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Voltage-stabilised elastomers with increased
relative permittivity and high electrical breakdown
strength by means of phase separating binary

copolymer blends of silicone elastomersf
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Increased electrical breakdown strength and increased dielectric permittivity of silicone-based dielectric

elastomers are achieved by means of the addition of so-called voltage-stabilisers prepared from PDMS—

PPMS copolymers as well as PDMS—-PEG copolymers in order to compensate for the negative effect of

softness on electrical stability of silicone elastomers. The voltage-stabilised elastomer, incorporating
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a high-permittivity PDMS—-PEG copolymer, possesses increased relative permittivity, high electrical

breakdown strength, excellent network integrity and low dielectric loss and paves the way towards
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1 Introduction

Silicone-based dielectric elastomers (DEs) possess a low Young's
modulus, i.e. they are inherently soft and excellent for utilisation
as dielectric actuators.”” In order to achieve larger actuation
strains at any given voltage, silicone DEs must possess increased
relative permittivity combined with increased softness. However,
the combination of softness and increased permittivity is not
always simple.’ For instance, a silicone elastomer incorporating
metal oxide fillers has increased dielectric permittivity, but this
results in a stiff elastomer due to strong particle-particle inter-
actions.* Thus the electro-mechanical response is not improved.
Furthermore the electrical breakdown strength depends on the
Young's modulus, such that increased softness will decrease the
electrical breakdown strength as well as the electromechanical
stability being negatively influenced.'?

Increased relative permittivity is often sought as the primary
source for improved actuation, with approaches including inte-
grating highly polarisable fillers,*** covalent grafting of dipoles
to the silicone backbone'®™™ and phase-separating systems
containing high-permittivity liquids or copolymers.'*'® Besides
enhancing relative permittivity, the optimisation of silicone DEs
with respect to largest achievable actuation strains can be done by
enhancing electrical breakdown strength. For an improvement
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specialised silicone elastomers for dielectric elastomer transducer products with inherent softness and
electrical stability, and thus increased actuation at a given voltage.

in this regard, approaches include elastomers incorporating
either metal oxide fillers” or additives with a voltage-stabilising
effect.’®?” Furthermore, silicone elastomers containing phenyl
groups have been shown to possess increased electrical break-
down strength via voltage stabilisation due to an electron trap-
ping effect.”* The voltage-stabilised silicone elastomer is prepared
from a polydimethylsiloxane-polyphenylmethylsiloxane (PDMS-
PPMS) copolymer, which is subsequently cross-linked. The cross-
linked PDMS-PPMS copolymer phase separates microscopically,
due to immiscibility between PPMS and PDMS. This microscopic
phase separation in cross-linked PDMS-PPMS copolymers has
been proven favourable with respect to electrical properties.*
Phase separation is commonly known to occur in polymer
blends and block copolymers. Polymer blends phase separate
due to the immiscibility of the polymers as a result of mini-
mising free energy when the polymers separate.”>** Thermo-
plastic polymer blends possess different types of well-defined
structures, such as bi-continuous structures,> > islands® and
holes,” and these phase-separated structures depend strongly
on the volume fraction of the constituents in the polymer
blends. A silicone elastomer prepared from a binary polymer
blend consisting of a conducting PDMS-PEG copolymer and
non-conducting PDMS was shown to result in the creation of
a continuous phase of PDMS and a discontinuous phase of
PEG.'® Favourable phase morphologies in cross-linked blends
can be achieved via proper blending and preparation methods.
Previous work on incorporating PDMS-PEG copolymers in
commercial silicone elastomer'® has resulted in elastomers with
increased dielectric relative permittivity without compromising
the inherent softness of the silicone elastomer. However, the
electrical breakdown strength of such elastomers is comparable

This journal is © The Royal Society of Chemistry 2017
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to that of the commercial elastomer or slightly less. Voltage
stabilization resulting in increased breakdown strength has
been achieved by formulation of silicone elastomers with
PDMS-PPMS and thus paves the way towards specially designed
elastomers with high electrical stability.”* Hence incorporating
a relative permittivity enhancer such as PDMS-PEG copolymer
in a voltage-stabilised silicone elastomer may show the favour-
able combination of high dielectric permittivity and high elec-
trical breakdown strength.

In this work, phase separation as a means of optimising
silicone elastomers is explored further by combining two
recently synthesised copolymers (PDMS-PEG and PDMS-PPMS
copolymers), which have been shown to enhance relative
permittivity and electrical breakdown strength, respectively.

