

 Cite this: *RSC Adv.*, 2017, **7**, 30376

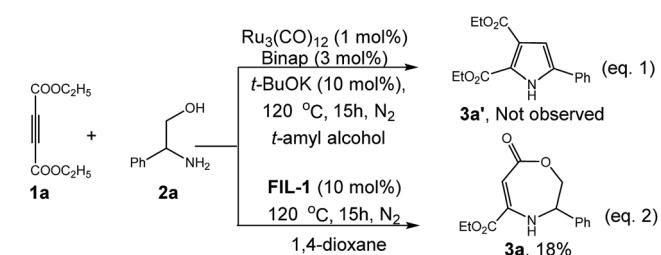
 Received 9th April 2017
 Accepted 23rd May 2017

 DOI: 10.1039/c7ra04028h
rsc.li/rsc-advances

Task-specific acidic ionic liquid-catalyzed efficient synthesis of β -enaminolactones from alkynoates and β -amino alcohols†

Lu Chen, Bin Chen, Fuying Zhao, Yibiao Li, Bin Li* and Min Zhang

By employing task-specific acidic ionic liquid as an efficient catalyst, a new method for the straightforward synthesis of β -enaminolactones has been demonstrated. A series of alkynoates in combination with various β -amino alcohols was efficiently converted into the desired products in good to excellent yields upon isolation. The skeleton of the seven-membered ring is generated *via* tandem intermolecular hydroamination and intramolecular transesterification processes. The developed synthetic protocol furnishes the desired products in a step- and atom-economic fashion with the advantages of high yields, broad substrate scope, good functional tolerance, and operational simplicity, offering an important basis for the construction of β -enaminolactones.


β -Amino acids constitute a highly significant branch in organic chemicals, which have been found to possess diverse bioactivities and are employed as useful building blockings for the preparation of β -lactam antibiotics and heterocycles. In addition, β -amino acid derivatives frequently occur in numerous biologically active natural products.¹ Among various compounds investigated to date, β -enaminolactone derivatives, the precursors of enantiopure β -amino acids, are the main structural components of many bioactive natural products that have attracted significant attention.²

Owing to the abovementioned interesting functions of β -enaminolactone, several synthetic protocols have been nicely demonstrated during the past few decades to access these compounds.^{3–8} For instance, Abarbri and coworkers³ first reported the reaction of ethyl perfluorobut-2-ynoate with amino alcohols to generate 5-(perfluoroalkyl)-3,4-dihydro-2*H*-[1,4]oxazepin-7-ones *via* the intermolecular Michael addition and lactone formation. In 2005, Dechoux's group reported an efficient method for the synthesis of β -enaminolactones⁴ *via* the condensation of acetonedicarboxylate with β -amino alcohols followed by an intramolecular cyclization step. However, during this synthesis, the reaction intermediates needed to be isolated and it required excess NaH to achieve the cyclization; moreover, an additional neutralization manipulation by adding NH₄Cl/H₂O was essential to obtain the desired products after the completion of the reaction. From the viewpoint of green

chemistry, the development of efficient shortcuts for accessing β -enaminolactones from easily available feedstocks would be of high significance.

As a part of our program aimed at developing new synthetic methodologies for the construction of heterocycles,¹⁷ we initially had the idea to develop a ruthenium-catalyzed synthesis of ester-substituted pyrrole **3a'** from alkynoate **1a** and β -amino alcohol **2a** *via* dehydrogenative cyclization (Scheme 1, eqn (1)). However, we failed to obtain even traces of the anticipated product, and a small portion of β -enaminolactone **3a** was obtained. Further investigations showed that the ruthenium catalyst was not essential for the product formation (**3a**), whereas the presence of 10 mol% of AlCl₃ was able to improve the yield of **3a** to 18% (eqn (2)). Upon a thorough investigation of this new observation, a straightforward method for the efficient synthesis of β -enaminolactones from alkynoates and β -amino alcohols using a task-specific sulfonic ionic liquid as the catalyst was realized and has been reported herein.

Our initial investigation was to develop a more efficient reaction system by choosing the synthesis of β -enaminolactone **3a** from diethyl but-2-ynedioate **1a** and 2-amino-2-phenylethanol **2a** as a model reaction. First, the reaction in

 Scheme 1 The new observation leading to β -enaminolactone.

