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metabolite mixtures using
chemometric analysis of a speeded-up 2D
heteronuclear correlation NMR experiment†

Rakesh Sharma, Navdeep Gogna, Harpreet Singh and Kavita Dorai *

One-dimensional (1D) NMR spectra of mixtures of metabolites suffer from severe overlap of spectral

resonances and hence recent research in NMR-based metabolomics focuses on using two-dimensional

(2D) NMR experiments for metabolite fingerprinting. While standard 2D NMR experiments offer an

attractive alternative to the problem of overlapping resonances, they suffer from the disadvantages of

long experimental time and poor sensitivity. This work uses a fast 2D NMR experiment namely the 2D

ASAP-HSQC (acceleration by sharing adjacent polarization heteronuclear single quantum correlation

spectroscopy) scheme, which achieves good spectral resolution in a fraction of the experimental time

taken by the standard 2D NMR pulse sequences. The experiment is easy to implement on standard NMR

spectrometers and does not require specialized hardware, complicated software routines or expensive

isotope labeling. The entire metabolomics study, including metabolite identification and preparing input

data for multivariate statistical analysis, is performed using the 2D NMR dataset. Integrated 2D cross-

peak intensities are used directly as input variables for statistical analysis. The results of the statistical

analysis obtained using the 2D ASAP-HSQC spectra were validated by comparing with those obtained by

using 1D proton NMR and the standard 2D HSQC NMR datasets, and a good match was obtained.
1 Introduction

NMR spectroscopy is rapidly becoming themethod of choice for
metabolomics-based studies, due to ease of sample preparation
and rigorous spectral analysis leading to accurate metabolite
identication and quantication, as discussed extensively in
several topical review articles.1–4 While one-dimensional (1D) 1H
NMR spectra can be easily acquired with high sensitivity in just
a few minutes, the spectra of complex metabolite mixtures
contain tens to hundreds of metabolites with severely over-
lapping peaks, which can hinder unambiguous identication
and accurate quantitation of these metabolites. Further, NMR
peaks from less abundant metabolites are oen not quanti-
able in 1D proton spectra as they are obscured by peaks from
more concentrated metabolites.

Two-dimensional (2D) NMR spectroscopy has several
advantages over 1D NMR and can provide detailed information
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about molecular structure and topology via a multitude of
correlation maps between atoms; 2D NMR can also resolve the
overlap problem present in 1D NMR to a certain extent, by
spreading out cross-peaks (and hence connectivity information)
along the indirect 13C (F1) dimension in the NMR spectrum.5

However, while 1D 1H NMR peaks are easy to quantify as signal
intensity is directly proportional to metabolite molar concen-
trations, 2D NMR resonance cross-peak intensities are difficult
to quantify as resonance-specic signal attenuation occurs
during the coherence transfer periods due to spin relaxation,
pulse imperfections and other experimental artifacts.6–9 The
relative concentrations obtained from 2D cross-peak intensities
are typically converted to absolute concentrations by refer-
encing to an internal standard of known concentration, and the
accuracy of metabolite concentration measurement can be
improved by averaging intensities of several non-overlapping
2D cross peaks assigned to that particular metabolite.10

Several techniques such as matrix factorization, maximum
likelihood estimation and pattern recognition have been
designed to overcome problems of peak intensity quantication
(and hence estimation of metabolite concentration) from 2D
NMR spectra.11–16 The various multidimensional strategies in
current use and the advantages and disadvantages of using 2D
NMR for quantitative metabolomics are extensively discussed in
several recent review articles.17–19 One versatile and widely-used
method to accurately quantify 2D peak intensities is the time-
zero HSQC method (HSQC0), wherein several HSQC spectra
This journal is © The Royal Society of Chemistry 2017
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with incremented repetition times are recorded and the 2D
cross-peak intensities are extrapolated back to zero time, giving
signal intensities which are proportional to the concentrations
of the individual metabolites.20–22 The 2D HSQC NMR experi-
ment has thus far proved most popular for metabolomics
investigations,23,24 although there have been a few studies using
the 2D TOCSY,25,26 2D COSY,27,28 and 2D INADEQUATE NMR
pulse sequences.29–31

Most metabolomics investigations use 2D NMR spectroscopy
predominantly as an aid to peak assignment (and hence
metabolite ngerprinting), however recent studies have used 2D
NMR experiments as a stand-alone method for chemo-
metrics.32–35 A major problem with 2D NMR experiments, which
precludes their usage in high-throughput metabolomic studies
(typically involving several dozen replicate samples), is that of
long experimental times. Several techniques to circumvent this
problem in NMR-based metabolomics studies include using
non-uniform sampling to accelerate 2D HSQC experiments,36 as
well as using “ultrafast” versions of standard 2D experiments,
where data acquisition occurs in a single scan using spatial
encoding and detection is based on echo planar imaging.37–39 All
these fast 2D NMR techniques as tools for metabolomics
studies are extensively discussed in a recent review article.40 In
a another direction to reduce 2D experiment time, a novel
sensitivity-enhanced 2D HSQC-type NMR experiment was
recently designed called the ASAP-HSQC scheme (acceleration
by sharing adjacent polarization heteronuclear single quantum
correlation spectroscopy).41 The scheme records very fast 2D
13C–1H correlation spectra without compromising on spectral
quality or resolution and uses much shorter relaxation delays as
compared to conventional 2D HSQC experiments. While the
interscan delay can be very short in an ASAP scheme, it is
limited to heteronuclear experiments on samples at natural
abundance.40 Further, since ASAP schemes incorporate very
short relaxation delays and apply rapid high-power pulses for
quite long times,42 they place a heavy stress on the rf probe and
could lead to sample heating and subsequent line-broadening
and resolution loss in the NMR spectrum.43,44 Such problems
can be avoided by performing an EXACT ASAP-HSQC experi-
ment, which introduces delays into the acquisition periods and
later recovers the missing data points in the recorded FIDs via
algorithmic reconstruction methods.45