2 Experimental
2.1 Materials and methods

Telechelic vinyl-terminated polydimethylsiloxanes and telechelic
hydride-terminated polyphenylmethylsiloxanes (used in the
synthesis of a PDMS-PPMS copolymer) were DMS-V21 and PMS-
HO03, with an average molecular weight (M,,) of 6000 and 400 g
mol !, respectively. In the synthesis of the PDMS-PEG copol-
ymer, telechelic hydride-terminated polydimethylsiloxanes (H-
PDMS) were DMS-H21, DMS-H11, DMS-H03 and SIH6117.0,
with M, of 6000, 1050, 550 and 208 g mol ™", respectively. All of
the abovementioned PDMS copolymers were purchased from
Gelest Inc. The catalyst was platinum-divinyl-tetramethyl dis-
iloxane complex [SIP6830.3], containing 3.25% of platinum
in xylene, and the cross-linkers were vinyl-functional (4-5%
vinylmethylsiloxane)-dimethylsiloxane copolymers [VDT-431] (M,,
= 28 kg mol ™", 15-functional) and hydride-functional (45-55%
methylhydrosiloxane)-dimethylsiloxane copolymers [HMS-501]
(M, = 1050 g mol™', 9-functional). Both the catalyst and the
cross-linkers were purchased from Gelest Inc. Telechelic vinyl-
terminated polyethyleneglycol (V-PEG) was acquired from
Sigma Aldrich. Fumed silica (SIS6962.0) and volatile methyl-
siloxane (VMS) [0S-20] were purchased from Fluorochem and
Dow Corning, respectively.

The synthesised copolymers were synthesized from tele-
chelic hydride-functional PDMS-PPMS copolymers and tele-
chelic vinyl-functional PDMS-PEG copolymers. The degrees of
conversion for the vinyl and hydride PDMS groups from the
hydrosilylation reactions of the hydride-terminated PPMS and
vinyl-terminated PDMS, and the hydride-terminated PDMS and
vinyl-terminated PEG, respectively, were determined through
proton nuclear magnetic resonance spectroscopy (‘H-NMR),
which was performed on a Bruker 300 MHz NMR. The full
conversion of hydride and vinyl groups during hydrosilylation
reactions was monitored by observing the disappearance of
hydride and vinyl peaks. The number of scannings per sample
was 128, and sample concentration was 100 mg mL™' in
deuterated chloroform (CDCly).

The numbers of average molecular weights (M,) of the
copolymers were determined via size-exclusive chromatography
(SEC), which was performed on a Viscotek GPCmax VE-2001
instrument equipped with a Viscotek TriSEC Model 302 triple
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detector, using two PLgel mixed-D columns from Polymer
Laboratories. Solutions for SEC containing copolymers dis-
solved in toluene were prepared in a concentration of 2-3 mg
mL~" and were run at 35 °C at an elution rate of 1 mL min~".
The software for molecular weight distributions was WinGPC
Unity 7.4.0 and linear PDMS standards acquired from Polymer
Standards Service GmbH.

Measurement of the electrical breakdown strength of thin
films with a thickness of less than 135 pm was performed on an
in-house-built device based on international standards (IEC
60243-1 (1998) and IEC 60243-2 (2001)). The film was placed on
a plastic frame containing 12 holes and subsequently was slid
between two metal electrodes which were hemi-spherical and 20
mm in diameter. For each sample, the electrical breakdown
strength was measured and repeated 12 times, with a stepwise
increasing voltage of 50-100 V per step applied at a rate of 0.5-1
steps s~ . The average electrical breakdown strength from 12
measurements was then quantified as the electrical breakdown
strength.

Dielectric properties were measured by dielectric spectros-
copy, which was performed on a Novocontrol Alpha-A high-
performance frequency analyser (Novo-control Technologies
GmbH & Co. KG, Germany). Prior to dielectric measurement,
the sample, approximately 1 mm thick, was sandwiched
between two gold-coated plates. Dielectric measurement was
operated in the frequency range 10" to 10° Hz at 23 °C, using
an electrode diameter of 20 mm.

For linear viscoelasticity (LVE) properties, prepared films
with a 25 mm in diameter were characterised at 23 °C, using an
advanced rotational rheometer from TA Instruments (ARES-G2)
by means of a parallel plate with a diameter of 25 mm. The axial
force ranged from 5 to 12 N for sufficient contact between the
plate and the sample. LVE properties were measured in the
linear regime at a strain and a frequency of 2% and 10~ to
10” Hz, respectively.

For stress-strain relationships, ultimate strengths and ulti-
mate strains, as well as the Young's moduli at 5% strain, were
measured in extensional rheological tests performed on an
ARES-G2 rheometer using a SER2 universal testing platform
consisting of two rotating drums 10.3 mm in diameter. The
lateral offset of the centre axis of the two rotating drums was
12.7 mm. The sample was prepared in the following dimen-
sions: 6 mm (width), 30 mm (length) and 1 mm (thickness). The
ends of the sample were secured by means of strong glue to the
surfaces of the rotating drums and then elongated within
a confined length by winding up the sample with two rotary
drums. Engineering strain and stress were used in the stress-
strain relationship and were calculated from the measured
Hencky strains and from the measured torque over the cross-
sectional area of the sample, respectively (refer to ESI 1, eqn
(1)-(5)7 for details on engineering stress and strain).

