Surfactant-assisted solid-state synthesis of 6LiMn$_{0.8}$Fe$_{0.2}$PO$_4$·Li$_3$V$_2$(PO$_4$)$_3$/C nanocomposite for lithium-ion batteries

Yanming Wang,a,b Bo Zhu,a Xiaoyu Liua and Fei Wang*ab

Herein, nanosized LiMnPO$_4$/C, LiMn$_{0.8}$Fe$_{0.2}$PO$_4$/C, and 6LiMn$_{0.8}$Fe$_{0.2}$PO$_4$·Li$_3$V$_2$(PO$_4$)$_3$/C cathode materials were synthesized by a facile surfactant-assisted solid-state method. Lauric acid was used as a surfactant and carbon source to fabricate the carbon-coated nanoparticles. The phase compositions and elemental distribution of 6LiMn$_{0.8}$Fe$_{0.2}$PO$_4$·Li$_3$V$_2$(PO$_4$)$_3$/C were analyzed via X-ray diffraction and energy dispersive spectroscopy. Due to the unique heterogeneous nanostructure, 6LiMn$_{0.8}$Fe$_{0.2}$PO$_4$·Li$_3$V$_2$(PO$_4$)$_3$/C exhibits superior electrochemical performance as compared to the individual LiMn$_{0.8}$Fe$_{0.2}$PO$_4$/C and LiMnPO$_4$/C. The composite cathode delivers large discharge capacities of 162 and 167 mA h g$^{-1}$ at 0.1C in the voltage range of 2.0–4.5 V and 2.0–4.8 V, respectively, along with good rate capability and long cycle life.

1. Introduction

During the recent decade, the rapidly developing electric vehicles and hybrid electric vehicles urgently need safe lithium-ion batteries as a driving power source. Compared to commercial metal-oxide cathode materials, polyanionic LiMPO$_4$ (M = Fe, Mn, and Co) cathodes exhibit superior structural and thermal stability due to the existence of strong covalent P–O bonds.1,3 LiMnPO$_4$ shows great potential for application in power batteries owing to the virtues of large theoretical capacity (171 mA h g$^{-1}$), high discharge voltage (4.1 V vs. Li/Li$^+$), and an abundant manganese source.3 However, the low electronic conductivity of LiMnPO$_4$ ($<10^{-10}$ S cm$^{-1}$) restricts its reversible capacity at high currents.4

Recent reports have proven that the electrochemical kinetics of LiMnPO$_4$ can be remarkably improved by partially replacing Mn with Fe.5–26 Various LiMn$_{1-y}$Fe$_y$PO$_4$ (0 < y < 1) solid solutions, such as LiMn$_{0.8}$Fe$_{0.2}$PO$_4$,11,12 LiMn$_{0.8}$Fe$_{0.2}$PO$_4$,13,14 LiMn$_{0.8}$Fe$_{0.2}$PO$_4$,15,16 LiMn$_{0.8}$Fe$_{0.2}$PO$_4$,17,19 LiMn$_{0.8}$Fe$_{0.2}$PO$_4$,20 LiMn$_{0.8}$Fe$_{0.2}$PO$_4$,21,22 etc., exhibit much better electrochemical performance than the pristine LiMnPO$_4$. Yang et al.24 synthesized a LiMn$_{0.8}$Fe$_{0.2}$PO$_4$/C composite using a co-precipitation method, which provided a specific capacity of 160.6 mA h g$^{-1}$ at 0.05C. Xiang et al.25 reported the template-engaged synthesis of LiMn$_{0.8}$Fe$_{0.2}$PO$_4$ porous spheres, and the spheres exhibited capacity retention of 90.7% over 100 cycles at 1C. In general, the reversible capacity of LiFe$_2$Mn$_{1-y}$PO$_4$ increases with an increase in the Fe content. However, high Fe content reduces the energy density of LiFe$_2$Mn$_{1-y}$PO$_4$ due to the relatively low redox potential of Fe$^{3+}$/Fe$^{2+}$ (3.5 V vs. Li/Li$^+$). More recently, the reported multiphase composites of xLiFePO$_4$·yLi$_3$V$_2$(PO$_4$)$_3$ and xLiMnPO$_4$·yLi$_3$V$_2$(PO$_4$)$_3$ presented superior rate capability than individual LiFePO$_4$ and LiMnPO$_4$, respectively.26–30 The electrochemical activity of LiFePO$_4$ and LiMnPPO$_4$ can be obviously enhanced by blending with the fast ion conductor Li$_3$V$_2$(PO$_4$)$_3$.31–34 For example, Qin et al.31 prepared (1–x)LiFePO$_4$·xLi$_3$V$_2$(PO$_4$)$_3$/C composites through a solid-state method, and 0.6LiMnPO$_4$·0.4Li$_3$V$_2$(PO$_4$)$_3$/C showed much larger capacity of 130 mA h g$^{-1}$ at 0.1C than 76 mA h g$^{-1}$ of pristine LiMnPO$_4$/C. According to the abovementioned studies, a novel strategy of combining the advantages of a solid solution and multiphase composite was proposed to prepare high-performance LiMnPO$_4$-based composite cathode materials.35 Wu et al.36 reported the synthesis of 5LiMn$_{0.8}$Fe$_{0.2}$PO$_4$·Li$_3$V$_2$(PO$_4$)$_3$/C, which showed satisfactory performance with the specific capacity of 158 mA h g$^{-1}$ at 0.05C as compared to 70 mA h g$^{-1}$ of LiMn$_{0.8}$Fe$_{0.2}$PO$_4$/C. Although Li$_3$V$_2$(PO$_4$)$_3$ is a fast rate cathode for rechargeable lithium batteries, the theoretical capacity of 133 mA h g$^{-1}$ while charging to 4.3 V is relatively lower. Furthermore, the cost of V is much higher than that of Mn or Fe; thus, the high cost of Li$_3$V$_2$(PO$_4$)$_3$ restricts its large-scale application in power batteries. Based on the cost and performance of the cathode material, LiMn$_{1-y}$Fe$_y$PO$_4$ incorporated with a small quantity of Li$_3$V$_2$(PO$_4$)$_3$ may be a feasible choice.