This work evaluates the utility of the 2D ASAP-HSQC exper-
iment in performing a fully 2D NMR-basedmetabolomics study,
wherein the entire study from metabolite identication to
preparing input data for multivariate statistical analysis is
performed using 2D NMR datasets alone. Our results demon-
strate the benets of directly using 2D NMR spectral peak
intensities instead of the more traditional 1D 1H NMR peaks as
inputs for multivariate statistical analysis. We used tea as
a model system and performed non-targeted metabolite
ngerprinting. Metabolites were identied solely from the 2D
NMR spectra, and the NMR analysis was combined with
multivariate pattern recognition to identify metabolites that
contribute signicantly to the metabolic differences between
green tea and black tea. We used the HSQC0 approach20 for
accurate quantication of 2D cross-peak intensities in both the
This journal is © The Royal Society of Chemistry 2017
standard 2D HSQC and the 2D ASAP-HSQC experiments. We
show that the novel 2D ASAP-HSQC experiment is able to obtain
the same two-dimensional carbon–proton correlation informa-
tion as the standard 2D HSQC experiment, in a fraction of the
time. We compared the results of performing multivariate data
analysis on 2D NMR datasets with those obtained by using 1D
NMR datasets and found a good agreement between the two
methods. We also performed a multivariate analysis to identify
metabolites that vary in concentration in Bougainvillea plant
leaves collected at two different times during the day. For this
study, we had no prior information about metabolites identied
from 1D 1H NMR data, and using 2D NMR data alone we were
able to perform the entire analysis and identify the signicant
metabolites. Our work is a useful addition to the current arsenal
of fast 2D NMR experiments utilized in metabolomics research.
2 Experimental
2.1 Model system & sample preparation

There has been much interest in the anti-oxidant activity and
medicinal properties of green tea46 and in the metabolites that
contribute signicantly to the differences in green tea and black
tea.47,48 We hence used green and black tea as a model system to
demonstrate the utility of the 2D ASAP-HSQC experiment for
fast and accurate proling of metabolite mixtures. The chemical
shis and metabolite lists for green tea and black tea obtained
from NMR data and reference databases is summarized in
Table ST1 (ESI†). The green tea and black tea samples were
prepared from commercially procured tea leaves. To prepare the
sample for NMR experiments, 0.1 g of tea was stirred with 1200
ml of extraction solvent at 60 �C for 30 min. The tea was allowed
to cool and then centrifuged at 10 000 rpm for 10 min and the
supernatant was used for the NMR experiments. The extraction
solvent was made by using 840 ml of methanol-d4 and 5.1 mg of
Na2HPO4 (30 mM) in 340 ml of D2O (with 20 ml of TMS added as
an internal NMR reference standard). A total of 20 samples (10
for green tea and 10 for black tea) were prepared as replicates
for statistical analysis. Similar procedures were used to prepare
the set of Bougainvillea plant samples for NMR metabolomics
experiments. Briey, fresh leaves were rst dried and crushed
using a pestle and mortar; 0.1 g of dried leaf powder was then
stirred with 1200 ml of extraction solvent for 30 min at 60 �C to
extract the metabolites. The solvent was then cooled and
centrifuged at 10 000 rpm for 10 min and the supernatant was
used for the NMR experiments.
2.2 1D and 2D NMR spectroscopy

All the NMR experiments were recorded at 298 K on Bruker
Biospin 600 MHz Avance-III NMR spectrometers operating at
a 1H NMR frequency of 600.13 MHz equipped with a QXI probe,
with gradient shimming being performed prior to signal
acquisition. For each sample, a set of three NMR experiments:
1D 1H, 2D 1H–13C HSQC and 2D 1H–13C ASAP-HSQC were
recorded.

1D 1H NMR spectra were acquired with a 90� pulse width of
10.1 ms, a relaxation delay of 2 s, 8 scans, 16 K data points and
RSC Adv., 2017, 7, 29860–29870 | 29861
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a spectral width of 10 ppm. Water suppression of the residual
water peak was achieved with a pre-saturation pulse sequence
with low power irradiation during the recycle delay. Data were
zero-lled by a factor of 2 and the FIDs were multiplied by an
exponential weighting function equivalent to a line broadening
of 1 Hz prior to Fourier transformation. The spectra were phase
and baseline corrected and referenced to the TMS reference
peak (at d ¼ 0.00 ppm).

2D 1H–13C HSQC NMR spectra were recorded via a standard
Bruker phase sensitive pulse sequence, using a double-INEPT
transfer for polarization enhancement and with gradients for
coherence selection. Decoupling during acquisition was ach-
ieved by a GARP sequence on the carbon channel. The HSQC
spectra were recorded with a spectral width of 10 ppm and
160 ppm in the proton and carbon dimensions respectively,
with a total of 12 scans, 1024 data points along the proton
dimension, and 128t1 increments along the indirect carbon
dimension. Data were zero-lled by a factor of 2 and a QSINE
window function was used prior to Fourier transformation.
Using a recycle delay of 2 s, the total measurement time for each
sample was around 60 min.

