1 Introduction

Since the pioneering work by Fujishima and Honda, anatase titanium dioxide (TiO$_2$) has been used widely as a promising photocatalyst for water splitting due to its high photocatalytic activity, cost effectiveness, environmental friendliness, availability, and long-term stability against photo- and chemical corrosion. Unfortunately, because of the wide band gap (3.2 eV) possessed by anatase TiO$_2$, its practical application for the photocatalytic water splitting for hydrogen production is limited by the narrow range of irradiation from a light source, which falls in the ultraviolet (UV) region. Therefore, band gap engineering of TiO$_2$ to enhance solar energy utilization has been an important issue in photocatalyst studies. To improve the visible-light photocatalytic performance, doping TiO$_2$ with foreign elements including non-metals (such as N, B, C, F, S, etc.) and transition metals (such as Fe, Cr, Co, Mo, V, etc.) has been used widely. However, experimental and theoretical studies show that substituting oxygen with non-metal elements needs to overcome a larger energy barrier and non-metal dopants prefer to be in interstitial sites near to the oxygen lattice and that transition-metal dopants can introduce localized states into the band gap and lead to a relatively high recombination rate of photo-generated electron–hole pairs. Consequently, the photocatalytic efficiency of monodoped TiO$_2$ is usually very low. Fortunately, charge compensated donor–acceptor codoping can improve the solubility of the alloying elements and more effectively narrow the band gap than monodoping, enhancing the photocatalytic activity of TiO$_2$. Since the codoping concept was proposed, it has attracted intense research interest in the field of photocatalytic water splitting. Note that these reported studies of doped-TiO$_2$ are focused on the bulk material. Since the photoreactive properties of materials are mainly determined by the exposed facets, and the reactions occur on substrate surfaces, theoretical investigation of the surface codoping effect is urgently needed.

In addition, a bare photocatalyst without loading a cocatalyst would exhibit a poor photocatalytic hydrogen evolution activity. In order to guarantee hydrogen evolution, noble metals (such as Pt, Pd, Ru, Rh and Au) are usually needed to be loaded as a cocatalyst, which not only provides a large number of active sites, but also promotes charge separation. Unfortunately, the application of noble metals in photocatalytic materials is greatly restricted due to the high cost and low abundance. Alternatively, surface doping with noble metals would be a sensible way to decrease the noble metal loading and to increase the activity. Recently, Okamoto et al. have reported...
that Rh-doped Ca–Nb–O nanosheets exhibit a high photocatalytic activity for hydrogen production from a water/methanol system. In addition, Xing et al. have also proven that doping TiO2 with isolated noble metal atoms (Pt, Pd, Rh or Ru) leads to a 6–13-fold increase in photocatalytic activity over metal clusters loaded on TiO2 by the traditional method. Clearly, the surface doped noble metals can be expected to be directly involved in the catalytic reaction, and act as reaction sites for hydrogen evolution, thus causing a significant improvement in photocatalytic performance.

Based on these experimental findings, to develop photocatalytic materials with visible light response and high activity, more attention should be paid to surface doping with noble metals. However, theoretical investigation of the effect of surface coding on the surface electronic structure and cata-
lytic activity of TiO2 is rare so far. Here, we focus on the anatase TiO2 (101) surface for the following two reasons: (i) the activity of anatase in photocatalytic processes is found to be much higher than that of rutile23 and (ii) the (101) termination is the most thermodynamically stable low-index surface of anatase TiO2. By performing extensive density functional theory (DFT) calculations, the effect of surface (Rh + F) coding on the electronic structure and photocatalytic activities of the anatase TiO2 (101) surfaces is carefully examined. We find that a single Rh atom can be stably anchored to the anatase TiO2 (101) surface by coding with a F atom. The (Rh + F) coding can not only effectively narrow the band gap by introducing occupied and delocalized intermediate states, but can also create the ideal band edge alignment for solar water splitting.

