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To improve the yield of industrial fermentation, herein, we report a method based on Fourier-transform
near-infrared spectroscopy (FT-NIR) to predict the growth of yeast. First, the spectra were obtained
using an FT-NIR spectrometer during the process of yeast cultivation. Each spectrum was acquired over
the range from 10 000 to 4000 cm™, which resulted in spectra with 1557 variables. Moreover, the
optical density (OD) value of each fermentation sample was determined via photoelectric turbidity
method. Then, using a method based on competitive adaptive reweighted sampling (CARS),
characteristic wavelength variables were selected from the preprocessed spectral data. Gaussian mixture
regression (GMR) algorithm was employed to develop the prediction model for the determination of OD.
The results of the model based on GMR were achieved as follows: only 13 characteristic wavelength
variables were selected by CARS, the coefficient of determination R,? was 0.98842, and the root mean
square error of prediction (RMSEP) was 0.07262 in the validation set. Finally, compared to kernel partial
least squares regression (KPLS), support vector machine (SVM), and extreme learning machine (ELM)

Received 7th March 2017 models, GMR model showed excellent performance for prediction and generalization. This study

Accepted 24th April 2017
demonstrated that FT-NIR spectroscopy analysis technology integrated with appropriate chemometric

DOI: 10.1039/c7ra02774e approaches could be utilized to monitor the growth process of yeast, and GMR revealed its superiority in
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1. Introduction

Owing to the shortage of fossil energy sources in the world,
development of biomass energy has gained significant atten-
tion. Yeast fermentation, which is one of the most common
ways of biomass energy production, has been widely applied in
the alcohol industry.'” In the industrial production process,
prediction of growth process of yeast can not only help people
know the period of yeast growth, but can also be used to more
accurately select the termination time of yeast culture to maxi-
mize the production and compare cell growth status of different
batches to choose the best feeding time. Therefore, it plays
a significant guiding role in the fermentation industry. At
present, some main methods such as cell count technique, plate
colony-counting, and weighing have been reported to predict
the growth process of yeast cells. However, detection process via
these methods is tedious and these methods require usage of
certain chemical reagents that will lead to the destruction of the
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samples, environmental pollution, and waste of time.* There-
fore, a rapid and reliable analytical method is essentially
required to predict the growth process of yeast to assure the
quality and consistency of the product of yeast.

Fourier-transform near infrared (FT-NIR) spectroscopy can
possibly serve as a noninvasive technique for the quantitative
analysis of the growth process of yeast as it interacts with
molecular groups associated with process parameters such as
biomass (C-H group), organic acid and moisture (O-H group),
and scattering from microstructures.>® Most of the near-
infrared absorption bands associated with these groups are
overtone or combination bands of the fundamental absorption
bands in the mid-infrared regions, which are due to vibrational
and rotational transition.” In recent years, FT-NIR spectroscopy
technology has been applied in the field of yeast fermentation.®®
The abovementioned studies show that FT-NIR spectroscopy is
a highly potential technique for the analysis of the growth
process of yeast.

However, FT-NIR spectroscopy analysis technique is an
indirect measurement technique. In recent years, a number of
studies have shown that near infrared spectral information has
complicated backgrounds with peak overlapping and weak
signal. Generally, NIR has hundreds of variables, and some
uninformative variables, redundant variables, and serious
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multicollinearity exist among the wavelength variables. Model
calibration using complete spectral data will not only reduce the
modeling speed, but also affect the accuracy and robustness of
the model. Therefore, it is necessary to screen the spectral
characteristic wavelength variables by an appropriate wave-
length variable selection method prior to model calibration.*®

Additionally, the application of a proper multivariate anal-
ysis method in model calibration has been proven to be greatly
beneficial for providing more reliable and parsimonious model.
During the last few decades, many different algorithms, such as
partial least squares regression (PLS),"* kernel partial least
squares regression (KPLS),"> neural network (NN),"* support
vector machine (SVM),"* extreme learning machine (ELM),"
mixture Poisson regression (MPR),' and Gaussian mixture
regression (GMR)" have been developed for model calibration.
Among these, GMR is a relatively new algorithm, which not only
has the advantages of smaller calculation quantity and few
parameters, but also is suitable for dealing with the problem of
non-normal distribution.” Thus, in this study, GMR was
applied to construct a regression model for the prediction of the
growth process of yeast.