2D 1H–13C ASAP-HSQC NMR spectra were recorded using
a new pulse sequence proposed by Schulze-Sünninghausen et
al.41 Most experimental parameters, including the spectral width
and data points in the proton and carbon dimensions, were kept
the same as for the standard 2D HSQC experiment. A DIPSI-2
mixing interval of 40 ms was used for ASAP polarization trans-
fer. The delay D0 (inversely proportional to CNST3 in the pulse
program) was set to 0.7 ms to optimize the Ernst angle. This
parameter is a delay in the INEPT transfer step which achieves
Ernst angle-type excitation and is optimized for each sample.
Non-optimal delays or wrong estimation of the JCH coupling
constant could lead to a loss in sensitivity. Ernst angle-type
optimization uses non-90� ip angle excitation pulses (typically
120–130�) and has been implemented in fast pulsed 2D HMQC-
type experiments to help circumvent the loss in signal inten-
sity.49 Numerically optimized shaped pulses were used for exci-
tation, inversion and refocusing with the proton inversion and
proton excitation pulses being a BURBOP-180 pulse of length 600
ms and a BEBOP-180x pulse of length 550 ms, respectively. The 13C
refocusing pulse used was a BURBOP-180y pulse of duration 1.1
ms. Using a recycle delay of 200 ms and 12 scans, the total
measurement time for each sample was around 8 min.
2.3 2D NMR data processing

2D cross-peak intensities were quantied using the HSQC0

approach of Hu et al.20 A series of HSQCi spectra were recorded
with different number of repetitions of the basic HSQC building
block. The time-zero 2D HSQC spectrum was obtained by linear
regression extrapolation of all cross-peak intensities to zero
repetitions (zero time) using the relation:

lnðAi;nÞ ¼ lnð2A0;nÞ þ i � ln

�
fA;n

1

2

�
(1)

where fA,n is the amplitude attenuation factor in each HSQC
block for the peak labeled n; Ai,n and A0,n are the peak intensities
29862 | RSC Adv., 2017, 7, 29860–29870
of the peak labeled n in the HSQCi spectra and the extrapolated
virtual HSQC0 spectra, respectively; and i is the number of times
the basic HSQC building block is repeated. The 2D ASAP-HSQC
pulse sequence was modied and the ASAP cross-peaks were
quantied using the same HSQC0 approach as described above.
The plots of extrapolated peak intensities for various peaks in
the 2D HSQC and 2D ASAP-HSQC spectra are given in the ESI
(Fig. S6 and S7†).

All the 2D NMR spectra were processed in MATLAB50 by
using the script provided by Hedenström et al.,32 prior to sub-
jecting to multivariate statistical analysis. Each spectrum was
converted to a row vector and normalized to a constant sum to
remove differences in spectral peak intensities due to variations
in the amounts of sample. Data points with intensity below a set
threshold were considered to be noise. This threshold was
determined by calculating the column-wise variance of a noise
region in the unfolded data matrix such that the noise levels
were considered for all the spectra. All the data points with
intensities lower than two times the mean variance from such
a noise region were considered to be noise and were subse-
quently excluded. To remove this noise and peaks from solvents
and other additives, which otherwise do not contain any useful
information and can result in biased models, data points from
these additives were set to zero within the regions selected to
contain only useful peaks.

To reduce the number of variables in the data matrix,
bucketing and wavelet transformation of spectra is a useful
approach.51 However, we followed the procedure used by
Hedenström et al.32 to remove the unwanted signals by
including only the selected regions of the spectra in the anal-
ysis. Such selected regions containing only the useful infor-
mation were merged to one vector in the data matrix. Since the
covariance and correlation patterns between the individual
variables are retained, no spectral information was lost in this
unfolding procedure. The resulting new data matrix, X, with
reduced number of variables, was then used for multivariate
analysis methods of PCA and OPLS-DA by importing in
Metaboanalyst52 and generating the scores plot for both PCA
and OPLS-DA. The PCA calculations were also performed in
MATLAB to obtain the loadings vector. The loadings, which
were present as columns in the original data matrix, were con-
verted to 2D loading spectra by reversing the unfolding proce-
dure in which each variable was inserted at its original position
in a vector of length K and then folded to a matrix with the same
dimensions as the original spectrum and visualized and
analyzed in the same way as a typical 2D spectrum.
2.4 Metabolite identication

Metabolites in the 1D and 2D NMR spectra of green tea and
black tea were identied based on comparison with NMR
metabolite data deposited in reference databases such as the
Biological Magnetic Resonance Data Bank (BMRB),
www.bmrb.wise.edu, the Madison Metabolomics Consortium
Database (MMCD), http://mmcd.nmrfam.wise.edu and the
Human Metabolome Database (HMDB), http://www.hmdb.ca.
To circumvent the problem associated with a slight shiing of
This journal is © The Royal Society of Chemistry 2017
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chemical shis of proton and carbon resonances in the 2D NMR
spectra, a leeway of 0.5 ppm and 1 ppm was given along the
proton and carbon dimensions respectively, while identifying
metabolites from the corresponding 2D HSQC NMR data
extracted from the reference databases.
Fig. 1 1D 1H NMR spectrum recorded at 600 MHz by using the water
pre-saturation pulse sequence, showing specific resonances of iden-
tified metabolites of (a) green tea peaks labeled: 1, fatty acids; 2,
leucine; 3, isoleucine; 4, valine; 5, theanine; 6, fatty acids; 7, lactate; 8,
alanine; 9–11, fatty acids, amino acids, quinic acid; 12, EGCG, EGC,
ECG and other catechins; 13, caffeine; 14, sugars; 15, theaflavin 16,
glucose; 17, sucrose; 18, EGC; 19, EGCG; 20, EC, ECG, EGCG, EGC; 21,
gallic acid; 22, cinnamate, chlorogenate and other phenolics; 23,
caffeine; 24, theobromine; 25, flavanols; and (b) black tea peaks
labeled: 1, fatty acid; 2, leucine; 3, isoleucine; 4, valine; 5, theanine; 6,
fatty acids; 7, lactate; 8, alanine; 9–11, fatty acids, amino acids, quinic
acid; 12, EGCG, EGC, ECG and other catechins; 13, caffeine; 14, sugars;
15; theaflavin 16, glucose; 17, sucrose; 18; thearubigins & theaflavin; 19,
gallic acid; 20, cinnamate, chlorogenate and other phenolics; 21,
caffeine; 22, theobromine.
2.5 Statistical analysis