2 Computational model and methods

Our DFT calculations are performed using the Vienna ab initio simulation package (VASP). The interaction between the core and valence electrons is described using the frozen-core projector augmented wave approach (PAW). The PAW potentials with the 4s and 3d valence states for the Ti atoms, 2s and 2p for the O and F atoms, and 4d and 5s for the Rh atom are employed. The exchange and correlation effects are described by the Perdew–Burke–Ernzerhof (PBE) functional. The Monkhorst–Pack mesh of k-points (2 × 2 × 1 points) is used to sample the Brillouin zone. A plane-wave cutoff energy of 520 eV is used, all atomic positions in the selected top layers are relaxed at the PBE level until the atomic forces are smaller than 0.02 eV Å⁻¹, and the tolerance for energy convergence is set to 10⁻⁵ eV.

Firstly we optimize the pure anatase TiO2 structure, and obtain bulk lattice parameters (a = 3.82 Å and c = 9.69 Å) which are in good agreement with previous experimental and theoretical results. Then, the TiO2 (101) surface is simulated by a 2 × 3 periodic slab model that contains eight O–Ti–O tri-
layers, as shown in Fig. 1. The slab model is separated by a 15 Å-thick vacuum gap and the total number of atoms is 144. The lengths along the [101] and [010] directions of the surface model are 10.42 and 11.46 Å, which are long enough, and the self-interactions among the impurities could be ignored. In the examined surface models, the top four trilayers are fully relaxed, while the bottom four trilayers are fixed to mimic the bulk region. To visit the surface coding effect, one Ti and/or O atom is replaced by one Rh and/or F atom, respectively. This means that the atomic impurity concentrations (Rh or F) are 0.69%.

In order to predict the correct electronic structures and defect levels of transition metal oxides, the more time consuming hybrid density functional as prescribed by Heyd–Scuseria–Ernzerhof (HSE06) has been adopted. The exchange–correlation contribution employed in the HSE06 functional is divided into short- and long-range parts. The 25% Hartree–Fock (HF) exchange is mixed with PBE exchange in the short-range part, and the expression for exchange–correlation in HSE06 is given by

\[
E_{\text{HSE}} = \frac{1}{4}E_{\text{HFSR}}(\mu) + \frac{3}{4}E_{\text{PBE,SR}}(\mu) + E_{\text{PBE,LR}}(\mu) + E_{\text{PBE}}
\] (1)

where SR and LR represent the short- and long-range parts of the exchange interaction, respectively. \(\mu\) is the parameter that defines the range-separation of the Coulomb kernel and \(\mu = 0.2\) Å⁻¹.

In order to determine the relative stabilities of different doping configurations and find the optimal synthetic condition, we calculate the defect formation energy \(E_{\text{form}}\) according to the following equations,

\[
E_{\text{form}} = E_{\text{Rh}+} - E_{\text{pure}} + \mu_{\text{Ti}} - \mu_{\text{Rh}}
\] (2)

\[
E_{\text{form}} = E_{\text{O}+} - E_{\text{pure}} + \mu_{\text{O}} - \mu_{\text{F}}
\] (3)

\[
E_{\text{form}} = E_{\text{Rh}+\text{F}+} - E_{\text{pure}} + \mu_{\text{Ti}} + \mu_{\text{O}} - \mu_{\text{Rh}} - \mu_{\text{F}}
\] (4)

where \(E_{\text{pure}}\), \(E_{\text{Rh}+}\), \(E_{\text{O}+}\), and \(E_{\text{Rh}+\text{F}+}\) are the total energies of the pure, Rh and F monodoped, and (Rh + F) codoped anatase TiO2 (101) surface, while \(\mu_{\text{Ti}}, \mu_{\text{O}}, \mu_{\text{Rh}}\) and \(\mu_{\text{F}}\) denote the chemical potential of the Ti, O, Rh, and F atoms, respectively. In practice, the defect formation energies for these doped systems depend on the experimental growth condition, which can be either O-rich, Ti-rich, or anything in between. Under the O-rich condition, the O chemical potential is calculated from the total energy of the O₂ molecule \(\mu_{\text{O}} = \mu(\text{O}_2)/2\), whereas the Ti chemical potential is calculated by the relationship \(\mu_{\text{Ti}} + 2\mu_{\text{O}} = \mu(\text{TiO})\). Under the Ti-rich condition, the Ti chemical potential amounts to the energy of one atom in bulk Ti \(\mu_{\text{Ti}} = \mu_{\text{metal}}\), whereas the chemical potential of O is obtained using the above relationship. For the dopant elements, the bulk metal Rh and the gaseous diatomic molecule F₂ are used to determine the chemical potentials: \(\mu_{\text{Rh}} = \mu_{\text{Rh,metal}}\) and \(\mu_{\text{F}} = \mu(\text{F}_2)/2\) respectively.

