 0.0029 0.0015 0.0025
RRSE 32.0972% 45.8046% 40.5254% 71.1128% 36.5720% 62.1629%

Fig. 10 Comparisons between the RF-MLP model and other single prediction models. (a) CC values of different models; (b) MAE values of
different models; (c) RMSE values of different models; (d) RRSE values of different models.

RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
Ju

ne
 2

01
7.

 D
ow

nl
oa

de
d 

on
 1

2/
2/

20
25

 7
:1

1:
34

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
MLP model are 0.0007, 0.0013 and 32.0972%, respectively,
which are all smaller than those of the other ve models. This
proves that the prediction accuracy of the RF-MLP model is
better than that of the other ve models.

Table 5 and Fig. 11 show the results of the comparison
between the RF-MLP model and other ensemble learning
models, including the RF (random forest)-decision stump,
bagging-MLP and AR (Additive Regression)-MLP. As seen in
Fig. 11a, the CC value of the RF-MLP model is 0.9447, which is
higher than that of the other three models. Fig. 11b, c and
d show that the MAE, RMSE and RRSE values of the RF-MLP
model are 0.0007, 0.0013 and 32.0972%, respectively, which
are all smaller than those of the other three models. Therefore,
Table 5 Comparisons between the RF-MLP model and other prediction

Assessment RF-MLP RF-decision stump

CC 0.9447 0.6054
MAE 0.0007 0.0021
RMSE 0.0013 0.0032
RRSE 32.0972% 80.5834%

31006 | RSC Adv., 2017, 7, 30999–31008
compared with other ensemble learning models, the RF-MLP
model could generate smaller error and better performance in
predicting the dielectric losses of the nanocomposite lms.
Robustness of the prediction model

In ref. 18, the GRNN (generalized regression neural network)
was used to predict the friction coefficient of deposited Cr1�x-
AlxC lms, and the seven control factors selected in experiments
were the chromium and aluminium target current, argon and
acetylene ow rate, negative bias voltage, DC pulse frequency,
and sputtering time. To verify the generality and the robustness
of the model in this paper, we use the same sample data and
models

Bagging-MLP Additive regression-MLP

0.8861 0.9373
0.0011 0.0008
0.0018 0.0015
45.0949% 36.2929%

This journal is © The Royal Society of Chemistry 2017
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Fig. 11 Comparisons between the RF-MLP model and other ensemble learning models. (a) CC values of different models; (b) MAE values of
different models; (c) RMSE values of different models; (d) RRSE values of different models.

Table 6 Comparison of predicting the friction coefficient of deposited
Cr1�xAlxC films

RF-MLP GRNN18

CC 0.896 —
RMSE 0.053 0.36
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condition in ref. 18 to make an experimental comparison, as
shown in Table 6. The optimized parameters of the RF-MLP
model are as follows. The random seed is 1, the number of
the basic regressions is 10, the attribute is PCA, r (ridge) is 0.01,
and N (the number of the neurons) is 10. When the RF-MLP
model was used to predict the friction coefficient of deposited
Cr1�xAlxC lms, the CC value was 0.896 and the RMSE value was
0.053. These values are far smaller than those in ref. 18, which
indicates that the RF-MLP model is more accurate than the
model in ref. 18 in predicting the friction coefficient of depos-
ited Cr1�xAlxC lms. As proven by the comparison, the RF-MLP
model shows both generality and robustness when used to
predict properties of other lms.
Conclusions

In this study, themethod of in situ polymerization was employed
to prepare 32 polyimide matrix nanocomposite lms that have
different weight ratios, sizes and thicknesses and doping ratios
of inorganic nanoscale particles. Dielectric losses of the 32
This journal is © The Royal Society of Chemistry 2017
prepared lms were measured as well. Based on the results of
the experiment, the RF-MLP ensemble learning model for pre-
dicting the dielectric losses of the polyimide nanocomposite
lms is proposed. By using the random forest method, we
convert 10 multilayer perceptron neural networks into a strong
prediction model which is efficient in predicting the dielectric
losses of the polyimide nanocomposite lms. The following
conclusions are obtained based on the experimental data:

(1) The 10-fold cross validation was used to predict the
dielectric losses of 32 polyimide nanocomposite lms. For the
prediction results, the CC was 0.9447, the MAE was 0.0007, the
RMSE was 0.0013, and the RRSE was 32.0972%, which indicate
that the RF-MLP model is efficient in predicting such dielectric
losses.

(2) The comparison experiment shows that the CC value of
the RF-MLP model is higher than that of the linear regression,
backpropagation neural network, radial basis function neural
network, support vector regression and multilayer perceptron
neural network. In addition, compared with the other models,
the RF-MLP model has smaller MAE, RMSE and RRSE values
and better prediction parameters.

(3) If compared with other ensemble learning methods, such
as bagging, boosting and RF-decision stump, the RF-MLP
model has a higher CC value but lower MAE, RMSE and RRSE
values when used to predict the dielectric losses of polyimide
nanocomposite lms. This indicates that the RF-MLP model is
more accurate for dielectric loss prediction.

(4) The results show that the RF-MLP model is applicable not
only to predicting the dielectric loss of the polyimide
RSC Adv., 2017, 7, 30999–31008 | 31007
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nanocomposite lms but also to predicting the friction coeffi-
cient of deposited Cr1�xAlxC lms with prediction accuracy than
other models. In addition, the RF-MLP model exhibits consid-
erable robustness.

For further studies, we plan to use other ensemble learning
methods to predict corona resistance, dielectric constant and
thermal weight losses of polyimide matrix nanocomposite lms
to provide an efficient, fast and reliable method for predicting
the dielectric properties of new nano-materials. In this paper,
we have only discussed the dielectric losses of polymer-based
composites with orientation polarization. In further research,
we will focus on the applicability of this model for poly-anion-
type materials, such as SiO2 and KH2PO4.
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