Both 1D 1H and 2D NMR data from green tea and black tea
samples were used for univariate and multivariate statistical
analysis. 1D data was bucketed using the “optimized bucketing
algorithm” (OBA) that optimizes bucket sizes, by setting their
boundaries at the local minima determined via an average NMR
spectrum, and generates variable sized buckets. The script for
OBA is accessible as a MATLAB code at http://
lqta.iqm.unicamp.br.53 Statistical analysis was performed
using Metaboanalyst soware.52 The binned data was rst
analyzed by the unsupervised method of principal component
analysis (PCA) to identify and remove any outliers (located
outside the 95% condence region of the model) which could
wrongly inuence data analysis. The data was then analyzed by
the supervised pattern recognition method of orthogonal
projections to latent structure-discriminant analysis (OPLS-DA),
which maximizes the class discrimination. The scores plot ob-
tained for OPLS-DA analysis gives the Hotelling's T2 region,
which is shown as an ellipse in the scores plot, and denes the
95% condence interval of the modeled variation. The loadings
plot gives variables which are responsible for the maximum
separation between the groups. The quality of the model was
evaluated by R2X and Q2 values, which give the variance
explained and predicted for the model, respectively. Permuta-
tion analysis was also performed on the best model using 100
permutation tests with a p-value threshold of 0.05 to indicate
that none of the results are better than the original one.
Multivariate analysis was followed by univariate analysis. A t-
test (p-value < 0.05) was performed to determine the signi-
cance of the metabolites identied to be responsible for group
separation between green and black tea. To further cross-check
that all the identied metabolites were statistically signicant,
a multiple hypothesis test correction using the method of
Benjamini–Hochberg was also performed with a level of
signicance of 0.05 for the p-value.54
3 Results & discussion
3.1 Metabolite identication from NMR spectra

A detailed analysis of 1D and 2D NMR spectra of both green tea
and black tea samples revealed the presence of a wide variety of
metabolites in both the samples. Fig. 1(a) shows the 1H NMR
spectrum of green tea while Fig. 1(b) shows the 1H NMR spec-
trum of black tea, both recorded at 600 MHz. A comparative
preliminary analysis of both the spectra reveals the presence of
similar peaks in the high-eld region from 0.8–3.5 ppm (amino
acids and lipids peaks) and in the mid to low-eld region from
3.5–5.5 ppm (carbohydrate peaks). The peaks differ in their
intensities, indicating the differences in concentrations of these
metabolites in green versus black tea. The low-eld region
This journal is © The Royal Society of Chemistry 2017
beyond 6 ppm shows the presence of a wide variety of aromatic
compounds in both green tea and black tea. While both green
and black tea are produced from the leaves of the same plant
Camellia sinensis, green tea is prepared without signicant
fermentation, and hence contains several phenols and poly-
phenols such as avanols and catechins.55 On the other hand,
black tea undergoes a fermentation process, during which the
polyphenols undergo a series of metabolic changes to produce
other new polyphenols such as theaavin and thearubigin.56

Fig. 1(a) shows the peaks identied for phenolic compounds
such as avanols and different catechins in green tea, while
Fig. 1(b) shows the peaks identied for theaavin and thear-
ubigin present in black tea. A full list of metabolites identied
both in green and black tea from the NMR spectra is given in ESI
RSC Adv., 2017, 7, 29860–29870 | 29863
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Fig. 2 (a) PCA score plot and (b) OPLS-DA score plot obtained from
1D 1H NMR data of green tea and black tea. (c) Loadings plot showing
the significant metabolites differing in concentration in green tea and
black tea. The labels correspond to: 1. Leucine, valine 2. Theanine 3.
Fatty acids, amino acids and quinic acid 4. Sugars 5. Sucrose 6. Glucose
7. ECG, EGCG and other catechins 8. Gallic acid and 9. Flavanols.
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Table ST1.† The NMR chemical shi assignments of signicant
metabolites were further conrmed by spiking with individual
metabolites and by cross-checking with reference databases and
with previously published data.57,58