In the process of microbial culture, optical density (OD) is
often used as an index to reflect the growth state of a microor-
ganism."™ Therefore, in this study, FT-NIR spectroscopy tech-
nique combined with proper multivariate data analysis was
employed to carry out quantitative analysis on the growth
process of yeast culture (i.e. OD values). The specific objectives
of this study were

(1) to eliminate suspended particles, surface astigmatism,
and optical path change by SNV;

(2) to filter out the characteristic information variables and
compressed spectral data dimension by CARS;

(3) to use optimal spectral data for the construction of
a prediction model via Gaussian mixture regression (GMR).

To highlight the superiority of the prediction precision of
GMR algorithm adopted in this study, the results of the GMR
model were compared with those of other three different
regression algorithms: kernel partial least squares, KPLS;
support vector machine, SVM; and extreme learning machine,
ELM. Simultaneously, the parameters of the models were opti-
mized via a cross-validation method.

2. Materials and methods
2.1 Yeast cultivation and sample division

After culture expansion of yeast, sterile malt medium and yeast
suspension were transferred into volumetric flasks. First, three
250 ml volumetric flasks were marked as I, I, and III, and then,
125 ml malt extract medium and 0.5 ml yeast suspension were
loaded into each of the volumetric flasks. Finally, yeast in these
three volumetric flasks was continuously cultured for 72 hours
in a constant temperature shock incubator, and the tempera-
ture and rotation rate of the incubator was set at 28 °C and
110 rpm, respectively. Based on the abovementioned experi-
mental steps, 5 sets of yeast culture experiments were carried
out. In this way, we could obtain 6 sets of experimental data.
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For each set of yeast culture experiment, sampling was carried
out at 19 different time points during the yeast culture, from
loading to the end of culture (0, 4, 8, 12 ... 72 h). In addition, to
avoid contamination of sterile malt medium by multiple
sampling, 19 sampling time points were divided into three parts:
the first 7 sampling time points (0, 4, 8, 12, 16, 20, and 24 h) were
executed in the volumetric flasks numbered as I, the next 6
sampling time points (28, 32, 36, 40, 44, and 48 h) were imple-
mented in the volumetric flasks numbered as II, and the last 6
sampling time points (52, 56, 60, 64, 68, and 72 h) were carried
out in the volumetric flasks numbered as III. Thus, 19 samples
were obtained for each set of experiment, and data from a total of
114 samples were obtained in 6 groups. Moreover, these four sets
of experimental data were chosen as the training set, and the
remaining two sets were used as the validation set.

2.2 Measurement of the OD value

First, the wavelength of the spectrophotometer was set at
600 nm and the light transmittance was adjusted to 100%.
Then, 1 cm cuvette was charged with 3.5 ml of sterile malt
extract medium as a control group. Since yeast culture is
a dynamic process, to avoid the effect of yeast on the fermen-
tation broth, 114 fermented samples were filtered using 0.45
microliter of microporous membrane. At each sampling point,
1 cm cuvette charged with 3.5 ml of sterile fermented sample
was used to measure the OD value by the spectrophotometer.
Each sample was measured three times, and the three OD
values were averaged to obtain a mean value. During the
measurement, if the bacterial suspension is too thick, it should
be appropriately diluted, such that the OD value remains
between 0.1 and 0.65. Table 1 shows the distribution of 114
samples in the training and validation sets.