To examine the coupling strength between the dopants in the codoped system, we calculate the defect pair binding energy \(E_b\), which is defined as

\[
E_b = E_{\text{Rh}+} + E_{\text{O}+} - E_{\text{Rh}+\text{F}+} - E_{\text{pure}}
\] (5)

where \(E\) represents the total energy of the respective systems calculated with the same supercell. A positive binding energy implies that the defect pair is more stable than the isolated defect.
The defect pair binding energies (in eV) of the (Rh + F) codoped anatase TiO$_2$ (101) surface are also listed in Table 1. Similarly to the anion-cation doping configurations, the calculated binding energies of the (Rh + F) codoped TiO$_2$ surface are all positive, indicating that the two dopants tend to bind with each other on the TiO$_2$ (101) surface due to the strong Coulomb interaction between the Rh and F dopants. This large defect pair binding energy also indicates that the (Rh + F) codoping pair is more stable than the isolated Rh and F monodoped anatase TiO$_2$ (101) surfaces.

Table 1 The defect formation energies of Rh/F monodoping and codoping of the anatase TiO$_2$ (101) surface under O-rich and Ti-rich conditions, which are labeled as $E_{\text{form}}^{\text{O-rich}}$ and $E_{\text{form}}^{\text{Ti-rich}}$ in eV, respectively. The defect pair binding energies (E_b in eV) of the (Rh + F) codoped anatase TiO$_2$ (101) surface are also listed.

<table>
<thead>
<tr>
<th>Dopants</th>
<th>$E_{\text{form}}^{\text{O-rich}}$ (in eV)</th>
<th>$E_{\text{form}}^{\text{Ti-rich}}$ (in eV)</th>
<th>E_b (in eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rh1</td>
<td>-0.82</td>
<td>8.06</td>
<td>-</td>
</tr>
<tr>
<td>Rh2</td>
<td>-0.93</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>Rh3</td>
<td>-1.10</td>
<td>7.78</td>
<td>-</td>
</tr>
<tr>
<td>Rh4</td>
<td>-0.78</td>
<td>8.10</td>
<td>-</td>
</tr>
<tr>
<td>F1</td>
<td>-0.85</td>
<td>-5.29</td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>-0.43</td>
<td>-4.87</td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td>-0.64</td>
<td>-5.08</td>
<td></td>
</tr>
<tr>
<td>F4</td>
<td>-0.11</td>
<td>-4.55</td>
<td></td>
</tr>
<tr>
<td>F5</td>
<td>-0.83</td>
<td>-5.27</td>
<td></td>
</tr>
<tr>
<td>F6</td>
<td>-0.60</td>
<td>-5.04</td>
<td></td>
</tr>
<tr>
<td>F7</td>
<td>-0.73</td>
<td>-5.17</td>
<td></td>
</tr>
<tr>
<td>F8</td>
<td>-0.34</td>
<td>-4.78</td>
<td></td>
</tr>
<tr>
<td>(Rh1 + F)</td>
<td>-2.15</td>
<td>2.29</td>
<td>1.25</td>
</tr>
<tr>
<td>(Rh2 + F)</td>
<td>-2.87</td>
<td>1.57</td>
<td>1.89</td>
</tr>
<tr>
<td>(Rh3 + F)</td>
<td>-2.57</td>
<td>1.87</td>
<td>1.77</td>
</tr>
<tr>
<td>(Rh4 + F)</td>
<td>-2.23</td>
<td>2.21</td>
<td>1.51</td>
</tr>
</tbody>
</table>
Interestingly, the most stable structure of the (Rh + F) codoping configuration is that in which the Rh atom occupies the surface sixfold coordinated Ti site (Rh2 in Fig. 1(a)) while the F atom occupies the nearby twofold coordinated bridging O site (F1 in Fig. 1(b)). Moreover, the formation energy of the most stable (Rh + F) codoping structure is less than that with Rh monodoping whether under O-rich or Ti-rich conditions, indicating that codoping with F atoms makes Rh doping easier. These novel observations show the possibility of single-atom Rh catalysis on the anatase TiO2 (101) surface. Of course, these Rh atoms in the (Rh + F) codoped anatase TiO2 (101) surface can act as active sites for photocatalytic H2 production.