The simple solid-state reaction method has been widely employed in industry to prepare various cathode materials for lithium batteries. However, the nanoparticles tend to aggregate and grow further during the high-temperature calcination. The big particle size usually causes slow lithium ion diffusion in the polyanionic cathode materials. To synthesize high dispersing nanoparticles using a solid-state reaction, several surfactants,
such as oleic acid, poly(acrylic acid), Tween, Span, etc., have been introduced to suppress the particle growth and aggregation. In this study, we described a facile solid-state synthesis of $6\text{LiMn}_{0.8}\text{Fe}_{0.2}\text{PO}_4$-$\text{Li}_3\text{V}_2(\text{PO}_4)_3$/C nanocomposites using lauric acid as a surfactant and carbon source. Moreover, physical characterization and electrochemical properties of $6\text{LiMn}_{0.8}\text{Fe}_{0.2}\text{PO}_4$-$\text{Li}_3\text{V}_2(\text{PO}_4)_3$/C were studied in detail.

2. Experimental

Stoichiometric amounts of Li$_2$CO$_3$, Mn(CH$_3$COO)$_2$·4H$_2$O, FeC$_2$O$_4$, NH$_4$VO$_3$, NH$_4$H$_2$PO$_4$, and lauric acid were mixed with ethanol media and ball-milled in a zirconia container at 400 rpm for 5 h. The molar ratio of Li/lauric acid was 1 : 2.5. The obtained precursor mixture was pre-decomposed at 350 °C for 4 h and subsequently heated at 700 °C under an Ar/H$_2$ atmosphere (7% H$_2$) for 10 h to yield the $6\text{LiMn}_{0.8}\text{Fe}_{0.2}\text{PO}_4$-$\text{Li}_3\text{V}_2(\text{PO}_4)_3$/C composite. For comparison, the LiMnPO$_4$/C and $\text{LiMn}_{0.8}\text{Fe}_{0.2}\text{PO}_4$/C composites were synthesized in a similar manner. LiMnPO$_4$/C, $\text{LiMn}_{0.8}\text{Fe}_{0.2}\text{PO}_4$/C, and $6\text{LiMn}_{0.8}\text{Fe}_{0.2}\text{PO}_4$-$\text{Li}_3\text{V}_2(\text{PO}_4)_3$/C have been abbreviated as LMP/C, LMFP/C, and 6LMFP-LVP/C, respectively.

The phase structure was determined using a powder X-ray diffractometer (XRD, Rigaku D/max-2550VL/PC, Cu Kα radiation), operating at 40 kV and 200 mA. The morphology, carbon layer, and elemental distribution of the as-synthesized composites were characterized by scanning electron microscopy (SEM, Hitachi-SU8020) and high-resolution transmission electron microscopy (HRTEM, JEOL-2100F) equipped with an energy dispersive X-ray spectroscopy (EDS). The carbon amounts of all the composites were evaluated by an elemental analyzer (Vario EL Cube). The chemical composition of the cathode material was analyzed via inductively coupled plasma atomic emission spectroscopy (ICP, iCAP 7600).