2.3 FT-NIR spectra acquisition and preprocessing

FT-NIR spectral data were obtained in the transmittance mode
using an Antaris™ II Fourier-transform near infrared (FT-NIR)
spectrophotometer (Thermo Electron Co., USA). Each spec-
trum is an ensemble average of 32 scans in a quartz cuvette
(Perkin Elmer., USA) with a 6 mm optical path. The spectral data
were acquired in the range from 10 000 to 4000 cm™*, which
fetched the spectra with 1557 variables (resolution: 8 cm™*). To
obtain more accurate spectral data, three different positions of
each sample were acquired, and then, mean of these three
spectral data was obtained as the raw spectral data for a sample.
This was employed to construct the analysis model. Since the
spectrometer was sensitive to changes in the environmental

Table 1 Descriptive statistics of OD in the training and validation sets

OD value
Subsets S.N.  Mean Maximum Minimum S.D.r
Training set 76 1.3967 2.15 0.1230 0.7796
Validation set 38 1.4082 2.15 0.1250 0.7919

“ §.N.: sample number. ? S.D.: standard deviation.
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conditions such as temperature and humidity, the temperature
was maintained around 25 °C at a steady humidity level in the
laboratory.

Fig. 1(a) shows the raw FT-NIR spectra of the 114 yeast
cultivation samples. FT-NIR spectra are affected by multifarious
conditions such as changes in temperature, diffusion of light,
a baseline shift or instrument noise.® In addition, FT-NIR
spectra contain chemical as well as physical information,
which can be useless or mask important information.*® There-
fore, to ensure the predicted effect of the calibration model, it
was essential to select a suitable pretreatment method to
weaken the physical and chemical interference. At present,
many spectral preprocessing methods such as first and second
derivative, standard normal variate transformation (SNV), and
multiplicative scatter correction (MSC) have been reported. On
comparing these spectral preprocessing, SNV was found to be
superior to others in this study. In this experiment, a gap or
bubble among yeast culture media was observed in the cuvette,
which resulted in scattering of light. SNV has advantages with
respect to correcting scattered light and removal of slope vari-
ation. Therefore, SNV was employed for light scatter correction
and reducing the changes of light path length in the proposed
work. SNV preprocessing spectra is presented in Fig. 1(b).
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Fig. 1 Raw spectra (a) and SNV preprocessing spectra (b) of all the
samples.
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2.4 Multivariate data analysis

2.4.1 Wavelength variable selection. Modern chemometric
studies have indicated that appropriate variable selection
methods are essential for multivariate data analysis.?® The
competitive adaptive reweighted sampling (CRAS) algorithm is
a newly developed strategy for wavelength selection, employing
the simple but effective principle survival of the fittest on which
Darwin's evolution theory is based.** Studies have shown that
CARS is very effective in the selection of spectral data.*” Each
wavelength variable was found to compete with others by its
own weight, and some wavelength variables whose weights were
relatively small were removed.

CARS can work in four successive steps:*

Step 1. Monte Carlo approach was applied for model
sampling, 80% of the sample were randomly selected to build
the PLS model, and the regression coefficient § of the corre-
sponding model was retained. The weight w; of the i variable
can be defined as follows:

16|

P b
> 18]
i=1

w; =

i=1, 2., P 1)

Step 2. Exponentially decreasing function was employed to
perform enforced wavelength selection. Wavelength retention
rate was directly calculated using the following algorithm:

ri=ae " (2)
where a = (p/2)"®¥Y, k = [In(p/2))(N — 1), and P is the raw
wavelength variables.

Step 3. The adaptive reweighted sampling (ARS) method was
adopted to realize a competitive selection of wavelengths.
Wavelength variables of the larger weights were selected to form
subsets of wavelengths. After repeating this step for N times,
CARS sequentially selected N subsets of wavelengths to build
the PLS model.

Step 4. 5-Fold cross validation method was utilized to eval-
uate the subset. The subset with lowest RMSECV value was
chosen as the optimal subset.

