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The amorphous nature of a series of zinc—porphyrins bearing two 3,4,5-tri((S)-3,7-dimethyloctyloxy)phenyl
groups at the meso-positions, named “porphyrin glass”, were tolerant of mw-conjugation engineering in
ethynylene-linked dimers. The butadiyne-linked dimeric porphyrin glass formed an intermolecular
excimer, which exhibited bright and exceptionally long-lived, near-infrared (NIR) luminescence at
approximately 970 nm in the solid state. Therefore, porphyrin glasses overcame a general bottleneck for

NIR-luminescence, such as an undesired w-stacked aggregation of a large porphyrin plane in addition to
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conjugated zinc—porphyrins, named “porphyrin glass’, is described. The butadiyne-linked dimeric

DOI: 10.1039/c7ra02752d porphyrin glass formed an intermolecular excimer, which exhibited solid-state, near-infrared (NIR)
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Introduction

Metalloporphyrins have been one of the key photofunctional
compounds at the forefront of materials science." Near-infrared
(NIR) luminescent materials have versatile state-of-the-art
applications, in fields such as in vivo imaging through the
“biological optical window” (800-1350 nm),> light-emitting
diodes,> and broadband optical amplifiers.* However, the
wavelength of NIR-luminescence of an organic chromophore
barely exceeds 900 nm, with only a few exceptions, such as
benzothiadiazole derivatives®*** and polymethine dyes,® as well
as porphyrins.® An intrinsic obstacle for NIR luminescence
comes from the “energy gap law”. As an optical band-gap
narrows, excitons easily dissipate through thermal perturba-
tion from vibrational oscillations.” The meso-ethynylene-
conjugated porphyrin oligomers exhibit outstanding NIR
light-harvesting capacity,® based not only on intense linear
absorption but also on exceptional two-photon absorption
cross-section values.' The excellent photoelectronic properties
of the porphyrins stem from extended meso-ethynylene-
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luminescence at approximately 970 nm.

conjugation, but encounter undesired 7-stacked aggregation.
Such a drawback prevents the ethynylene-conjugated porphy-
rins from being used in NIR-luminescence applications under
matrix-free conditions.” Amorphous glassy molecules have
introduced effective and challenging morphological strategies
for attaining photoelectronic functionality that is relevant to
molecular formulae.”*** Hence, meso-ethynylene-conjugated
porphyrin glasses may be potential NIR-luminescent materials.

The present target is based on our serendipitous discovery
that a zinc porphyrin bearing two 3,4,5-tri((S)-3,7-dimethy-
loctyloxy)phenyl groups at the meso-positions, such as 1, adopts
the form of a solvent-free viscous fluid at room temperature
(Fig. 1)."* Metallocomplexes, including metalloporphyrins, are
usually crystalline and barely form amorphous solids with a few
exceptions.’'® A deliberate alkylation indicates a potential
strategy to provide amorphous molecular glasses. For instance,
the introduction of alkyl substituents is crucial for the
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Fig.1 The chemical structures of porphyrin 1 (A) and a photograph of
neat 1 as a sticky fluid on a glass slide at room temperature (B).
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morphology of m-conjugated polymers'”” and nonvolatile
fluids."®*® Porphyrin fluid 1 prompted us to explore porphyrin
glasses with meso-ethynylene-conjugations.

Results and discussion

Monomeric porphyrins 1 and 2 showed glass transition
temperatures (Ty) at —6 and 19 °C, respectively, in differential
scanning calorimetric (DSC) analyses (Scheme 1, Fig. 2), indi-
cating the formation of glass. The results were in sharp contrast
with porphyrins incorporating 3,4,5-tri(n-alkyloxy)phenyl
groups at the meso-positions, which crystallize without a glass
transition from both liquid and liquid crystalline (LC) states.*>*®
Encouraged by these results, we synthesized 3 and 4 to expand
the m-conjugation by connecting two glass-forming porphyrin
subunits and aimed to achieve NIR-active porphyrin glasses.