The electrochemical properties of the LMP/C, LMFP/C, and 6LMFP-LVP/C composites were studied using coin cells with lithium-foil as the anode and Entek ET20-26 membrane as the separator. The cathode consisted of 80 wt% active composite, 10 wt% Super P conducting carbon, and 10 wt% poly(vinylidene fluoride). A 1 M solution of LiPF$_6$ in the mixed solvents of ethylene carbonate and dimethyl carbonate (1 : 1, v/v) acted as the electrolyte. The charge–discharge measurements were performed using a battery testing system (LANHE CT2001) in the voltage range of 2.0–4.5 V and 2.0–4.8 V, respectively. The elevated temperature performance of 6LMFP-LVP/C was also determined at 50 °C. The cyclic voltagogram (CV) and electrochemical impedance spectra (EIS) were obtained using an electrochemical analyzer (CHI 650D).

3. Results and discussion

Fig. 1 presents the XRD patterns of the as-synthesized composites (a) and Rietveld refinement of 6LMFP-LVP/C (b).

![Fig. 1 XRD patterns of the as-synthesized composites (a) and Rietveld refinement of 6LMFP-LVP/C (b).](image)

indicating the pure solid solution phase of $\text{LiMn}_{0.8}\text{Fe}_{0.2}\text{PO}_4$. Both the $\text{LiMn}_{0.8}\text{Fe}_{0.2}\text{PO}_4$ and $\text{Li}_3\text{V}_2(\text{PO}_4)_3$ phases were observed in the 6LMFP-LVP/C composite with a small unidentified phase at 28.3°. The diffraction peaks of LMP/C and 6LMFP-LVP/C slightly shifted to higher 2θ angles relative to those of LMP/C, which may be attributed to the smaller ionic radius of Fe$^{2+}$ (0.78 Å) and V$^{3+}$ (0.74 Å) than that of Mn$^{2+}$ (0.80 Å). The lattice parameters of the olivine phase in LMP/C, LMFP/C, and 6LMFP-LVP/C composites, analyzed via Rietveld refinement, are compared in Table 1. The cell volume of LiMnP$_2$O$_7$ decreases when Fe is introduced, and it further decreases when $\text{Li}_3\text{V}_2(\text{PO}_4)_3$ is incorporated, which indicates that some Fe and V diffuse into the LiMnP$_2$O$_7$ host lattice. Previous studies have revealed that doping LiMnP$_2$O$_7$ with Fe$^{3+}$ and V$^{3+}$ could improve the electronic and electrochemical kinetics.5,31,32

<table>
<thead>
<tr>
<th>Sample</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>Volume (Å3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMP</td>
<td>6.0942</td>
<td>10.4338</td>
<td>4.7487</td>
<td>302.01</td>
</tr>
<tr>
<td>LMFP</td>
<td>6.0671</td>
<td>10.4262</td>
<td>4.7358</td>
<td>299.57</td>
</tr>
<tr>
<td>6LMFP-LVP</td>
<td>6.0558</td>
<td>10.4168</td>
<td>4.7273</td>
<td>298.21</td>
</tr>
</tbody>
</table>

Table 1 Lattice parameters of the olivine phase in the composites.
Fig. 2a–c show the SEM images of the LMP/C, LMFP/C, and 6LMFP-LVP/C powders. All the samples illustrate similar nanoparticles morphology with the size of ca. 100–150 nm and narrow distribution. The TEM images (Fig. 2d and e) exhibit that the well-dispersed 6LMFP-LVP/C granules are interconnected by the amorphous carbon layer rather than agglomerated into larger blocks. A homogenous carbon layer formed from the pyrolysis of lauric acid is tightly coated on the surface of the 6LMFP-LVP nanoparticles in a thickness of ca. 3 nm. The carbon contents evaluated by elemental analysis are
Lauric acid (CH₃(CH₂)₁₀COOH) is a saturated fatty acid with
Table 2. 6LMFP 7.28 : 1.81 : 3.00, which is basically in accordance with the
Fe, V, P, O, and C. The molar ratio of Mn : Fe : V is
7:2.8:1.81:3.00, respectively. However, the charge plateau of Fe³⁺/Fe²⁺ is invisible because of overlapping with the plateau of LiₓV₂(PO₄)₃ (x from 3 to 2.5). Note that the voltage difference between the charge and discharge plateaus corresponding to LiMnP₀₄ ↔ MnPO₄ decreases when Fe is introduced and further decreases when LiₓV₂(PO₄)₃ is introduced, demonstrating smaller polarization and higher electrochemical kinetics. Moreover, the initial discharge capacity reaches 162 mA h g⁻¹ for the 6LMFP-LVP/C sample at 0.1C rate, whereas it reaches 144 mA h g⁻¹ for LMFP/C and 124 mA h g⁻¹ for LMP/C under the same conditions.