2.4.2 Gaussian mixture regression (GMR). In this section,
the derivation of Gaussian mixture regression (GMR) was
simply introduced, and further details regarding the GMR
algorithm can be found in the literature.>*>® The derivation of
GMR was mainly based on the Gaussian conditioning and
linear combination properties of Gaussian distributions. We
speculated that X indicated the space of the explanatory vari-
ables and Y indicated the space of the response variables. x is
the input of the training data (x € X) and y is the ideal output
data (y € Y). For the given values of x and y, the joint probability
density can be formulated as follows:

fx;v(x7y)=_KZl7r/¢<x, Vi Z,.) (3)
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In addition, mean and covariance can be divided into input
and output parts as follows:

Mjx Z/‘XX Z/’XY ]

/ |:Nj,v } ’ Z’ |:ij)( ijy

where ¢(x, y; w;, X;) denotes the probability density function of

the multivariate GMM. Eqn (3) includes all the parameters such

as the number of the mixture components K, prior 7;, mean

value u;, and variance of each Gaussian component ¥; which

have been indicated as 6 = (04, 0, ..., 6;) with 6, = (7}, u;, X;) and

K
the constraint Z m=1(0=
=
The marginal probability density fx(x) and mixing weight
wy(x) can be calculated by*’

713-51).

fx<x>=jfx.y<x,y>dy:iwj¢(x; b S, @

¢ <X; Mix s ij)

wi(x) = — (5)

2w m ,)
j=

From eqn (3)-(5), we can obtain the global GMR function as

frtyf) = Lt wa (v mx). 7?) (6

The mean and variance of the conditional distribution can
be estimated as follows:

—M,X+ZZ X — ) 7)

JYX
-1
2
TEED DD S B D (8)
X

For a given input variable, its prediction can be achieved by
calculating the expectation over the conditional distribution

fY/X(y/x 27

Elfy/x(y/x)]

= > m ©)

To build a GMM, the mixture components K were set as 4 and
the unknown parameter set ¢ of probabilistic weights were
estimated first. Therefore, the maximum likelihood estimation
(MLE) and expectation-maximization (EM) algorithm were
adopted to optimize the parameters. With a set of given data, (X,
Y) can be realized by estimating the model parameters 6 in eqn
(3). By maximizing the log-likelihood function L(6;), this process
can be can realized, and the calculation formula can be
expressed as*®
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L(6;) =In [ p(xi.3) Z Zvr,-d)(x, v, Z) (10)
i=1 i=1 =1

For the given training data, § was calculated by maximizing
this function via the ELM algorithm in the iterative means. It
included two steps:*

(1) E step (expectation step):

7?/'(3)¢<X7 ,uj(x)7 Zj@)
PY (i, 0)
(=1, 2,.N;: j=1, 2,..k)

p(“)(lk/x,) =
(11)

where p®(I/x;) denotes the posterior probability of the i
training sample within the k™ Gaussian component at the s
iteration.

(2) M step (maximum step):

s 1 - S
= o S (12)
| &
(s+1) = —N 2 lk/Yl [ P — m]-) (X,‘ - m]) Ti| (13)
L =N Zp (1) xi) (14)

&) 5 and ™) are the mean, covariance, and

where u;
prior probablllty of the k™ Gaussian component at the (s + 1)®

iteration, respectively.

2.5 Software

All the algorithms were implemented in Matlab R2012a
(Mathworks, Natick, USA) on Windows 7. The GMR matlab
codes were downloaded from http://www.pudn.com/ for free of
charge.

3. Results and discussion
3.1 Efficient variable selection by CARS

Before model calibration, efficient variables were selected first
by CARS algorithm for a simplified model and improving the
precision. In the calculations of CARS, the number of Monte
Carlo sampling runs was 50, the maximum number of latent
variables to be extracted, and the group number for the K-fold
cross validation were all set at 5. The data processing method
was selected as center.

Fig. 2(a) shows the process of the characteristic wavelength
selection by CARS. It can be seen from the graph of the rela-
tionship between the number of reserved wavelengths and the
number of sampling runs that with the increase in the number
of runs, the selected wavelength variables present a decreasing
trend. This trend was initially rapid and then slowed down,
thereby reflecting the process of rough and careful selection of
variables. Fig. 2(b) shows the variation trend chart of the root
mean square error of cross validation (RMSECV), wherein, it can
be seen that RMSECYV first descends and then ascends. When

RSC Adv., 2017, 7, 24988-24994 | 24991
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Fig. 2 (a) The changes of the number of selected wavelength vari-
ables, (b) the changes of RMSECV and (c) the regression coefficients of
each wavelength variables during the calculations of CARS algorithm.