The morphologies of prepared elastomers and the reference
elastomer were inspected via scanning electron microscopy
(SEM) images, which were performed on an FEI Quanta 200
ESEM FEG. Cross-sectional SEM samples were coated in 2 nm-
thick gold by means of a sputter coater (Cressington, model
208HR) under vacuum conditions and a current of 10 mA. A
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field emission gun with an accelerating voltage between 500 V
and 30 kV was applied to detect the element distribution profile
on the surface of the samples.

2.2 PDMS-PPMS copolymer synthesis

The procedure used to synthesise the PDMS-PPMS copolymer
was taken from A Razak and Skov.** PDMS-PPMS copolymers
were prepared through the hydrosilylation of hydride-
terminated PPMS and vinyl-terminated PDMS, as illustrated
in Scheme 1. The synthesised copolymer was telechelic hydride-
functional. The theoretical number of PDMS-PPMS repeating
units in the copolymer (X;) was calculated from the targeted M,,
of 30 kg mol ™~ '. The mixture containing DMS-V21, PMS-H03 and
a 30 ppm Pt catalyst was speed-mixed at 3000 rpm for 5 min.
The stoichiometric ratio for preparing the PDMS-PPMS copol-
ymer (r;) was calculated from the ratio (X; + 1) to X;.**

2.3 Synthesis of PDMS-PEG copolymers

PDMS-PEG copolymers were synthesised as described by A Razak
et al.*® The theoretical number of PDMS-PEG repeating units in
the copolymer (X,) was calculated from M, of 30 kg mol~*. The
stoichiometric ratio for preparing the PDMS-PEG copolymers (7,)
was calculated from the ratio (X, + 1) to X,."® The synthesis of the
PDMS-PEG copolymer was based on the hydrosilylation of
hydride-terminated PDMS and vinyl-terminated PEG, as shown
in Scheme 2. The synthesised PDMS-PEG copolymers were tele-
chelic vinyl-functional.
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Various volume fractions of PDMS in the PDMS-PEG
copolymer were obtained by varying PDMS chain lengths, i.e.
repeating PDMS units (m,) were varied such that m, = 3, 7, 14,
81, while the number of repeating PEG units remained constant
(n, = 4). The synthesised copolymers were named PDMS3-PEG,
PDMS7-PEG, PDMS14-PEG and PDMS81-PEG, respectively.

2.4 Binary copolymer blends and sample preparations

PDMS-PEG copolymers were incorporated into a PDMS-
PPMS copolymer in concentrations of 10 and 20 phr before
being speed-mixed at 3500 rpm for 2 minutes. The loadings of
10 and 20 phr are considered low and high loadings, respec-
tively. One possible network is illustrated in Fig. 1, such that
hydride-functional PDMS-PPMS copolymers may bond cova-
lently to vinyl-functional PDMS-PEG copolymers to form
double copolymers, while some of them may cross-link with
vinyl-functional cross-linkers (VDT-431) and vinyl-functional
PDMS-PEG copolymers cross-link with hydride-functional
cross-linkers (HMS-501). The stoichiometric ratio for both
cross-linking reactions between PDMS-PPMS and VDT-431,
and between PDMS-PEG and HMS-501 were 1.5.'%*' Blends
containing copolymers, cross-linkers, 30 ppm of Pt catalyst,
25 parts per hundred rubber (phr) of silica and 25 phr of
VMS solvent (0S-20 from Dow Corning) were speed-mixed at
3000 rpm for 4 minutes.

The final mixtures were cast on Teflon substrates for
easy release, and the films were prepared at thicknesses of
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Scheme 1 The hydrosilylation reaction of a PDMS—PPMS copolymer, where m is the number of repeating phenylmethylsiloxane (PMS) units in
PPMS (my = 2), and ny is the number of repeating dimethylsiloxane (DMS) units in PDMS (n; = 80).
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Scheme 2 Hydrosilylation reaction when synthesising a PDMS—-PEG copolymer, where m; is the number of repeating DMS units in PDMS, n, = 4

is the constant number of repeating ethyleneglycol (EG) units in PEG.
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Fig. 1 Simplified illustration of the random network structure of
PDMS-PPMS and PDMS-PEG copolymers, hydride-functional 9-
functional and vinyl-functional 15-functional cross-linkers (HMS-501
and VDT-431, respectively). The cross-linkers are illustrated with fewer
cross-linking sites than in the true network.

approximately 1 £ 0.5 mm and 100 + 35 um, as thick and thin
films, respectively. Thin films were used for the measurement of
electrical breakdown strength and thick films were used
for measurements of linear viscoelasticity (LVE), the stress-strain
relationship and dielectric properties. All films were placed in
a vacuum oven at 23 °C for 2 hours and were subsequently cured
at 40 °C for 12 hours for proper film formation. The samples were
placed in the oven at 150 °C for 5-8 hours and subsequently post-
cured at 200 °C for 2 hours.