The DSC thermograms of 3 and 4 showed endothermic
profiles at 31 °C and 59 °C, respectively, attributed to their glass
transitions (Fig. 2), while the others involved enthalpic relaxa-
tion. The T, point shifted to higher temperatures with extended
T-conjugations. Porphyrins 1-4 provided neither crystals nor
thermotropic LC-phases, even though 3,4,5-tri((S)-3,7-dimethy-
loctyloxy)phenyl groups are known as powerful LC-forming
units,??** indicating that the 3,4,5-tri((S)-3,7-dimethyloctyloxy)
phenyl group is an exquisite partner of porphyrin that encum-
bers the m-stacked interaction. Further investigations of 2-4
were examined in a uniform thin film prepared by a spin-cast
method, as shown below.
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Scheme 1 Chemical structures of porphyrin 2 and porphyrin dimers 3
and 4.
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Fig. 2 DSC profiles for 1-4 with a 10 °C min~! heating rate.
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Fig. 3 The GIXS pattern (inset) and one-dimensional profile of 4 on
a silicon wafer observed with a synchrotron X-ray with 0.11° of the
incident angle obtained from integrated radial azimuthal angles.

Synchrotron microbeam glazing-incidence X-ray scattering
(GIXS) found -characteristic amorphous halo patterns at
approximately a q (=27/d, wherein d refers to spacing) of 13.5
nm " for 2-4 in spin-cast films on a silicon wafer. However, no
periodic spacings were found other than primary intra-
molecular spacing (Fig. 3). Therefore, the blanched alkyl-chains
did indeed govern the intermolecular interactions and disor-
dered porphyrin arrangements in solvent-free bulk solid.

Amorphous molecular glass is expected to be persistent to
aggregation-caused fluorescence quenching. Remarkably, the
porphyrin glass 4 exhibited broad NIR-luminescence at
approximately 970 nm that extended to over 1100 nm (Fig. 4),
and the monomeric fluorescence was weakened or extinguished
instead. Since none of the electronic absorption bands of 4
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Fig. 4 Emission—excitation correlations of 4 in a spin-cast film on
a quartz substrate under air together with an emission spectrum
(excitation wavelength = 500 nm) in the upper panel, and excitation
(emission wavelength = 970 nm, black line) and absorption (grey line)
spectra in the left panel.
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Fig. 5 Normalized absorption and emission spectra of neat porphyrin
(red) and porphyrin-doped PMMA (10 wt%, blue, and 1 wt% pale blue)
(A: 3, B: 4) in spin-cast film on a quartz substrate. Emission obtained by
excitation at 500 nm.

exceeded 750 nm, the NIR-luminescence was assigned to the
intermolecular excited dimer, i.e., the excimer comprised an
excited-state intermolecular chromophore associated with
a ground-state counterpart, as elucidated below.

Intermolecular excimer formation was evidenced by the
dispersion experiments in an amorphous polymer matrix,
where 1 and 10 wt% of 4 were doped into an inert poly(methyl
methacrylate) (PMMA) film. In the electronic absorption results,
the spectral shape of 4 showed no substantial changes regard-
less of the fraction of 4 used in the PMMA films (1-100 wt%)
(Fig. 5 and S2-S47), suggesting the occurrence of marginal
intermolecular interactions at the ground state in the neat spin-
cast film.”® However, 4-doped PMMA films showed monomeric
emission at 744 nm, and their NIR-luminescence dramatically
weakened. The comparison clearly indicates that an intermo-
lecular excimer formation is indispensable for the NIR-
luminescence of porphyrin glass.

Excimer formation was predominantly observed only in 4
among the present porphyrin glasses. For example, 2 and 3
mainly showed monomeric fluorescence, which was accompa-
nied by a weak, broad emission at longer wavelengths. It was
deduced that an appropriate internal porphyrin-porphyrin
separation of 4 opens a space acceptable for intermolecular
excimer formation.