School of Chemical & Environmental Engineering, Wuyi University, Jiangmen, Guangdong Province 529090, China. E-mail: wyuchemcl@126.com; andonlee@163.com

† Electronic supplementary information (ESI) available: General experimental information, experimental procedure for product synthesis, full characterization data, ¹H and ¹³C NMR spectra of all products. See DOI: [10.1039/c7ra04028h](https://doi.org/10.1039/c7ra04028h)

t-amyl alcohol was performed at 120 °C for 12 h, and several conventional Lewis acid catalysts were tested (Table 1, entries 1–7); it was found that Cu(OTf)₂ or Zn(OTf)₂ shows good performance in affording the desired product **3a**. However, in the absence of an acid catalyst, the desired product was not obtained (Table 1, entry 8), indicating that the acidic catalyst played a crucial role in the reaction. Moreover, attracted by the significant advantages, such as the designability, easy recovery, and reusability,^{9–15} of task-specific acidic ionic liquids, we evaluated the utility of a sulfonic-functionalized ionic liquid¹⁶ (TSFL-1: [TMBSA]HSO₄) as a catalyst. Gratifyingly, this catalyst exhibited an excellent activity in the production of product **3a** (entries 9–11), and 10 mol% catalyst loading was essential to afford a satisfactory yield (entry 9). Further, changes in the reaction temperatures led to diminished product yields (Table 1, entries 12 and 13), implying that a lower temperature significantly decreased the reaction rate, whereas increasing this parameter would lower the product stability. However, use of toluene, DMF, DMAc, DMSO, and 1,4-dioxane as the solvents proved to be totally ineffective or less effective for the formation

of products when compared with *t*-amyl alcohol (Table 1, entries 14–18). Finally, [TMBSA]HSO₄ was used as both the solvent and the catalyst and it only gave a 77% yield, which could be rationalized since a viscous ionic liquid was not beneficial for the interaction of substrates. Based on these results, the optimal reaction conditions were obtained and are indicated in entry 9 of Table 1.

With the availability of the optimized reaction conditions, we subsequently examined the generality of the synthetic protocol. A variety of alkynoates (**1**) in combination with β -amino alcohols (**2**) were tested. As shown in Table 2, all the reactions smoothly proceeded and furnished the desired products in good to excellent isolated yields. Diethyl but-2-ynedioate **1a** reacted with 2-amino-2-phenylethanol **2a** and 2-amino-3-phenylpropan-1-ol **2c** to provide the products **3a** and **3c** in 86% and 94% yields, respectively (Table 2, entries 1 and 3). Moreover, even a sterically hindered substrate, such as 2-amino-1,2-diphenylethanol **2b**, also underwent smooth transformation with 2-amino-2-phenylethanol **2a**, affording the desired product in 78% yield (Table 2, entry 2). Similarly, the reactions of **1a** with amino alcohols **2d** and **2e** produced the corresponding products **3d** and **3e** in excellent yields (Table 2, entries 4 and 5), respectively. Interestingly, the less reactive ethyl 3-phenylpropiolate **1c** could also generate the desired coupling products in moderate to good yields, demonstrating that the developed chemistry was applicable for a broad substrate scope (Table 2, entries 6–10). Note that amino alcohols (**2a** and **2c**) with a phenyl group or a benzyl substituent could afford higher yields (Table 2, entries 6 and 9) than those with an alkyl group (Table 2, entries 1 and 3–5). Moreover, amino alcohols with an isopropyl group gave a relatively lower yield (Table 2, entry 8), presumably because of the influence of its strong electron-donating effect, thus deactivating the ester group. On the other hand, the secondary alcohols such as 1-aminopropan-2-ol **2f** reacted with alkynoate **1c** to give the corresponding product **3j** in 74% yield (Table 2, entry 10). Note that various functional groups such as 4-Cl, 4-Br, 4-F, and 4-CH₃CO on the phenyl ring of alkynoates (**1d–1g**) were well tolerated, affording the corresponding products in good to excellent yields (Table 2, entries 12–14, 19 and 20). Similarly, electron-donating groups on the aryl ring of the substrates **2** were also compatible with the transformation (Table 2, entries 15–17). The retention of these functional groups would offer the potential for further molecular complexity *via* chemical transformation.