The cross-linked PDMS-PPMS copolymer containing 80
repeating DMS units and two repeating PMS units, referred to
as 80DMS_2PMS. 80DMS_2PMS, was used as the reference
elastomer and was prepared without incorporating the PDMS-
PEG copolymer. Due to its proven versatility as a voltage-
stabilised silicone elastomer, 80DMS_2PMS was utilised in
all prepared binary copolymer blends (BCBs). Furthermore,
80DMS_2PMS has been proven to possess the most increased
electrical breakdown strength compared to other PDMS-PPMS
elastomers.”* Details of the cross-linked BCBs containing
80DMS_2PMS and PDMS-PEG copolymers, and the reference
elastomer, are shown in Table 1.

Table1 Sample details of cross-linked BCBs containing PDMS—-PPMS
and PDMS-PEG copolymers

PDMS-PEG copolymer

Concentration

No.  (phr) PDMSxx-PEG*  Samples

1 — — 80DMS_2PMS (reference)
2 10 PDMS81-PEG 10 phr PDMS81-PEG BCB
3 20 20 phr PDMS81-PEG BCB
4 10 PDMS14-PEG 10 phr PDMS14-PEG BCB
5 20 20 phr PDMS14-PEG BCB
6 10 PDMS7-PEG 10 phr PDMS7-PEG BCB
7 20 20 phr PDMS7-PEG BCB
8 10 PDMS3-PEG 10 phr PDMS3-PEG BCB
9 20 20 phr PDMS3-PEG BCB

¢ xx is the PDMS chain length.

This journal is © The Royal Society of Chemistry 2017
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3 Results and discussion

A cross-linked binary copolymer blend consisting of PDMS-
PPMS and PDMS-PEG copolymers can potentially assemble
into several distinct morphologies or combinations thereof. The
targeted morphology of the binary system of copolymer blends
containing PDMS-PEG and PDMS-PPMS copolymers is a well-
defined structure forming a continuous PDMS-rich phase and
discontinuous phases of PEG and PPMS, as illustrated in Fig. 2.
Alternatively no microscopic phase separation is desirable.
However, with silicone polymers (and thus elastomers) this is
very difficult — if not unrealistic - to achieve a completely
homogeneous blend which is crosslinked into a likewise
homogeneous network.

3.1 Synthesised PDMS-PPMS copolymer (80DMS_2PMS)

It has been shown previously that PDMS-PPMS copolymers
possess excellent mechanical properties when they are cross-
linked with a vinyl-functional cross-linker.>* All vinyl groups of
PDMS were consumed during the hydrosilylation of vinyl-
terminated PDMS and hydride-terminated PPMS, which was
confirmed by the disappearance of the Si-CH,=—CH, bond
signal at 5.8-6.2 ppm in the "H-NMR spectra (refer to ESI 2 for
NMR spectra in Fig. S11). The synthesised PDMS-PPMS copol-
ymer was telechelic hydride-functional. The determined
molecular weight of 80DMS_2PMS was 32 kg mol ™, while the
molar concentration of phenyl groups of 80DMS_2PMS was 8.8
x 10~* g mol ', determined from NMR integration areas.* A
PDMS-PPMS copolymer containing a PDMS chain length of m,
= 80 and a PPMS chain length of n; = 2 (80DMS_2PMS) was
used in all cross-linked binary copolymer blends (BCBs), due to
the highest electrical breakdown strength (Egp = 72 V um™ ') of
the tested elastomers.

3.2 Synthesised PDMS-PEG copolymers

The disappearance of the Si-H bond signal at 4.70 ppm was
checked by "H-NMR for a complete conversion of hydride PDMS
groups in the hydrosilylation of hydride-terminated PDMS and
vinyl-terminated PEG; refer to ESI 2 for NMR spectra in Fig. S2-
S5.1 Determined molecular weights from the SEC of PDMS-PEG
copolymers PDMS81-PEG, PDMS14-PEG, PDMS7-PEG and
PDMS3-PEG were 49, 29, 3 and 5 kg mol ", respectively.