It is remarkable that excimers in the porphyrin glasses
surpass general obstacles due to the energy gap law.” Moreover,
large m-systems are prone to undesirable m-stacked aggrega-
tions. Thus, NIR-luminescent chromophore aggregates have
rarely been reported,” and porphyrins have never been the
exception. Unlike structureless emissions from excimers in the

This journal is © The Royal Society of Chemistry 2017
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Fig. 6 Emission spectra (red) and electronic absorption (black) (A and
B), resonance Raman spectra excited at 532 nm (C and D) of 3 (Aand C)
and 4 (B and D). Deconvoluted emission peaks with periodic spacings
of approximately 1100 cm ™ (A) and 1600 cm ™! (B) are colored in pale
blue and green.

Table 1 NIR luminescence profiles of porphyrin glasses®

770 nm 970 nm

74(eq)/ms T5()/ms 75(01)/S T5(tx)/ns D/%
2 240(0.66)  1311(0.34)  76(0.59) 606(0.41)  0.056
3 231(0.66)  1263(0.34)  132(0.66)  953(0.34)  0.039
4 128(0.54)  756(0.46) 103(0.57)  711(0.43)  0.114

¢ Emission lifetime (tr) and normalized pre-exponential factor («);
excitation at 450 nm for 2 and at 500 nm for 3 and 4 (10 wt% 4-doped
PMMA was employed to observe a monomeric component at 770 nm).
Tentative emission quantum yield (®) was measured for opaque neat
drop-cast films by excitation at 450 nm.

solution, the solid-state NIR excimer luminescence bears
vibronic features (Fig. 6). The vibronic spacing of approximately
1100 em ™" for 3 and 1600 cm™* for 4 were reminiscent of the
resonance Raman vibrational modes of the porphyrin skeleton
and ethynylene-linkage (Fig. 6),>* which suggests the presence
of exciton-phonon coupling, such as Herzberg-Teller-type
dynamic intensity borrowing.**®* We propose that the exciton
self-traps to resonantly facilitate radiative decay at the excimer
site. Therefore, luminescence remains even at NIR wavelengths.

All the experiments were performed under aerobic condi-
tions, indicating that the NIR-luminescence was relatively
persistent to oxygen. The emission lifetimes of the excimer
components were considerably elongated (z > 500 ns) from the
monomeric fluorescence (t = 100 ns) (Table 1), in contrast to
the very short lifetimes reported for the porphyrin films.*” It was
difficult to assign such unusually long-lived luminescence to
a singlet exciton, although the photophysical process is the
subject under active investigation. The molar extinction coeffi-
cient (&) of 4 displays an exceptional order of 10° M~ ' cm ™' both

RSC Adv., 2017, 7, 22679-22683 | 22681


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7ra02752d

Open Access Article. Published on 25 April 2017. Downloaded on 2/13/2026 3:34:44 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

RSC Advances

at the Soret and Q bands. The brightness of the emission is
defined as the product of the ¢ value and the absolute quantum
yield (®).?® Although the luminescence efficiency ( = 0.11% as
a tentative magnitude) was still comparable to those of the NIR-
luminescent polymethine dyes,’> the excellent ¢ magnitude of
porphyrin glass 4 ensured sufficient brightness of the NIR-
luminescence.

Conclusion

In conclusion, we have developed m-conjugated porphyrin
glasses. The amorphous nature of the porphyrin glass was
highly tolerant of the meso-ethynylene w-conjugation engi-
neering. The excimer luminescence of 4 displayed a remarkable
Stokes shift toward the NIR-wavelength region presumably
through the aid of exciton-phonon coupling. Ethynylene-
conjugated porphyrin glasses have highlighted a new fasci-
nating approach towards developing solid-state NIR-
luminescent materials. For instance, their amorphous nature
was tolerant of further supramolecular w-electron engineering
by employing our supramolecular approach' toward NIR-
luminescence beyond 1000 nm.*” A further study of NIR-
luminescent porphyrin glasses and detailed mechanism of the
solid-state NIR-luminescence are currently under active
investigation.
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