To gain insight into the reaction information, we performed the control experiments. It was found that hydroamination between alkynoate **1a** and amino alcohol **2a** completed in 5 minutes without any catalyst or additive. Then, the resulting enamine intermediate (**3a-I**) under standard conditions furnished the cyclization product **3a** in an almost quantitative yield (Scheme 2). This result, in combination with the fact that in the absence of a catalyst, product **3a** cannot be formed (Table 1, entry 8), indicates that the acidic catalyst plays a crucial role in the activation of the ester group. These findings suggest that the product formation is initiated by fast intermolecular hydroamination followed by [TMBSA]HSO₄-catalyzed intramolecular transesterification.

Table 1 Screening of the reaction conditions^a

Entry	Catalyst (mol%)	Temp. (°C)	Solvent (2.0 mL)	Yield ^b (%)
1 ^c	AlCl ₃ (10)	120	<i>t</i> -Amyl alcohol	18
2	ZnCl ₂ (10)	120	<i>t</i> -Amyl alcohol	35
3	FeCl ₃ (10)	120	<i>t</i> -Amyl alcohol	40
4	Yb(OTf) ₃ (10)	120	<i>t</i> -Amyl alcohol	40
5	Cu(OTf) ₂ (10)	120	<i>t</i> -Amyl alcohol	78
6	Al(OTf) ₃ (10)	120	<i>t</i> -Amyl alcohol	80
7	Zn(OTf) ₂ (10)	120	<i>t</i> -Amyl alcohol	84
8	None	120	<i>t</i> -Amyl alcohol	— ^d
9	TSILs (10)	120	<i>t</i> -Amyl alcohol	94
10	TSILs (5)	120	<i>t</i> -Amyl alcohol	92
11	TSILs (15)	120	<i>t</i> -Amyl alcohol	90
12 ^c	TSILs (10)	100	<i>t</i> -Amyl alcohol	36
13	TSILs (10)	140	<i>t</i> -Amyl alcohol	87
14	TSILs (10)	120	Toluene	— ^d
15	TSILs (10)	120	DMF	— ^d
16	TSILs (10)	120	DMAc	22
17	TSILs (10)	120	DMSO	56
18	TSILs (10)	120	1,4-Dioxane	14
19	TSILs (1 mL)	120	None	77

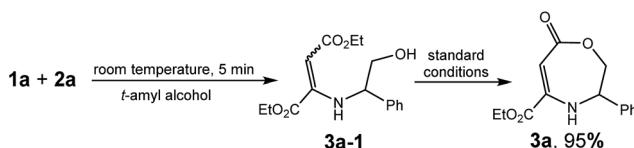
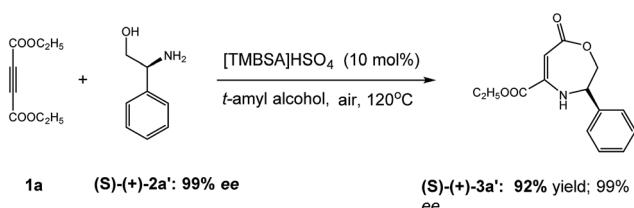

^a Reaction conditions: unless otherwise stated, the reaction mixture of dimethyl acetylenedicarboxylate (**1**) (0.5 mmol), 2-amino-2-phenylethanol (**2**) (0.6 mmol), catalyst loaded in different solvents (2.0 mL) was stirred at 120 °C for 12 h under atmospheric condition. ^b GC yield using *n*-hexadecane as an internal standard. ^c Under a N₂ atmosphere. ^d No product detected.