3.2 Statistical analysis using 1D NMR

Clustering and signicant metabolite differentiation between
green tea and black tea was performed using PCA and OPLS-DA
multivariate methods, as reported previously.54 Fig. 2 shows the
results of the multivariate analysis for green tea and black tea,
performed using binned data obtained from 1D 1H NMR
experiments. Fig. 2(a) shows the PCA scores plot, with compo-
nent 1 explaining 81.4% variation and component 2 explaining
4.9% variation. PCA analysis was performed to identify and
remove outlier samples, which could otherwise incorrectly
inuence the data analysis.59 This was followed by OPLS-DA
analysis as shown in the score plot in Fig. 2(b), obtained with
one predictive and one orthogonal component. The OPLS-DA
score plot shows a clear separation between green tea and
black tea samples. Fig. 2(c) shows the loading plot for OPLS-DA
analysis showing metabolites responsible for separation
between the two types of tea samples. The metabolites marked
above the baseline in the gure are present in higher quantities
in green tea, while those marked below the baseline in the
gure are present in higher quantities in black tea. The vari-
ables identied to be responsible for separation were also
conrmed by the VIP score parameter; R2X, the variance
explained by the model was 63.7% and Q2, the variance pre-
dicted by the model was 96%, while R2Y was 96.7%. The model
was therefore an effective model and had a good predictive
accuracy. Statistical signicance of the model was tested using
CV-ANOVA (p-value < 0.01) and the model was validated using
a permutation test (p-value < 0.05). The multivariate analysis
was followed by univariate analysis. The variables identied by
multivariate analysis were subjected to a t-test for statistical
signicance. The metabolites identied to be responsible for
differentiation between green and black tea were fatty acids,
amino acids including alanine, leucine, isoleucine, valine,
cysteine, aspartate, hesperidin, sugars including sucrose and
glucose, phenolic compounds including caffeine, EC, ECG,
EGCG, theobromine, theanine, theaavin and thearubigins.
The statistical signicance of the metabolites was also
conrmed by the multiple hypothesis test correction method of
Benjamini–Hochberg. ESI Table ST2† lists the metabolites
responsible for separation between green tea and black tea, with
their p-values and Benjamini–Hochberg corrected p-values.

3.3 ASAP-HSQC versus standard HSQC

The savings in time for 2D ASAP-HSQC experiments as compared
to conventional HSQC-type experiments arises from much
shorter recycle times. The magnetization loss due to incomplete
relaxation is compensated for by transferring magnetization
from nearby 12C-attached protons (which are kept along the z
direction during the pulse sequence), to the selectively excited
13C-attached protons during a short homonuclear isotropic
mixing period.41 Fig. 3(a) shows different plotted regions of
29864 | RSC Adv., 2017, 7, 29860–29870
a standard 2D 1H–13C HSQC spectrum obtained for green tea,
while Fig. 3(b) shows the corresponding 2D ASAP-HSQC spec-
trum, acquired with nearly the same experimental conditions as
the standard HSQC experiment and a much shorter relaxation
delay. The right, middle and le plots in the gure contains
peaks resonating in the (proton) regions 0.8–4.3 ppm (amino
acids and fatty acids region), 2.9–5.7 ppm (carbohydrate region)
and 4.9–8.2 ppm (aromatics region), respectively. As is evident
from Fig. 3, the ASAP-HSQC experiment is able to obtain the
This journal is © The Royal Society of Chemistry 2017
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Fig. 3 Regions of the (a) 2D 1H–13C HSQCNMR spectrum and (b) 2D 1H–13C ASAP-HSQCNMR spectrumof green tea recorded at 600MHz. The
right, middle and left plots contains peaks resonating in the (proton) regions 0.8–4.3 ppm (amino acids and fatty acids region), 2.9–5.7 ppm
(carbohydrate region) and 4.9–8.2 ppm (aromatics region), respectively. A few peaksmarkedwith an asterisk symbol (*) are present only in the 2D
HSQC spectrum.

Table 1 Signal-to-noise ratios (SNR) of various peaks in 2D ASAP-
HSQC and 2D HSQC NMR spectra; R denotes the ratio of ASAP-HSQC
to HSQC peak intensities

Peak position (1H, 13C) ppm ASAP-HSQC HSQC R

(1.11, 13.63) 14.39 13.81 1.04
(1.28, 29.33) 31.46 26.7 1.18
(1.59, 24.86) 39.81 34.18 1.16
(1.89, 40.31) 25.49 17.19 1.48
(2.15, 27.17) 20.52 19.12 1.07
(2.41, 32.44) 32.4 20.7 1.56
(3.31, 27.68) 61.05 49.25 1.24
(3.9, 33.33) 91.01 118.03 0.77
(3.19, 54.13) 9.02 14.74 0.61
(5.49, 69.4) 75.66 109.8 0.69
(4.99, 77.61) 61.11 81.19 0.75
(5.41, 92.56) 14.83 24.27 0.61
(5.12, 102.1) 11.74 16.43 0.71
(6.03, 95.6) 12.43 18.52 0.67
(6.57, 106.6) 141.4 167.7 0.84
(6.77, 115.7) 30.05 29.24 1.03
(6.99, 114.7) 38.43 40.39 0.95
(7.15, 109.6) 175.3 207.7 0.85
(7.48, 130.3) 5.49 4.89 1.12
(7.77, 143.4) 22.22 18.99 1.17
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same carbon-proton connectivity information with nearly the
same signal sensitivity and resolution, but in a fraction of the
time as compared to a standardHSQC experiment. Table 1 shows
a comparison of signal-to-noise ratios (SNR), for peaks spanning
across the whole spectrum, obtained from both HSQC and ASAP-
HSQC experiments. As can be seen in Fig. 3, the intensities of the
cross-peaks differ in both ASAP-HSQC and standard HSQC
spectra due to the limited availability of 1H–13C pairs for
magnetization transfer in different spectral regions. The inten-
sities of the peaks in the amino acid and fatty acid region and in
the aromatic region (Fig. 3(a) and (c)) are higher in ASAP-HSQC
spectra as compared to the standard HSQC (as evidenced by
the corresponding higher SNR of the ASAP-HSQCpeak intensities
in Table 1). The carbohydrate region shows slightly less intensity
for peaks in the ASAP-HSQC spectrum than in the HSQC spec-
trum as shown in Fig. 3(b). However, it should be noted that we
are here comparing ASAP-HSQC andHSQC spectra recorded with
the equivalent number of scans, resulting in ASAP-HSQC being
recorded in a much shorter time than the standard HSQC
experiment. Overall, the ASAP-HSQC shows a moderate increase
in SNR per unit time when compared to the standard HSQC
recorded for the same experimental time for peaks from all the
This journal is © The Royal Society of Chemistry 2017 RSC Adv., 2017, 7, 29860–29870 | 29865
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regions of the spectra, including the carbohydrate region.60 In
this work, we used an optimized mixing time of 40 ms and
a recycle delay of 200 ms, so that the 2D ASAP-HSQC spectrum of
one sample can be acquired in approximately 8 minutes (see
Fig. S1–S5 in ESI† for details of spectra acquired with different
number of scans). However, as has been discussed in the litera-
ture, experiment time can be drastically reduced to just a few
hundred seconds (comparable to the time taken to perform a 1D
1H NMR experiment) by reducing the recycle delay even further.41