Fig. 2 Illustration of silicone copolymers prepared by phase-separa-
tion of PDMS—PEG copolymer in a PDMS—-PPMS matrix by means of
a binary system of copolymer blends.

RSC Aadv., 2017, 7, 17848-17856 | 17851
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3.3 Linear viscoelasticity

To evaluate the effect of loading different types of PDMS-PEG
copolymers on viscoelastic properties, the prepared elastomers
were characterised rheologically, as shown in Fig. 3. They are
well cross-linked and behave elastically, i.e. the incorporation of
PDMS-PEG copolymer into the BCB does not destabilise the
PDMS-PPMS elastomers. The resulting storage moduli (G’) for
all prepared cross-linked BCBs and the reference are between
10" and 10° Pa. The cross-linked BCBs with 10 and 20 phr of
PDMS81-PEG are the most rigid elastomers compared to other
prepared elastomers and the reference elastomer, revealing that
the elastomers have PEG-like properties, due to the semi-
crystalline PEG acting as a reinforcing domain in the matrix.
All prepared cross-linked BCBs and reference elastomer possess
close-to-identical viscoelastic relaxations. Relative losses [tan(d)]
for all elastomers are low and are comparable to that of Elastosil
RT625 (a commercial silicone elastomer from Wacker Chemie)*
as well as that of the reference elastomer. It is obvious from
Fig. 3 that all of the prepared elastomers maintain their network
integrity in the small deformation regime.

3.4 Stress-strain relationship

Stress-strain curves and the Young's moduli of prepared
samples are shown in Fig. 4 and Table 2, respectively. It is
evident from Fig. 4 that all prepared samples and the reference
elastomer have reduced their strain-hardening behaviour
compared to the reference. The cross-linked BCBs with 10 and
20 phr of PDMS81-PEG show the most increased ultimate strain
together with a stress-softening behaviour, indicating the irre-
versibility of the stress-behaviour of the thermoplastic part of
the elastomer arising from the crystallinity of the PEG-rich
domains (refer to Fig. 4). Furthermore, most elastomers
mentioned herein possess higher or comparable ultimate
strains than that of the VHB 4910 elastomer from 3 M, where
VHB 4910 possesses an ultimate strain of 800%, as reported by
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o O 10phr PDMS81-PEG ®m 20phr PDMS81-PEG
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Fig. 3 The storage modulus and tan(é) of prepared voltage-stabilised
elastomers with different types and concentrations of PDMS-PEG
copolymers at 23 °C.
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Fig. 4 Stress—strain curves for prepared cross-linked BCBs and the
reference elastomer at 23 °C (standard deviations of ultimate strains
and ultimate strengths were of order +1-19% and +3-16%,
respectively).

Tugui et al.>® On the other hand, the cross-linked BCB with 20
phr of PDMS14-PEG shows very low ultimate strain, indicating
that the high loading of the PDMS14-PEG copolymer deterio-
rates network integrity, due to the macroscopic phase separa-
tion of PEG domains in the copolymer blend matrix.

All cross-linked BCBs show decreased ultimate strength
compared to the reference elastomer. Cross-linking with 10 phr
of PDMS14-PEG results in the most increased ultimate stress
compared to other cross-linked BCBs, due to semi-crystalline
PEGs acting as reinforcing domains.

Obviously, the resulting Young's moduli of all cross-linked
BCBs are low, as well as that of the reference elastomer, as
shown in Table 2. In comparison to the commercial silicone
elastomer (RT625 from Wacker Chemie, Y = 1 MPa), all cross-
linked BCBs and the reference elastomer are softer.

3.5 Dielectric properties

The conductivity and dielectric properties of the prepared
elastomers are shown in Fig. 5 and 6, respectively. The resulting

Table 2 Young's moduli for cross-linked BCBs and reference

elastomer

Young's modulus,

Sample Y (MPa)

0 phr PDMS-PEG (reference) 0.41 + 0.05
10 phr PDMS81-PEG BCB 0.45 £ 0.08
20 phr PDMS81-PEG BCB 0.25 + 0.05
10 phr PDMS14-PEG BCB 0.43 £ 0.05
20 phr PDMS14-PEG BCB 0.58 + 0.13
10 phr PDMS7-PEG BCB 0.30 £ 0.10
20 phr PDMS7-PEG BCB 0.21 4+ 0.03
10 phr PDMS3-PEG BCB 0.34 £ 0.06
20 phr PDMS3-PEG BCB 0.36 = 0.05

This journal is © The Royal Society of Chemistry 2017
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Fig. 5 The conductivity of 80DMS_2PMS elastomers with different
concentrations of PDMS—-PEG copolymers at 23 °C.

conductivities indicate that none of elastomers is conductive.
The resulting conductivity of the cross-linked BCB with 20 phr
of PDMS3-PEG indicates increased relaxation occurring at the
frequencies 10° to 10* Hz, compared to other cross-linked BCBs
and the reference elastomer, which may indicate a local phase
separation of PEG-rich domains.