3.2 Electronic structure

Before exploring the effect of codoping on the electronic structure of the anatase TiO2 (101) surface, we calculate the total density of states (DOS) and projected DOS of the pure anatase TiO2 (101) surface and show them in Fig. 2. The HSE06 calculated band gap of the pure TiO2 surface is predicted to be 2.74 eV, which is very close to the experimental value. Similarly to in bulk anatase TiO2, the valence band maximum (VBM) is mainly contributed to by O 2p orbitals, while the conduction band minimum (CBM) has predominantly Ti 3d character. As for the anatase TiO2 (101) surface with Rh monodoping, we find that the main features of these calculated electronic structures of the Rh-doped TiO2 surface with different nonequivalent surface and subsurface doping sites are similar. For clarity, we focus on the most stable Rh-doped configuration. Due to the unpaired 3d electron from the Rh dopant, the ground state of the Rh-doped TiO2 surface is spin-polarized. The magnetic moment is predicted to be 1.0 \(\mu_B \) per supercell, which mainly originates from the Rh atom (the atomic magnetic moment is about 0.74 \(\mu_B \)). The spin-resolved total DOS of the Rh-doped anatase TiO2 (101) surface and the partial DOS for the O 2p, Ti 3d and Rh 4d electrons are plotted in Fig. 3(a), (b), (c) and (d), respectively. In comparison with the pure TiO2 surface, the Rh dopant creates some unoccupied and localized empty states above the Fermi level as well as several fully occupied impurity states at the VB tails. These impurity states originate from the hybridization of the Rh 4d and O 2p orbitals, as shown in Fig. 3(b) and (d). As a result, they lead to band gap narrowing. The reduced band gap value is about 1.01 eV. To understand the nature of these impurity states, we further consider the valence electron configurations of Rh and Ti. Upon substitution of Ti with a Rh atom, the Rh dopant should be in a formal +4 state (Rh4+), and the corresponding valence electron configuration changes from 4d85s1 to 4d55s0. Note that to reach a stable oxidation state (Rh3+), the Rh dopant needs to transfer an electron from a neighboring O atom to itself (Rh4+).45 Moreover, the unoccupied impurity states located at 1.73 eV above the VBM can act as deep acceptor energy levels. Additionally, these acceptor states are rather localized, thus would have an adverse influence on the photocatalytic performance since the carrier mobility drastically reduces and the photogenerated carrier recombination increases.

To solve these problems and then enhance the photocatalytic performance, the unoccupied and localized impurity states should be passivated. Since an F atom contains one more valence electron than an O atom, the substitution of F on the O site will introduce one extra electron into the system. Once a (Rh + F) codoping pair is incorporated into the anatase TiO2 (101) surface, an extra electron from the F atom will transfer to the Rh dopant, thus, the Rh dopant will be in the stable +3 oxidation state. In this sense, the anion–cation surface...
codoping pair suppresses the formation of the Rh$^{4+}$ state, and passivates the unoccupied and localized states through charge compensation.