Furthermore, for metabolite mixtures with severe spectral over-
lap issues, high-resolution data can be obtained by increasing the
Fig. 4 (a) OPLS-DA score plot (upper panel) and corresponding loadings
NMR spectra of green and black tea (R2X ¼ 0.794, R2Y ¼ 0.972 and Q2 ¼
valine; 3, lipid; 4, isoleucine; 5, leucine; 6, theanine; 7, aspartate; 8, cyst
glucose; 16, catechins; 17, naringin; 18–23, EC, EGC, EGCG, theaflavin, th
score plot (upper panel) and corresponding loadings plot (lower panel) ob
green and black tea (R2X ¼ 0.817, R2Y ¼ 0.977 and Q2 ¼ 0.974). Significa
leucine; 5, isoleucine; 6, valine; 7, theanine; 8, aspartate; 9, cysteine; 10, ch
catechins; 18, naringin; 19–24, EC, EGC, EGCG, theaflavin, thearubigin;
loadings plots depict the differences in metabolite concentrations, with t
tea, while the blue color signifies those present in higher quantities in b
33.74) ppm, which is taken as the reference peak.

29866 | RSC Adv., 2017, 7, 29860–29870
number of t1 increments in the ASAP-HSQC scheme, by
measuring at highermagnetic eld strengths which increases the
splitting between the spin quantum energy levels, by increasing
the dimensionality of the NMR experiment, or by maximizing
resolution using non-uniform data sampling strategies.61
3.4 Statistical analysis using 2D NMR datasets

In order to demonstrate the utility of 2D NMR datasets as
a viable alternative to 1D NMR datasets for multivariate anal-
ysis, we repeated the multivariate statistical analysis for green
tea and black tea, on the 2D NMR data sets. The 2D data set was
plot (lower panel) obtained from the multivariate analysis of 2D HSQC
0.966). Significant peaks are marked on loadings plot as 1, alanine; 2,

eine; 9, choline; 10, hesperidin; 11, GC; 12, EC; 13, sucrose; 14 and 15,
earubigin; 24, theobromine; 25, caffeine; 26, phenols, and (b) OPLS-DA
tained from themultivariate analysis of 2D ASAP-HSQCNMR spectra of
nt peaks are marked on loadings plot as 1, lipids; 2, lipids; 3, alanine; 4,
oline; 11, hesperidin; 12, GC; 13, EC; 14, sucrose; 15 and 16, glucose; 17,
25, theobromine; 26, caffeine. Differences in peak color in both the

he red color signifying metabolites present in higher quantities in green
lack tea. The peak marked with an asterisk (*) labels caffeine at (3.95,

This journal is © The Royal Society of Chemistry 2017
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prepared for OPLS-DA analysis, following the protocol outlined
in Hedenström et al.32 The 2D spectral region was rst unfolded
into a row vector and the data were UV scaled (unit variance),
giving the peaks the same variance irrespective of their inten-
sities, which helped to detect metabolites with low abundance
and directly related the peak intensities in the loadings to their
signicance for sample discrimination. The resultant data
matrix contains the spectral data of each sample as a row vector,
which is given as input data for multivariate analysis. The peaks
with maximum correlation in discriminating samples and
therefore being signicant for separating the green and black
tea samples were identied by choosing a cut-off value of 0.5.
Fig. 4(a) shows the OPLS-DA score plot (top panel) with both
orthogonal and predictive components and the corresponding
loadings plot obtained from the analysis of the 2D HSQC NMR
spectra of green tea and black tea. The variance explained and
variance predicted by the model, R2X and Q2 were 79.4% and
96.6% respectively (R2Y ¼ 97.2%). This model was hence an
effective model with good predictability accuracy. The model
was tested for statistical signicance using CV-ANOVA (p-value <
0.01) and validated using a permutation test (p-value < 0.05) as
before. The loading vectors obtained from the statistical model
were transferred to the MATLAB script and the loading values
were arranged in their original positions in a vector of length
corresponding to the original unfolded spectrum. This vector
was then folded into a matrix of the same dimensions of the
original 2D spectra, in order to visualize the loading vectors.
The variables obtained from the loadings plot were subjected to
t-test and multiple hypothesis test correction method of Ben-
jamini–Hochberg for their statistical signicance. We next
repeated the entire multivariate analysis described above, using
the 2D ASAP-HSQC peak intensities. Fig. 4(b) shows the OPLS-
DA score plot (top panel) with one orthogonal and one predic-
tive component and the corresponding 2D loadings plot
(bottom panel) obtained for the OPLS-DA analysis. The variance
Table 2 Relative amounts of significant metabolites present in green te
HSQC NMR data. Data are represented as mean � SD, where the integra
Statistical significance was confirmed by a t-test (p value < 0.05)