The resulting relative permittivity for the prepared elastomers
with a low loading (10 phr) of PDMS-PEG copolymers is lower
than the reference elastomer, except the cross-linked BCBs with
10 phr of PDMS7-PEG, which shows increased relative permit-
tivity, improving by 27%. For the prepared elastomers with
a high loading (20 phr) of PDMS-PEG copolymers, the relative
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permittivities are almost higher than the reference elastomer,
whereby the cross-linked copolymer with 20 phr of PDMS7-PEG
has the highest relative permittivity. Fig. 6 clearly shows that the
cross-linked copolymers with low and high loadings of PDMS7-
PEG possess increased relative permittivity, compared to the other
elastomers and the reference. The phase separation of PDMS-PEG
copolymers in the PDMS-PPMS matrix seems to occur on the
micro- or nanoscopic scale, since the elastomers are macroscop-
ically homogenous, as observed from light microscopy.

Dielectric losses, here represented by tan(d), are relatively
low for all cross-linked copolymers as well as the reference
elastomer (see Fig. 6). Similar to the relaxation in Fig. 5, the
cross-linked BCB with 20 phr of PDMS3-PEG shows increased
relaxation occurring at the same frequency.

SEM imaging shows obviously different morphologies for
prepared elastomers, as illustrated in Fig. 7. The SEM image of
the cross-linked BCB with 20 phr of PDMS7-PEG shows clearly
distinct PEG rich domains (white circles), which are well-
distributed in the PDMS matrix, thereby indicating that
a homogeneous elastomer on the macroscopic scale has been
obtained (see Fig. 7b). On the other hand, SEM imaging of the
reference elastomer shows the presence of PDMS and PPMS rich
domains in the matrix (see Fig. 7a). Furthermore, the reference
elastomer has a triangular pattern (PDMS rich domain) and that
of a bent rectangle (PPMS rich domain), which is agrees with the
SEM image of the cross-linked PDMS-PPMS copolymer* (see
Fig. 7a). Other SEM images of prepared elastomers, which show
different morphologies, can be seen in ESI 3, Fig. S6.1

For the reference elastomer, the PDMS-rich domains enhance
elastomer softness, whilst PPMS domains which act as rigid
zones reinforce the network, thus resulting in an elastomer with
increased ultimate stress and increased ultimate strain, as shown
in Table 3.

* 80DMS_2PMS (reference)
> o 10phr PDMS81-PEG = 20phr PDMS81-PEG
-"§ 55 © 10phr PDMS14-PEG e 20phr PDMS14-PEG
= ™ A 10phr PDMS7-PEG A  20phr PDMS7-PEG
€ 504 O 10phr PDMS3-PEG @ 20phr PDMS3-PEG
© 45
Q_ 4
o 4.0-
2 35
% 3 0 ; [DDDDDDDDDLH_H D
D: . T AR T T T LELRRRLL | T LR | T
10° -
—~ -1
~—" 2 A
c 107 1
8 10° -
10* -
10_5 é RRRRRMI LR T IR T T T T T
10" 10° 10" 10* 10° 10* 10° 10°
Frequency (Hz)

Fig. 6 The dielectric properties of 80DMS_2PMS elastomers with different concentrations of PDMS—PEG copolymers at 23 °C.
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Fig. 7 SEM pictures of two representative samples, namely (a)
80DMS_2PMS (reference elastomer) and (b) binary copolymer blends
with 20 phr of PDMS7-PEG.

3.6 Electrical breakdown and Weibull analysis

The influence of the different PDMS-PEG copolymer and their
concentrations in cross-linked BCBs on electrical breakdown
strength was investigated. The thicknesses of the prepared
samples were in the range of 81 to 135 pm. The resulting elec-
trical breakdown strengths of prepared elastomers incorpo-
rating PDMS-PEG copolymers are shown in Table 4. The cross-
linked BCBs with 10 and 20 phr of PDMS14-PEG possess the
highest electrical breakdown strength, namely 80 + 5 and 81 +
18 V um ', respectively, improving by approximately 10%
compared to the reference elastomer. Increased electrical
breakdown is most likely due to the synergistic effect of the
favourable phase separation of PEG and voltage stabilisation.
Moreover, the cross-linked BCBs with PDMS7-PEG and PDMS3-
PEG with a loading of 20 phr possess increased electrical
breakdown strength compared to the reference elastomer.
Clearly, the incorporation of PDMS81-PEG in the BCB decreases
electrical breakdown strength (see Table 4), which indicates
that PDMS81-PEG may destabilise voltage stabilisation and
hence deteriorate the charge trapping effect caused by the -
electrons of phenyl groups.