the number of sampling runs was 28, RMSECV attained the
minimum value at 0.1736. After 28" time sampling, some of the
relevant variables started to disappear, thereby increasing the
RMSECYV value. In Fig. 2(c), “*” perpendicular to the horizontal
axis indicates that the minimum value of RMSECV was obtained
on 28™ time sampling. According to the principle of minimum
RMSECYV, 13 characteristic variables were selected at last. Fig. 3
shows the distribution of the 13 selected characteristic variables
in the entire spectral region after the CARS operation.

3.2 GMR modeling and prediction results

The GMR algorithm was employed to build a validation mode
using the 13 selected characteristic variables by CARS for
quantitative analysis. The capabilities of each GMR model were
evaluated according to the coefficients of determination (R,”)
and the root mean square error of prediction (RMSEP) in the
validation set. GMR model was developed using the selected
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Fig. 3 Distribution of variables (shown by *) chosen by the CARS
method.
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Fig. 4 Prediction of the yeast growth process using the GMR model.

characteristic variables by CARS algorithm. Fig. 4 shows the
prediction effect of GMR model, the prediction is expressed as
mean with 2* std (std, standard deviation) error bars (red dotted
lines). The regions between the two red dotted lines depict the
confidence intervals. In Fig. 4, the red line was found to be very
close to the blue line, and the confidence intervals were very
small. All these phenomena demonstrated the modeling ability
of GMR. The value of RMSEP of GMR model was 0.07262 and
R,” was 0.98842 in the validation set.

3.3 Comparison of different models

To show that GMR has a better predictive performance, it was
compared with KPLS, SVR, and ELM approaches in the present
study. Table 2 shows the best predicted results obtained via
KPLS, SVR, ELM, and GMR approaches in the validation set. As
shown in Table 2, the RMSEP of GMR and mean of confidence
interval (M.C.I) were less than those of other models, and R,
was found to be higher than that of other models. These results
implied that the GMR algorithm has a good generalization
performance in model calibration, and another advantage of
GMR is that it not only provides accurate prediction results, but
also the smallest mean of confidence interval of the results
obtained.

In addition, through the comparison of these methods, we
found that there are several explanations for this phenomenon.
KPLS and SVR are the common techniques for the regression of
complex non-linear data sets. The key to this model is to map

Table 2 Results and comparison of the KPS, SVR, ELM, and GMR
models in the validation set

Models RMSEP Ry M.C.L*
KPLS 0.47808 0.91521 0.6001
SVR 0.19721 0.93804 0.3658
ELM 0.22983 0.92088 0.4502
GMR 0.07262 0.98842 0.1560

% M.C.L: mean of confidence interval.

This journal is © The Royal Society of Chemistry 2017
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the data in a higher dimensional feature space using kernel
transformation. However, the disadvantage of using this kernel
function is that the correlation between the obtained regression
model and the original input space is lost. As a result, it may
lose some useful information variables, which would cause
decline in the prediction precision of the model. Moreover,
because of the application of the kernel function, the running
time KPLS and SVR program is longer than that of other
models. ELM as compared to traditional neural network
methods has simple structure, high learning speed, and good
generalization performance; however, the dimension of the
spectral data is usually very high while more hidden nodes
should be incorporated in the original ELM model for spectral
data. Therefore, the output matrix of the hidden layer of ELM
model appeared as a high dimensional and high collinearity
problem due to yeast growth in a complex environment. The
process data did not originate from a single operating region;
moreover, data distribution may be complicated with arbitrary
non-Gaussian patterns. As a mixture model can represent
arbitrarily complex probability density functions, GMR is one of
the ideal tools for modeling complex multi-class dataset.
Moreover, GMR not only has the tight structure of a parametric
model, but also still retains the flexibility of a nonparametric
model. Considering sufficient linear combinations of basis
single multivariate Gaussian distribution, GMM can smoothen
the probability distribution of arbitrary shape. Therefore, GMR
reflected excellent generalization in its theory, which brings
a slightly better prediction effect than the other regression
algorithms.