Metabolite

1D data 2D HS

GT BT GT

Lipids 0.76 � 0.02 1.02 � 0.05 0.70 �
Alanine 0.13 � 0.04 0.18 � 0.05 0.17 �
Leucine 0.42 � 0.05 0.63 � 0.03 0.38 �
Isoleucine 0.36 � 0.01 0.72 � 0.05 0.40 �
Valine 0.44 � 0.04 0.65 � 0.04 0.39 �
Cysteine 0.29 � 0.07 0.63 � 0.04 0.26 �
Aspartate 0.63 � 0.03 0.75 � 0.03 0.59 �
Sucrose 0.77 � 0.06 0.39 � 0.07 0.71 �
Glucose 0.64 � 0.03 0.39 � 0.03 0.58 �
Caffeine 1.00 0.86 � 0.03 1.00
EC 1.42 � 0.09 0.68 � 0.06 1.50 �
EGCG 1.44 � 0.04 0.37 � 0.05 1.43 �
Theobromine 0.42 � 0.09 0.15 � 0.03 0.45 �
Theanine 0.29 � 0.08 0.12 � 0.02 0.23 �
Theaavin 0.21 � 0.04 0.96 � 0.08 0.16 �

This journal is © The Royal Society of Chemistry 2017
explained and variance predicted by the model R2X and Q2, were
81.7% and 97.4% respectively (R2Y ¼ 97.7%) proving that the
model had good predictive accuracy. The metabolites identied
were then subjected to the univariate analysis of t-test and
Benjamini–Hochberg as before. The variables (i.e. signicant
metabolites) identied using the 2D ASAP-HSQC data were the
same as those identied from the standard HSQC and from the
1D NMR datasets. Signicant metabolites have been marked on
the loadings plots obtained from both the HSQC and ASAP-
HSQC data analysis in Fig. 4, to show that the list of signi-
cant metabolites obtained from both the spectra match well and
hence the standard HSQC and the ASAP-HSQC data led to
comparable results.

Table 2 shows the list of signicant metabolites responsible
for the differences between green and black tea, using all the
three NMR datasets (from the 1D and the 2D experiments).
Since the NMR reference standard TMS does not give a peak in
the 2D NMR spectrum, we used the peak for caffeine at (3.95,
33.74) ppm as our reference peak and calculated the relative
integrals of signicant metabolites in both green tea and black
tea using the integral for caffeine as 1 in the green tea spectrum.
Caffeine is present as a clearly identiable and non-overlapping
peak in both green and black tea NMR spectra, and was hence
chosen as our reference. The metabolite concentrations ob-
tained from all three datasets were similar, corroborating our
assertion that the 2D ASAP-HSQC NMR data set is a good
candidate for metabolite ngerprinting as well as multivariate
statistical analysis as it combines the twin advantages of faster
experimental times of 1D NMR experiments and better resolu-
tion of standard 2D NMR experiments. Furthermore, from the
multivariate analysis of 2D NMR data, we were able to identify
three more metabolites, namely choline, naringin and hesper-
idin, that contribute signicantly to the metabolic differences
between green tea and black tea. Their relative amounts present
in green tea and black tea are shown in Table 3. We note here
a (GT) and black tea (BT) obtained using 1D, 2D HSQC and 2D ASAP-
l of the caffeine peak was taken as the reference and set to value 1.0.

QC 2D ASAP-HSQC

BT GT BT

0.03 0.97 � 0.04 0.74 � 0.05 0.96 � 0.03
0.05 0.22 � 0.04 0.15 � 0.04 0.23 � 0.04
0.02 0.58 � 0.04 0.44 � 0.06 0.64 � 0.07
0.04 0.67 � 0.05 0.37 � 0.06 0.71 � 0.04
0.03 0.64 � 0.05 0.41 � 0.04 0.67 � 0.03
0.03 0.59 � 0.04 0.30 � 0.05 0.56 � 0.05
0.06 0.70 � 0.05 0.65 � 0.04 0.72 � 0.08
0.08 0.38 � 0.06 0.70 � 0.08 0.35 � 0.04
0.05 0.36 � 0.03 0.57 � 0.06 0.32 � 0.02

0.89 � 0.04 1.00 0.88 � 0.02
0.10 0.65 � 0.05 1.49 � 0.05 0.62 � 0.07
0.05 0.44 � 0.06 1.38 � 0.06 0.42 � 0.08
0.04 0.18 � 0.03 0.44 � 0.03 0.19 � 0.04
0.04 0.10 � 0.03 0.27 � 0.05 0.14 � 0.04
0.06 1.02 � 0.08 0.18 � 0.04 0.99 � 0.06
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Table 3 Relative amounts of significant metabolites present in green
tea (GT) and black tea (BT) obtained from multivariate analysis of 2D
HSQC and 2D ASAP-HSQC NMR data

Metabolite

2D HSQC 2D ASAP-HSQC

GT BT GT BT

Choline 0.22 � 0.03 0.29 � 0.06 0.16 � 0.05 0.28 � 0.04
Naringin 0.44 � 0.05 0.38 � 0.06 0.47 � 0.06 0.40 � 0.05
Hesperidin 0.73 � 0.04 0.64 � 0.05 0.70 � 0.05 0.66 � 0.04
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that these metabolites do not show up as signicant from the
statistical analysis of 1D 1H NMR data, demonstrating that
using 2D NMR data for metabolomics studies can indeed lead
to better metabolite ngerprinting.