The electrical reliability of the prepared elastomers was
investigated via Weibull analysis. The §-parameter, the Weibull
shape parameter, was determined from the slope of the Weibull
plot of failure probability versus electrical breakdown strength.
The n-parameter, the Weibull scale parameter, was determined
at the point at which failure probability, In[-In(1 — F)], was
63.2%." Due to different film thicknesses, the determined

View Article Online
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electrical breakdown strengths were normalised, based on
a reference thickness for better comparison. Normalised
dielectric breakdown strengths were calculated using the
equation of normalised electrical breakdown strength verified
by Zakaria et al.>” The reference thickness for normalisation was
100 pum. The results for the Weibull - and -parameters, R* of
the linear fits for cross-linked copolymers and normalised
electrical breakdown strength are presented in Table 4. The
values of the coefficient of determination (R*) for all investi-
gated elastomers are above 0.80, excluding elastomers with 10
phr of PDMS7-PEG and 20 phr of PDMS3-PEG. A coefficient of
determination above 0.85 indicates that the measured electrical
breakdown strength correlates well with the fitted regression
lines.”* Cross-linked BCBs with 20 phr of PDMS81-PEG, 10 and
20 phr of PDMS7-PEG, 20 phr of PDMS3-PEG and the reference
elastomer possess a high g-parameter, thereby indicating that
electrical breakdown occurrences are narrowly dispersed and
hence homogenous elastomers are obtained. The §-parameters
of elastomers with the most increased electrical breakdown
strength (10 and 20 phr of PDMS14-PEG BCBs) are lower than
the B-parameter of the reference elastomer.

Thus far, combining the results for relative permittivity,
electrical breakdown strength and Young's modulus, the cross-
linked BCB with 20 phr of PDMS7-PEG possesses the most
enhanced electrical properties (e, = 4.66, Egp = 76 + 3 V um )
as well as inherent softness (Y = 0.21 £ 0.03 MPa). This elas-
tomer is also the only investigated elastomer formulation which
shows overall excellent properties and it gives a very clear
indication of the complicated interplay of nano-scopic phase
separation and electro-mechanical properties.

Increased electrical breakdown strength may have been
established as the result of either an increased Young's
modulus" or voltage stabilisation.* Further investigation into
electrical breakdown was performed to evaluate whether
increased electrical breakdown strength is the effect of changes
in other properties, e.g. increased stiffness, increased relative
permittivity or increased stretchability. The influences of the
Young's modulus and relative permittivity on electrical break-
down strength are shown in Fig. 8, and 9. No obvious trend can
been seen in Fig. 8 for increased electrical breakdown strength
as a function of elastic modulus, indicating strongly that the
increased electrical breakdown strength of all prepared elasto-
mers is due to the synergistic effect of voltage stabilisation and/

Table 3 Relative permittivity and mechanical properties of prepared cross-linked BCBs and the reference elastomer

Young's Relative Ultimate Ultimate
Sample modulus (MPa) permittivity stress (MPa) strain (%)
80DMS_2PMS (reference) 0.41 + 0.05 3.71 1.86 + 0.31 967 + 33
10 phr PDMS81-PEG BCB 0.45 £ 0.08 3.14 1.10 = 0.10 1748 £ 40
20 phr PDMS81-PEG BCB 0.25 + 0.05 3.78 0.74 + 0.02 1164 £ 17
10 phr PDMS14-PEG BCB 0.43 £ 0.05 3.64 1.57 £ 0.12 635 £ 52
20 phr PDMS14-PEG BCB 0.58 £ 0.13 3.67 0.25 £ 0.03 104 £1
10 phr PDMS7-PEG BCB 0.30 £ 0.10 4.71 0.40 £ 0.03 431 £ 19
20 phr PDMS7-PEG BCB 0.21 £ 0.03 4.66 0.42 £ 0.04 552 £ 103
10 phr PDMS3-PEG BCB 0.34 £ 0.06 3.41 1.14 + 0.10 724 £ 40
20 phr PDMS3-PEG BCB 0.36 £ 0.05 4.15 0.56 £ 0.03 491 £+ 43
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Table 4 Electrical breakdown strength at 23 °C, Weibull parameters n and 8 and R? of the linear fit for all prepared cross-linked copolymers and

the reference

Cross-linked PDMS-PPMS

Electrical breakdown

Weibull

Weibull

Normalised electrical

copolymer (80DMS_2PMS) strength (V um™") (-parameter n-parameter R breakdown strength
0 phr PDMS-PEG (reference) 72 +3 26 73 0.93 71.9 + 3.1