4. Conclusions

In this study, a Gaussian mixture regression model based on FT-
NIR spectroscopy technique was constructed for quality
prediction in the growth progress of yeast. To improve the GMR
model fitting, SNV was first used to preprocess the spectra data,
and then, the characteristic variables were extracted by the
CARS approach. Compared to other conventionally used quan-
titative analysis approaches (KPLS, SVR, and ELM), GMR
exhibited faster computation speed and higher generalization
performance.

This study not only broadens the scope of CARS and GMR
algorithm's application, but also provides a new theoretical
basis for the rapid and non-destructive detection of microbial
growth process. Moreover, it also makes a reference in the
research on the improvement of the fermentation technology
informationization and intelligent monitoring of other
fermentation processes and has broad application prospect.

Acknowledgements

The authors gratefully acknowledge the financial support
provided by the Natural Science Foundation of Jiangsu Province
(Grant No. BK20140538, BK20130531, BK20151345), the China
Postdoctoral Science Foundation (Grant No. 2016M600381,
2016M601741), the Postdoctoral Science Foundation of Jiangsu
Province (Grant No. 1601038C, 1601130B), the College Science

This journal is © The Royal Society of Chemistry 2017

View Article Online

RSC Advances

Foundation of Jiangsu Province (Grant No. 16KJB210003), the
Priority Academic Program Development of Jiangsu Higher
Education Institutions (PAPD), the Graduate practical innova-
tion Foundation of Jiangsu province (Grant No. SJZZ16_0193),
and the Undergraduate Scientific research Foundation of
Jiangsu University (Grant No. 15A137). We would also like to
thank many of our colleagues for many stimulating discussions
in this field.

References

1 J. Yu, Z. Xu and T. Tan, Fuel Process. Technol., 2008, 89, 1056-
1059.
2 J. M. Sablayrolles, A. Pandey, L. V. Rao and C. R. Soccol, Food
Res. Int., 2009, 42, 418-424.
3 J. B. Doran, J. Cripe, M. Sutton and B. Foster, Appl. Biochem.
Biotechnol., 2000, 84-86, 141-152.
4Y.]J. Wy, Y. Jin, Y. R. Li, D. Sun, X. S. Liu and Y. Chen, Vib.
Spectrosc., 2012, 58, 109-118.
5 Q. S. Chen, ]. R. Cai, X. M. Wan and J. W. Zhao, LWT-Food
Sci. Technol., 2011, 44, 2053-2058.
6 H. Jiang, G. H. Liu, C. L. Mei and Q. S. Chen, Anal. Methods,
2013, 5, 1872-1880.
7 E. D. Louw and K. I. Theron, Postharvest Biol. Technol., 2010,
58, 176-184.
8 M. Blanco, A. C. Peinado and ]. Mas, Biotechnol. Bioeng.,
2004, 88, 536-542.
9 B. Finn, L. M. Harvey and B. Mcneil, Yeast, 2006, 23, 507-517.
10 A. X. Yang, J. L. Ding, H. L. Yan and K. Deng, Spectra Anal.,
2016, 36, 691-696.
11 M. H. M. Killner, J. J. R. Rohwedder and C. Pasquini, Fuel,
2011, 90, 3268-3273.
12 K. Kim, J. M. Lee and I. B. Lee, Chemom. Intell. Lab. Syst.,
2005, 79, 22-30.
13 S. K. Feng and H. J. Xu, Infrared Technol., 2008, 30, 58-60.
14 X. D. Sun, X. L. Dong, L. J. Cai, Y. Hao, A. G. Ouyang and
Y. D. Liu, Sens. Lett., 2012, 10, 506-510.
15 G. B. Huang, H. M. Zhou, X. ]J. Ding and R. Zhang, IEEE
Trans. Syst. Man Cybern. Part B Cybern., 2012, 42, 513-529.
16 A. Yesilova, M. S. Ozgokce, R. Atlihan, S. Polat Yildiz,
I. Karaca and G. Ser, Fresenius Environ. Bull., 2016, 25,
1768-1778.
17 S. Calinon, F. D’halluin, E. Sauser and A. Billard, IEEE
Robotics & Automation Magazine, 2010, 17, 44-54.
18 J. W. Choi, S. H. Lee and S. G. Chung, Afi. J. Microbiol. Res.,
2012, 6, 4620-4622.
19 M. C. A. Marcelo, C. A. Martins, D. Pozebon and M. F. Ferrio,
Anal. Methods, 2014, 6, 7621-7627.
20 H. L. Zhang and Y. He, Spectra Anal., 2016, 36, 91-95.
21 W. Fan, Y. Shan, G. Y. Li, H. Y. Lv, H. D. Li and Y. Z. Liang,
Food Anal. Method, 2012, 5, 585-590.
22 C. Xie, X. Ning, Y. Shao and Y. He, Spectrochim. Acta, Part A,
2015, 149, 971-977.
23 H. Li, Y. Liang, Q. Xu and D. Cao, Anal. Chim. Acta, 2009, 648,
77-84.
24 X.F.Yuan, Z. Q. Ge and Z. H. Song, Chemom. Intell. Lab. Syst.,
2014, 138, 97-109.