To assess the surface codoping effect, we calculate the total DOS of the (Rh + F) doped anatase TiO$_2$ (101) surface and the partial DOS of the O 2p, Ti 3d, F 2p and Rh 4d orbitals, and compare them with the corresponding results for the pure TiO$_2$ surface. The results are plotted in Fig. 4. In contrast to the Rh monodoping case, the ground state of the (Rh + F) doped TiO$_2$ surface is spin-restricted, and the magnetic moment is zero, indicating the absence of an unpaired electron in the codoped system. Fig. 4(a) clearly demonstrates that the (Rh + F) codoping pair just slightly perturbs the VBM and CBM positions compared to the pure anatase TiO$_2$ surface. Intermediate bands (IBs) located below the Fermi level appear within the band gap. The effective band gap of the (Rh + F) codoped TiO$_2$ surface is significantly narrowed to about 2.14 eV. According to the calculated partial DOS, as shown in Fig. 4(b), (d) and (e), the occupied IBs are mainly contributed to by O 2p orbitals, Rh 4d orbitals and F 2p orbitals. In comparison with the Rh monodoping case, the width of the IBs are substantially broadened due to the strong hybridization. These substantially broad, delocalized, and occupied IBs induced by the (Rh + F) codoping pair can not only effectively reduce the band gap, but can also prevent the recombination of photogenerated carriers. Moreover, no acceptor states appear above the Fermi level, which indicates that the recombination centers will be greatly reduced compared with the Rh or F monodoping case.

It is well known that there are three processes in the photocatalytic generation of H$_2$: (1) the photocatalyst absorbs sunlight and generates excited electrons and holes, (2) the excited electrons and holes separate and migrate to the surface of the photocatalyst separately, and (3) molecules are reduced and oxidized by the photogenerated electrons and holes (i.e. water is split into H$_2$ and O$_2$), respectively. In the second step, whether the photogenerated electrons can jump from the VB to the CB via the IBs depends on their localized or delocalized nature. Therefore, we plot the electron density distributions of the VBM, IB and CBM of the (Rh + F) codoped anatase TiO$_2$ (101) surface in Fig. 4(f). Clearly, both the VB and CB near the band edges are highly delocalized, indicating that (Rh + F)codoping just slightly affects the VB and CB of the pure TiO$_2$ surface. Whereas the IBs, mainly composed of Rh 4d and O 2p orbitals with a slight contribution from F 2p orbitals, can be deemed somewhat delocalized. As stated by Zhang et al., the delocalized nature is of significance if the IB acts as a stepping stone to bridge the VBM and the CBM. This nature will ensure migration of the electrons excited by photon energies in the visible region to jump from the CB to the IB.

3.3 Photocatalytic activity

Although the band structure of the anatase TiO$_2$ (101) surface is effectively modified by the (Rh + F) codoping pair, one should be aware of the band edge positions with respect to the redox potentials of the adsorbrates on the surface. If the CBM of the photocatalyst is above (more negative than) the potential level of the acceptor species, while the VBM of the photocatalyst is below (more positive than) the potential level of the donor species, the photocatalytic water splitting is able to proceed to produce H$_2$ and O$_2$ simultaneously. To evaluate the effect of surface doping on the photocatalytic performance, we plot the band edge alignment of the pure and doped anatase TiO$_2$ (101) surface compared with the water reduction and oxidation potentials in Fig. 5. Here, the CBM position for the pure anatase TiO$_2$ (101) surface with respect to the normal hydrogen electrode (NHE) potential is taken from experiment. The VBM position is deduced from the energy gaps calculated using HSE06. As for the Rh-doped, F-doped, and (Rh + F) codoped anatase TiO$_2$ (101) surfaces, the CB and VB edge positions are determined according to the calculated DOS results (see Fig. 3 and 4), which have been aligned on one diagram using the 2s core levels of the O atoms farthest away from the dopants.