10 phr PDMS81-PEG 61 £38 9 64 0.89 61.1 +7.8

20 phr PDMS81-PEG 54 + 2 36 55 0.96 54.3 + 1.7

10 phr PDMS14-PEG 80 5 19 82 0.84 80.5 £ 5.2

20 phr PDMS14-PEG 81 + 18 5 88 0.93 82.9 + 18.8

10 phr PDMS7-PEG 64 £2 38 65 0.70 64.3 £ 2.3

20 phr PDMS7-PEG 76 £3 34 77 0.89 76.4 + 2.6

10 phr PDMS3-PEG 63 £9 7 67 0.94 60.6 + 8.7

20 phr PDMS3-PEG 74 £3 30 75 0.76 73.7 £ 3.0

100

* Reference

PDMS-PPMS + PDMS-PEG
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Fig. 8 Electrical breakdown strength versus Young's modulus.
Existing theories predict a linear* or even an exponential increase?®
of the electrical breakdown strength with the Young's modulus.

This is obviously not valid for the investigated phase-separating
system.

* Reference

100
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Fig. 9 Electrical breakdown strength versus relative permittivity.
Existing theories predict that the electrical breakdown strength scales
with the square root of dielectric permittivity.?®

This journal is © The Royal Society of Chemistry 2017

or the favourable phase separation of PEGs rather than due to
increased stiffness and thus resistance towards actuation. No
clear trend can be observed for electrical breakdown strength
versus relative permittivity, indicating that the increased elec-
trical breakdown strength is not due to increased relative
permittivity (see Fig. 9). Likewise the effect of film thickness on
electrical breakdown strength was investigated in order to
eliminate all possible experimental artefacts. Again, there is
no obvious correlation as observed from Fig. 10 which again
confirms that the voltage stabilization is an electrical effect.
The theoretical actuation strains were calculated from the
actuation equation,®® by assuming the maximum applicable
electrical field, i.e. electrical breakdown strength can be realized
and the elastomer does not break down mechanically or electro-
mechanically before electrically.* Theoretical actuation strains
and measured ultimate strains are shown in Table 5. The elas-
tomer with 10 phr of PDMS81-PEG, which is highly extensible,
shows the lowest theoretical actuation strain compared to the
other elastomers. No correlation can be made from Table 5 about
the dependence of theoretical actuation strain on ultimate strain.
Previous theory predicts that the maximum actuation strain may

* Reference
PDMS-PPMS + PDMS-PEG

115+
110 .
105
100 4
95 ]
90
85 ]
80
75

3

70 T i

65 } F
60

S L

50
45
40

Electrical breakdown strength (V um™)

LA DL DL AL LR I R L L R L IR B |
75 80 85 90 95 100 105 110 115 120 125 130 135 140
Thickness (um)

Fig. 10 Electrical breakdown strength as function of film thickness.
Usually a strong increase in the electrical breakdown strength is
observed with decreased thickness of elastomer film due to the
reduction of volume and thus number of defects.
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Table 5 Theoretical actuation strain and measured ultimate strain for
prepared elastomers

Theoretical actuation Ultimate strain

Sample strain (%) (%)
80DMS_2PMS (reference) 600 967 + 33
10 phr PDMS81-PEG BCB 366 1748 £ 40
20 phr PDMS81-PEG BCB 629 1164 £ 17
10 phr PDMS14-PEG BCB 769 635 £ 52
20 phr PDMS14-PEG BCB 590 104 + 1
10 phr PDMS7-PEG BCB 928 431 £ 19
20 phr PDMS7-PEG BCB 1821 552 4+ 103
10 phr PDMS3-PEG BCB 578 724 £ 40
20 phr PDMS3-PEG BCB 881 491 + 43

be achieved for the elastomer which is highly extensible.*
However, a large actuation strain is also influenced by other
parameters such as increased electrical breakdown strength and
increased relative permittivity. Obviously, elastomers with
decreased ultimate strain, such as the example with 20 phr of
PDMS14-PEG, may break down mechanically before they break
down electrically (see Table 5). However, it is obvious that this
type of silicone elastomer is in general more stretchable than the
maximum actuation demands.

4 Conclusions

A soft elastomer with high extensibility was prepared from
phase-separating a PDMS-PEG copolymer in a binary copol-
ymer blend consisting of a PDMS-PPMS copolymer as the
primary copolymer. The elastomer possessed simultaneously
increased relative permittivity and electrical breakdown. The
increased electrical breakdown strength is due to voltage sta-
bilisation arising from the phenyl groups of PPMS, while
increased relative permittivity without achieving conductivity is
due to the favourable phase separation of PEG constituents in
the binary copolymer blend matrix. Thereby a facile method
towards soft, reliable elastomers with good electrical properties
allowing for large-strain actuation has been shown.
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