Table 2 Efficient synthesis of 3,4-dihydro-1,4-oxazepin-7(2H)-one derivatives^a

Entry	1	2	3	3, yield (%)
1	1a : R ¹ = Et, R ² = CO ₂ Et	2a : R ³ = Ph, R ⁴ = H	3a , 86	
2	1a : R ¹ = Et, R ² = CO ₂ Et	2b : R ³ = Ph, R ⁴ = Ph	3b , 78	
3	1a : R ¹ = Et, R ² = CO ₂ Et	2c : R ³ = PhCH ₂ , R ⁴ = H	3c , 94	
4	1b : R ¹ = CH ₃ , R ² = CO ₂ CH ₃	2a : R ³ = Ph, R ⁴ = H	3d , 80	
5	1b : R ¹ = CH ₃ , R ² = CO ₂ CH ₃	2c : R ³ = PhCH ₂ , R ⁴ = H	3e , 90	
6	1c : R ¹ = Et, R ² = Ph	2a : R ³ = Ph, R ⁴ = H	3f , 68	
7	1c : R ¹ = Et, R ² = Ph	2d : R ³ = CH ₃ , R ⁴ = H	3g , 78	
8	1c : R ¹ = Et, R ² = Ph	2e : R ³ = (CH ₃) ₂ CH, R ⁴ = H	3h , 58	
9	1c : R ¹ = Et, R ² = Ph	2c : R ³ = PhCH ₂ , R ⁴ = H	3i , 68	
10	1c : R ¹ = Et, R ² = Ph	2f : R ³ = H, R ⁴ = CH ₃	3j , 74	
11	1d : R ¹ = Et, R ² = 4-ClPh	2d : R ³ = CH ₃ , R ⁴ = H	3k , 84	
12	1e : R ¹ = Et, R ² = 4-BrPh	2d : R ³ = CH ₃ , R ⁴ = H	3l , 89	
13	1d : R ¹ = Et, R ² = 4-ClPh	2e : R ³ = (CH ₃) ₂ CH, R ⁴ = H	3m , 60	
14	1e : R ¹ = Et, R ² = 4-BrPh	2e : R ³ = (CH ₃) ₂ CH, R ⁴ = H	3n , 62	
15	1h : R ¹ = Et, R ² = 4-CH ₃ Ph	2d : R ³ = CH ₃ , R ⁴ = H	3o , 72	
16	1i : R ¹ = Et, R ² = 4-CH ₃ OPh	2d : R ³ = CH ₃ , R ⁴ = H	3p , 70	
17	1h : R ¹ = Et, R ² = 4-CH ₃ Ph	2e : R ³ = (CH ₃) ₂ CH, R ⁴ = H	3q , 56	
18	1i : R ¹ = Et, R ² = 4-CH ₃ OPh	2e : R ³ = (CH ₃) ₂ CH, R ⁴ = H	3r , 50	
19	1f : R ¹ = Et, R ² = 4-FPh	2d : R ³ = CH ₃ , R ⁴ = H	3s , 70	
20	1g : R ¹ = Et, R ² = 4-CH ₃ COPh	2d : R ³ = CH ₃ , R ⁴ = H	3t , 75	

^a Reaction conditions: unless otherwise stated, the reaction mixture of dimethyl acetylenedicarboxylate (1) (0.5 mmol), 2-amino-2-phenylethanol (2) (0.6 mmol), and [TMBSA]HSO₄ (10 mol%) in *t*-amyl alcohol (2.0 mL) was stirred at 120 °C for 12 h under atmospheric condition.

Scheme 2 Control experiments.


Finally, we demonstrated the utility of the developed new method. The reaction of the diethyl but-2-ynedioate **1a** with enantiopure amino alcohol (S)-(+)-**2a'** produced the enantiopure enaminolactone (S)-(+)-**3a'** in an excellent yield with retention of the chiral configuration (Scheme 3). This result shows that the task-specific acidic ionic liquid-catalyzed protocol is also

applicable for the preparation of chiral β-enaminolactones from chiral amino alcohols.

In summary, by employing a task-specific sulfonic ionic liquid as the catalyst, we demonstrated an environmentally friendly and straightforward approach for the versatile synthesis of β-enaminolactones from readily available amino alcohols and alkynoates for the first time. The synthetic protocol proceeds *via* tandem intermolecular hydroamination and intramolecular transesterification processes; moreover, it furnished the desired products in a step- and atom-economic fashion with the advantages of high isolated yields, broad substrate scope, good functional tolerance, and operational simplicity, which offers an important basis for the construction of β-enaminolactones.