As shown in Fig. 5, the CBM of the pure anatase TiO$_2$ (101) surface is higher (by about 0.2 eV) than the reduction potential
Kronig relationship. The optical absorption coefficients of the pure and (Rh + F) codoped anatase TiO$_2$ (101) surfaces are shown in Fig. 6. In our calculations, $\varepsilon_{2}(\omega)$ and $\varepsilon_{1}(\omega)$ along parallel and vertical directions relative to the anatase TiO$_2$ (101) surfaces are evaluated. It is clear that the absorption spectrum of the pure anatase TiO$_2$ (101) surface depends on the polarization direction of the incoming light, whether in parallel or perpendicular to the anatase TiO$_2$ (101) surface. As for the (Rh + F) codoped anatase TiO$_2$ (101) surface, there is a significant redshift of the absorption edge due to the significant reduction of the band gap of the pure anatase TiO$_2$ (101) surface by the (Rh + F) codoping pair. Clearly, the (Rh + F) codoped anatase TiO$_2$ (101) surface should be a promising visible light photocatalyst, since it can effectively harvest the visible light spectrum.

3.5 The anatase TiO$_2$ (001) surface

Finally, to explore the influence of (Rh + F) doping toward other TiO$_2$ surfaces, we examine the anatase TiO$_2$ (001) surface as an example since it is often seen as a high activity facet. For Rh monodoping and (Rh + F) codoping, we consider various possible nonequivalent surface and subsurface doping sites, as shown in Fig. 7. The formation energies of three kinds of surface doping under O-rich and Ti-rich conditions are summarized in Table 2. Fig. 7(b) show the most stable substitutional site of the Rh atom (the sixfold coordinated Ti site in the second trilayer), which is similar to the Rh monodoping case in the (101) surface in which the doped Rh atom also locates below the surface. This implies that the Rh dopant cannot act as a direct reaction site in photocatalytic H$_2$ evolution. If the O atom connected to the Rh atom is further...
substituted by a F atom, the most stable structure of the $(\text{Rh} + \text{F})$ codoped configuration is that in which the Rh atom occupies the sixfold coordinated Ti site of the third trilayer while the F atom occupies the nearby threefold coordinated O site, as shown in Fig. 7(d). It is clear that the Rh atom in the $(\text{Rh} + \text{F})$ codoped anatase TiO$_2$ (001) surface still locates below the surface, which is different to the $(\text{Rh} + \text{F})$ codoped anatase TiO$_2$ (101) surface.

At the HSE06 level, we calculate the total DOS of the $(\text{Rh} + \text{F})$ doped anatase TiO$_2$ (001) surface, and plot them in Fig. 7(e). Clearly, the $(\text{Rh} + \text{F})$ doping pair slightly perturbs the VBM and CBM positions compared to the pure (001) surface. Similarly to the doping in the (101) surface, there are some fully occupied and delocalized intermediate bands within the band gap. Thus the effective band gap of the $(\text{Rh} + \text{F})$ codoped TiO$_2$ (001) surface is narrowed to about 2.05 eV.

4 Conclusions

By performing extensive DFT calculations, we examine the effect of $(\text{Rh} + \text{F})$ codoping on the electronic structures and photocatalytic activities of anatase TiO$_2$ (101) and (001) surfaces. Our simulated results clearly reveal that single Rh atoms can be stably anchored on the anatase TiO$_2$ (101) surface through introducing the codoped F atom, which shows the possibility of single-atom Rh catalysis on the $(\text{Rh} + \text{F})$ codoped anatase TiO$_2$ (101) surface. The $(\text{Rh} + \text{F})$ doping can not only effectively reduce the band gap by forming occupied and delocalized intermediate bands within the band gap, but can also lead to nice band edge alignment. Moreover, the $(\text{Rh} + \text{F})$ doping pair significantly enhances the optical absorption. These theoretical findings suggest that this kind of surface doping is a promising approach to design visible-light photocatalysts for water splitting.

Acknowledgements

This work was partially supported by the State Key Research & Development Program of China (No. 2016YFA0200600), by the National Key Basic Research Program (No. 2014CB921101), by the NSFC (No. 21503149, 21473168 and 11634011), and by the Doctoral Program Foundation of Tianjin Normal University (No. 52XB1408) [J. W. and Q. L.]. J. H. thanks the Natural Science Foundation of the Anhui Higher Education Institutions (No. KJ2016A144) and the Natural Science Foundation of Anhui Province (No. 1408085QB26). Computational resources have been provided by CAS, Shanghai and USTC Supercomputer Centers.

References