Fig. 5b shows the rate capabilities of the LMP/C, LMFP/C, and 6LMFP-LVP/C composites. Obviously, the rate capability of 6LMFP-LVP/C is superior to those of LMFP/C and LMP/C. The discharge capacities of 6LMFP-LVP/C at 0.5, 1, and 2C rates are 150, 146, and 139 mA h g⁻¹, respectively. However, the charge plateau of Fe³⁺/Fe²⁺ is invisible because of overlapping with the plateau of LiₓV₂(PO₄)₃ (x from 3 to 2.5). Note that the voltage difference between the charge and discharge plateaus corresponding to LiMnP₀₄ ↔ MnPO₄ decreases when Fe is introduced and further decreases when LiₓV₂(PO₄)₃ is introduced, demonstrating smaller polarization and higher electrochemical kinetics. Moreover, the initial discharge capacity reaches 162 mA h g⁻¹ for the 6LMFP-LVP/C sample at 0.1C rate, whereas it reaches 144 mA h g⁻¹ for LMFP/C and 124 mA h g⁻¹ for LMP/C under the same conditions.

Fig. 5a shows the initial charge–discharge curves of the LMP/C, LMFP/C, and 6LMFP-LVP/C composites. The cells were charged to 4.5 V at 0.1C rate (17 mA g⁻¹), kept at 4.5 V until the current decreased to 0.02C, and then discharged to 2.0 V at 0.1C rate. As observed for LMP/C, a pair of sloping voltage plateaus (4.22/3.93 V) corresponds to the phase transition of LiMnP₀₄ ↔ MnPO₄, which is invisible in the phase transition of LiₓV₂(PO₄)₃ (x from 3 to 2.5). Note that the voltage difference between the charge and discharge plateaus corresponding to LiMnP₀₄ ↔ MnPO₄ decreases when Fe is introduced and further decreases when LiₓV₂(PO₄)₃ is introduced, demonstrating smaller polarization and higher electrochemical kinetics. Moreover, the initial discharge capacity reaches 162 mA h g⁻¹ for the 6LMFP-LVP/C sample at 0.1C rate, whereas it reaches 144 mA h g⁻¹ for LMFP/C and 124 mA h g⁻¹ for LMP/C under the same conditions.

Fig. 3 Schematic of the synthesis of carbon-coated 6LMFP-LVP.

Table 2 Molar ratio of the prepared 6LMFP-LVP/C measured by ICP

<table>
<thead>
<tr>
<th>Element</th>
<th>Theoretical</th>
<th>6LMFP-LVP/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>4.5</td>
<td>4.63</td>
</tr>
<tr>
<td>Mn</td>
<td>2.4</td>
<td>2.43</td>
</tr>
<tr>
<td>Fe</td>
<td>0.6</td>
<td>0.58</td>
</tr>
<tr>
<td>V</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>4.5</td>
<td>4.42</td>
</tr>
</tbody>
</table>
LiMn$_{0.8}$Fe$_{0.2}$PO$_4$ matrix reduces the Li$^+$ diffusion pathway in bulk LiMnPO$_4$, which facilitates faster Li-ion intercalation kinetics.

The electrochemical performance of the 6LMFP-LVP/C composite cycled in a wide voltage range of 2.0–4.8 V was also been investigated. Fig. 6a displays the typical charge-discharge curves of 6LMFP-LVP/C at 0.1C and 0.5C. When the end-of-charge voltage extended to 4.8 V, another plateau at 4.52 V in the charge curve was observed, which belonged to the extraction of the third Li$^+$ from Li$_3$V$_2$(PO$_4$)$_3$. The charge and discharge capacities of 6LMFP-LVP/C at the second cycle are 178 and 167 mA h g$^{-1}$ at 0.1C rate, respectively, with the corresponding coulombic efficiency of 93.8%. At a 0.5C rate, a discharge capacity of 143 mA h g$^{-1}$ was still achieved, and the capacity retention was as high as 91% at the end of 250 cycles. The slight capacity loss may be induced by the deterioration of the electrode/electrolyte interface, resulting from the electrolyte decomposition at high potential.