RSC Adv., 2017, 7, 24988-24994 | 24993


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra02774e

Open Access Article. Published on 10 May 2017. Downloaded on 1/9/2026 4:17:38 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

25 N. Abramson, D. Braverman and G. Sebestyen, IEEE Trans.
Inf. Theory, 1963, 9, 257-261.

26 S. Calinon, F. Guenter and A. Billard, IEEE Trans. Syst. Man
Cybern. Part B Cybern., 2007, 37, 286-298.

27 J. Q. Shi, R. Murray-Smith and D. M. Titterington, Int. J.
Adapt. Control Sig. Process., 2012, 17, 149-161.

24994 | RSC Adv., 2017, 7, 24988-24994

View Article Online

Paper

28 B. Muthén and K. Shedden, Biometrics, 1999, 55, 463—
469.

29 C. L. Mei, Y. Su, G. H. Liu, Y. H. Ding and Z. L. Liao, Chin. J.
Chem. Eng., 2017, 25, 116-122.

This journal is © The Royal Society of Chemistry 2017


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra02774e

	Quantitative analysis of yeast growth process based on FT-NIR spectroscopy integrated with Gaussian mixture regression
	Quantitative analysis of yeast growth process based on FT-NIR spectroscopy integrated with Gaussian mixture regression
	Quantitative analysis of yeast growth process based on FT-NIR spectroscopy integrated with Gaussian mixture regression
	Quantitative analysis of yeast growth process based on FT-NIR spectroscopy integrated with Gaussian mixture regression
	Quantitative analysis of yeast growth process based on FT-NIR spectroscopy integrated with Gaussian mixture regression
	Quantitative analysis of yeast growth process based on FT-NIR spectroscopy integrated with Gaussian mixture regression
	Quantitative analysis of yeast growth process based on FT-NIR spectroscopy integrated with Gaussian mixture regression
	Quantitative analysis of yeast growth process based on FT-NIR spectroscopy integrated with Gaussian mixture regression
	Quantitative analysis of yeast growth process based on FT-NIR spectroscopy integrated with Gaussian mixture regression
	Quantitative analysis of yeast growth process based on FT-NIR spectroscopy integrated with Gaussian mixture regression

	Quantitative analysis of yeast growth process based on FT-NIR spectroscopy integrated with Gaussian mixture regression
	Quantitative analysis of yeast growth process based on FT-NIR spectroscopy integrated with Gaussian mixture regression
	Quantitative analysis of yeast growth process based on FT-NIR spectroscopy integrated with Gaussian mixture regression
	Quantitative analysis of yeast growth process based on FT-NIR spectroscopy integrated with Gaussian mixture regression

	Quantitative analysis of yeast growth process based on FT-NIR spectroscopy integrated with Gaussian mixture regression
	Quantitative analysis of yeast growth process based on FT-NIR spectroscopy integrated with Gaussian mixture regression