To validate the 2D HSQC experiment as a viable alternative to
1D 1H NMR experiments for NMR-based metabolomics studies,
we next performed NMR metabolomic analysis on a different
Fig. 5 (a) 1D 1H NMR spectrum of and (b) 2D 1H–13C HSQCNMR spectrum
obtained from multivariate analysis of 2D HSQC NMR spectra, showing a
different times during the day (R2X ¼ 0.489, R2Y ¼ 0.944 and Q2 ¼ 0.87
differentiation between leaf samples collected at two different time point
6, hesperidin; 7, 8 glucose; 9, phenylalanine; 10, trigonelline.

29868 | RSC Adv., 2017, 7, 29860–29870
sample, of Bougainvillea plant leaves with a crowded 1D 1H NMR
spectrum and several overlapping resonances. The motivation
was to use 2D HSQC NMR data alone for the multivariate
statistical analysis, without taking recourse to 1D 1H NMR data.
Fig. 5(a) shows the 1D 1H NMR spectrum for the Bougainvillea
plant, recorded at 400 MHz. Fig. 5(b) shows the corresponding
2D 1H–13C HSQC NMR spectrum. We performed multivariate
statistical analysis of the plant leaves collected at two time
points (12 hours apart) during the day, with an aim of identi-
fying the “cycling” metabolites associated with the circadian
rhythm of the plant i.e. those that undergo changes in their
concentration during different times of the day. Five replicates
were selected for each time point for a total of ten samples and
PCA analysis done using 2D HSQC data to identify the outliers.
This was followed by OPLS-DA analysis to identify metabolites
that signicantly differ at the two time points. Fig. 5(c)
depicts the OLPS-DA scores plot with one orthogonal compo-
nent and one predictive component. The variance explained
of Bougainvillea leaves, recorded at 400MHz. (c) OPLS-DA score plot
clear separation between Bougainvillea leaf samples collected at two

8). (d) 2D loadings plot showing significant metabolites responsible for
s. Peaks numbering: 1, lipid; 2, alanine; 3, fatty acid; 4, valine; 5, choline;

This journal is © The Royal Society of Chemistry 2017
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Table 4 Relative amounts of significant metabolites in Bougainvillea
leaves collected at two different times in a day, obtained from multi-
variate analysis of 2D HSQC NMR data

Metabolite Time point 1 Time point 2

Lipid 0.67 � 0.03 0.45 � 0.02
Alanine 0.61 � 0.04 0.49 � 0.02
Fatty acid 1 1.16 � 0.05
Valine 0.27 � 0.03 0.20 � 0.04
Choline 0.92 � 0.02 0.77 � 0.05
Hesperidin 0.44 � 0.01 0.55 � 0.04
Glucose 0.42 � 0.06 0.35 � 0.05
Phenyl alanine 0.77 � 0.04 0.85 � 0.05
Trigonelline 0.56 � 0.03 0.40 � 0.01
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and predicted by the model, R2X and Q2 were 48.9% and 87.8%
respectively (with R2Y ¼ 94.4%), conrming that the model was
an effective one with good predictable accuracy. Statistical
signicance of the model was tested using CV-ANOVA (p-value <
0.01) and the model was validated using a permutation test (p-
value < 0.05). The loading vectors obtained from the statistical
model were transferred to the MATLAB script and the loading
values were arranged in their original positions in a vector of
length corresponding to the original unfolded spectrum as
explained previously. Similarly, the loading vectors were visu-
alized by folding the vector into a matrix with the same
dimensions as the original 2D spectra. Fig. 5(d) shows the
resultant 2D loadings spectrum obtained for the OPLS-DA
analysis via the MATLAB script. As can be seen from the load-
ings plot, the metabolites undergoing changes in their
concentrations during the day are lipids, the amino acids
alanine, valine and phenylalanine, glucose, and phenolic
compounds hesperidin, choline and trigonelline. Table 4 shows
the list of signicant metabolites identied to be responsible
for the differences between the samples at two time points,
along with their relative peak integrals. The metabolite peak
integrals were calculated relative to the integral for the peak of
fatty acid at 1.29 ppm, which was set to the value 1.0. Of these
metabolites, lipids, amino acids alanine and valine, glucose are
known to undergo cyclic changes in their concentrations during
the day in fruity Drosophila melanogaster.54 Trigonelline,
a compound from nicotinamide, is known to play many
signicant roles in plant metabolism including its role in cell
cycle regulation, nodulation and oxidative and UV-stresses.62

Choline is known to be produced in plants during conditions of
stress.63 The changes in the levels of trigonelline and choline in
the plant during the day shows the changes in their levels in
response to changes in the environment faced by plants during
different times of the day.
4 Conclusions

Multivariate statistical analysis has been used to reduce the
high dimensionality of the experimental NMR spectral data and
hence to obtain discriminatory features of the biological classes
being studied. Although 2D NMR experiments offer a feasible
solution to the problem of spectral resolution in 1D 1H spectra,
This journal is © The Royal Society of Chemistry 2017
they have not yet been fully exploited for chemometric investi-
gations. Nevertheless, the number of 2D NMR metabolite
spectra available in standard online databases is rapidly
increasing, though care must be taken during peak quantica-
tion to account for chemical shi variations between standard
deposited spectra and actual experimental spectra (due to pH,
temperature and solvent experimental factors). We demonstrate
the utility of a speeded-up version of the standard 2D HSQC
experiment, namely the 2D ASAP-HSQC scheme, as a viable
alternative to 1D 1H NMR experiments, in performing a full
NMR-based metabolomics investigation. Our work is a step
forward in the direction of integrating usage of 2D HSQC NMR
experimental data into a routine protocol for non-targeted,
high-throughput metabolomics studies.
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