Fig. 7 describes the charge-discharge curve and cycle life (inset) of 6LMFP-LVP/C at 50 °C. In comparison with the charge–discharge curve obtained at room temperature, as shown in Fig. 5a, 6LMFP-LVP/C presents smaller hysteresis between charge and discharge and flatter charge plateau of Mn$^{3+}$/Mn$^{2+}$ at elevated temperature. Furthermore, the charge plateaus of Fe$^{3+}$/Fe$^{2+}$ (3.55 V) and V$^{5+}$/V$^{4+}$ (4.47 V) can be distinctly observed, demonstrating its improved electrode kinetics at high temperature. The 6LMFP-LVP/C delivers...
a large reversible capacity of 154 mA h g\(^{-1}\) at 1C rate and provides a capacity retention of about 90% over 100 cycles, illustrating a good high-temperature stability of the electrode.

To further clarify the synergistic effects of the solid solution and multiphase composition, cyclic voltammetry was employed to analyze the lithiation/delithiation behavior. Fig. 8 compares the CV curves of LMP/C, LMFP/C, and 6LMFP-LVP/C electrodes at a scan speed of 0.1 mV s\(^{-1}\). One couple peak located at 3.68/3.51 V for LMFP/C and three couple peaks located at 3.62/3.57, 3.70/3.65, and 4.11/4.04 V for 6LMFP-LVP/C are ascribed to the redox of Fe\(^{3+}/Fe^{2+}\) and V\(^{4+}/V^{3+}\), respectively. The peak couples at 4.33/3.92 for LMP/C, 4.23/3.92 for LMFP/C, and 4.20/3.95 V for 6LMFP-LVP/C are associated with the redox of Mn\(^{3+}/Mn^{2+}\). More significantly, the separation potentials between the Mn\(^{3+}/Mn^{2+}\) redox peaks decrease from 0.41 V of LMP/C to 0.31 V of LMFP/C and 0.25 V of 6LMFP-LVP/C. The abovementioned results are in accordance with the charge–discharge curves, which suggest that the electrochemical activity of LiMnPO\(_4\) is remarkably enhanced by the appropriate Fe substitution and combination of Li\(_3\)V\(_2\)(PO\(_4\)).

Fig. 9 shows the AC impedance spectra of LMP/C, LMFP/C, and 6LMFP-LVP/C electrodes at the fully discharged state after 100 cycles. All the spectra present a depressed semicircle in
the high-medium frequency region, corresponding to the charge-transfer impedance at the electrode/electrolyte interface, and a straight line in the low frequency region, relating to the Li\(^+\) diffusion in the electrode material. The slope of the straight line is proportional to the Li\(^+\) diffusion coefficient\(^{13,42}\). By comparing the diameter of the semicircles and the slope of the straight lines, it was found that 6LMFP-LVP/C exhibits smaller interface impedance and much faster Li\(^+\) diffusion than LMFP/C and LMP/C. This demonstrates that the electronic and ionic conductivity of 6LMFP-LVP/C are better than those of LMFP/C and LMP/C and also clarifies the fast rate capability of 6LMFP-LVP/C.

4. Conclusions

The 6LiMn\(_{0.8}\)Fe\(_{0.2}\)PO\(_4\)-Li\(_3\)V\(_2\)(PO\(_4\))\(_3\)/C composite with the size of ca. 100–150 nm was successfully synthesized via a surfactant-assisted solid-state method employing lauric acid as a surfactant and carbon source. The use of lauric acid is beneficial for the fabrication of uniform nanoparticles with high dispersion. XRD and EDS mapping illustrate that the composite consists of LiMn\(_{0.8}\)Fe\(_{0.2}\)PO\(_4\) and Li\(_3\)V\(_2\)(PO\(_4\))\(_3\) phases, and the Li\(_3\)V\(_2\)(PO\(_4\))\(_3\) phase uniformly diffuses into the LiMn\(_{0.8}\)Fe\(_{0.2}\)PO\(_4\) matrix. The 6LiMn\(_{0.8}\)Fe\(_{0.2}\)PO\(_4\)-Li\(_3\)V\(_2\)(PO\(_4\))\(_3\)/C composite exhibits much higher specific capacity and better rate capability than the individual LiMn\(_{0.8}\)Fe\(_{0.2}\)PO\(_4\)/C and LiMnP04/C. The enhanced electrochemical performance of the multiphase composite demonstrates its use as a promising cathode material for high-power lithium ion batteries.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21401061), Provincial Natural Science Research Foundation of Anhui Universities, China (No. KJ2015A332 and KJ2014A224), Innovation Team of Design and Application of Advanced Energetic Materials and the Key project of Anhui Universities support program for Outstanding Youth, China (No. gxyqZD2016111), Natural Science Foundation of Anhui Province, China (No. 1308085QB41), and the Henan Joint Funds of the National Natural Science Foundation of China (U1504532).

References