Acknowledgements

The authors are grateful to the funds of the Science Foundation for Young Teachers of Wuyi University (No: 2016zk03, 2014zk04 and No: 2015td01), the Scientific Research Foundation for the Returned Oversea as Chinese Scholar, State Education Ministry ([2015]1098), the Natural Science Foundation of Guangdong Province (No: 2014A030310211), and the Foundation of the Department of Education of Guangdong Province (No: 2016KTSCX144).

Scheme 3 Synthesis of chiral β-enaminolactone.

Notes and references

- 1 (a) O. W. Griffith, *Annu. Rev. Biochem.*, 1986, **55**, 855–878; (b) E. Juaristi, D. Quintania and J. Escalante, *Aldrichimica Acta*, 1994, **27**, 3–11; (c) J. S. Carey, D. Laffan, C. Thomson and M. T. Williams, *Org. Biomol. Chem.*, 2006, **4**, 2337–2347.
- 2 (a) D. Seebach and J. L. Matthews, *Chem. Commun.*, 1997, 2015–2022; (b) R. P. Cheng, S. H. Gellman and W. F. DeGrado, *Chem. Rev.*, 2001, **101**, 3219–3232.
- 3 S. Richard, G. Prie, A. Guignard, J. Thibonnet, J. L. Parrain, A. Duchene and M. Abarbri, *Helv. Chim. Acta*, 2003, **86**, 726–732.
- 4 J. Alladoum and L. Dechoux, *Tetrahedron Lett.*, 2005, **46**, 8203–8205.
- 5 J. Alladoum, V. Toum, S. Hebbe, C. Kadouri-Puchot and L. Dechoux, *Tetrahedron Lett.*, 2009, **50**, 617–619.
- 6 Y. Ishida, N. Iwahashi, N. Nishizono and K. Saigo, *Tetrahedron Lett.*, 2009, **50**, 1889–1892.
- 7 A. K. Singh, R. Chawla and L. D. S. Yadav, *Synthesis*, 2012, **44**, 2353–2358.
- 8 Y. Tian, X. Wang, Q. Xiao, C. Sun and D. Yin, *J. Org. Chem.*, 2014, **79**, 9678–9685.
- 9 M. Petkovic, K. R. Seddon, L. P. N. Rebelo and C. S. Pereira, *Chem. Soc. Rev.*, 2011, **40**, 1383–1403.
- 10 N. Isambert, M. M. S. Duque, J.-C. Plaquevent, Y. Génisson, J. Rodriguez and T. Constantieux, *Chem. Soc. Rev.*, 2011, **40**, 1347–1357.
- 11 R. Sheldon, *Chem. Commun.*, 2001, **23**, 2399–2407.
- 12 T. Welton, *Chem. Rev.*, 1999, **99**, 2071–2083.
- 13 J. P. Hallett and T. Welton, *Chem. Rev.*, 2011, **111**, 3508–3576.
- 14 T. Welton, *Coord. Chem. Rev.*, 2004, **248**, 2459–2477.
- 15 A. S. Amarasekara, *Chem. Rev.*, 2016, **116**, 6133–6183.
- 16 (a) S. G. Lee, *Chem. Commun.*, 2006, 1049–1063; (b) G. Y. Zhao, T. Jiang, H. X. Gao, B. X. Han, J. Huang and D. H. Sun, *Green Chem.*, 2004, **6**, 75–77; (c) D. Q. Xu, J. Wu, S. P. Luo, J. Zhang, J. Y. Wu, X. H. Du and Z. Y. Xu, *Green Chem.*, 2009, **11**, 1246.
- 17 (a) C. B. Bheeter, L. Chen, J.-F. Soulé and H. Doucet, *Catal. Sci. Technol.*, 2016, **6**, 2005–2049; (b) L. Chen, X. Luo and Y. Li, *Monatsh. Chem.*, 2017, **148**, 957–961; (c) J. Cai, S. Huang, R. He, L. Chen, D. Chen, S. Jiang, B. Li and Y. Li, *Org. Biomol. Chem.*, 2017, **15**, 333–337; (d) Y. Li, L. Cheng, B. Li, S. Jiang, L. Chen and Y. Shao, *ChemistrySelect*, 2016, **5**, 1092–1095.

