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inhibition via proteochemometric modeling
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and Chanin Nantasenamat *b

The phosphodiesterase (PDE) superfamily, including all PDE families and subfamilies, are often implicated in

diverse physiological disorders thereby making their selective inhibition of great necessity. Of the PDE4

family, the subfamilies of PDE4B and PDE4D have attracted attention due to their role in highly critical

disorders such as asthma, acrodysostosis, cognition disorder and schizophrenia. Owing to their different

levels of involvement in related disorders and within different subcellular compartments, the

development of specific subfamily-selective compounds seems pertinent. Since achieving selectivity can

be facilitated by considering the information of both compound and protein, thereby calling for

proteochemometrics (PCM) to investigate the interaction space and selectivity of different chemical

compounds towards different PDE4 isoforms. Several internal and external data sets were applied to

validate the predictivity of the PCM model for interpolating on internal compounds as well as

extrapolating on newly designed compounds. The Y-scrambling approach was applied to evaluate the

possibility of chance correlation. Excellent values of 0.9973, 0.9037 and 0.9742 were observed for the

training (R2), internal cross-validation (Q2) and external validation set (Qext
2), respectively. Practical

utilization of this information was demonstrated via the design of a few novel compounds whereby

structural changes to the compound can exert effects on the selectivity against both PDE4B and PDE4D.

Our model provided knowledge on the structural features of compounds in order to discriminate the

binding of PDE4B and PDE4D, which is valuable for the promising design of selective inhibitors.
Introduction

Phosphodiesterases (PDEs) (EC 3.1.4.17) catalyze the produc-
tion of 50-AMP and 50-GMP via the degradation of cyclic aden-
osine monophosphate (cAMP) and cyclic guanosine
monophosphate (cGMP), respectively.1 These secondary
messengers are crucial in physiological processes such as cell
growth, apoptosis, immune responses, reproduction, inam-
matory responses, etc.2,3 Consequently, a lot of major disorders
like obesity, diabetes, heart failure, arthritis, chronic obstruc-
tive pulmonary disease (COPD) and cancer can be engaged with
PDE deciency.4–6 The PDE superfamily is comprised of eleven
families. Among them, the PDE families are divided into cAMP-
specic families (PDE4, PDE7, and PDE8), cGMP-specic
families (PDE5, PDE6, and PDE9) as well as PDEs families
with dual specicity (PDE1, PDE2, PDE3, PDE10, and PDE11).5,6

Since each family posses unique tissue distribution, substrate
specicity and functional properties, their inhibition can result
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in different biological outcomes.7–14 In addition, PDE4 isoforms
are mainly expressed in inammatory and immune cells and
are known to be involved in disorders such as asthma and
COPD. Therefore, developing PDE4-selective inhibitors for such
disorders has been of great interest to pharmaceutical compa-
nies. Two advanced inhibitors named cilomilast and roumi-
last are in their phase III clinical trials.5,15–18 Furthermore, due to
promising clinical advancements in developing PDE4 inhibi-
tors, there is also a great appeal growing towards developing
specic inhibitors against PDE4 subfamilies including PDE4B
and PDE4D.

Previous investigations have shown that selective inhibition
of PDE4D is associated with a reduction of inammation and
improvement of cognition, while PDE4B-selective inhibitors
seem to be potent therapeutics for allergic inammation and
asthma.19–27 It has also been shown that people with mutations
or single-nucleotide polymorphisms (SNPs) in their PDE4D are
engaged with acrodysostosis25 and ischaemic stroke26 whereas
PDE4B SNPs coupled with low levels of PDE4B expression are
associated with schizophrenia.27 Other studies with knockout
mice proposed that the development of PDE4B-selective inhib-
itors for use in asthma and other inammation-related diseases
can cause fewer side effects as compared to classical PDE4
inhibitors.28 To sum up, since the PDE4 subfamily are involved
This journal is © The Royal Society of Chemistry 2017
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in different signalosomes within different subcellular
compartments, the development of specic therapeutics and
the design of novel isoform-selective inhibitors seem highly
necessary. Therefore, in order to investigate the selectivity, the
interaction space of multiple compounds across multiple
proteins should be analyzed.

The proteochemometrics (PCM) approach fullls this goal by
correlating both compound and protein descriptions with bio-
logical activities.29 Due to the crucial physiological impact
resulted upon selective inhibition of different PDE4 subclasses,
as well as owing to the fact that there have been no PCM studies
regarding the PDE family as yet, therefore, here for the rst time
we applied the PCM approach to study the interaction space of
PDE4 subfamilies and their inhibitors. In addition, thus far
PCM have been successfully applied to investigate protein
families such as G protein-coupled receptors,30,31 proteases,32,33

kinases,34–36 antibodies,37 cytochrome P450 38,39 and carbonic
anhydrase.40,41 While the majority of these researches have used
sequence based descriptors for describing proteins, whereby
the latter has shown a positive impact on molecular interaction
eld (MIF) based descriptors called GRid-INdependent
Descriptors (GRIND) on modeling and on the signicance of
using z scales-GRINDs combinatorial descriptors.41 Hence, in
the present study, we developed a unied PCM model with the
combination of z scales and MIF-based GRIND to investigate
the interaction space and the selectivity between two subfam-
ilies of PDE4 (PDE4B and PDE4D) and a series of their inhibi-
tors. This approach provides the ability to nd differential
structural features that can be taken into consideration for
designing compounds with better selectivity towards PDE4B
and PDE4D. The owchart for PCM modeling of the
compound–protein interaction space is represented in Fig. 1.

Materials and methods
Data set

The bioactivities of compounds were obtained from the Bind-
ingDB,42,43 which is a publicly available database containing
nearly 20 000 experimentally determined bioactivities of
compound–protein complexes. There are 983 and 853 biological
activities deposited in the BindingDB for PDE4B and PDE4D,
respectively. Some of the data belongs to organisms other than
humans and some do not have valid compound IDs. In some
cases the reported activity has neither the type of interest nor an
exact measured value (e.g. IC50 > 1000). There are also some
cases in which the activity of an inhibitor is reported for one of
the PDE4 isoforms. Aer initial ltration of the data set
according to the points mentioned above, a set of 71
compounds with inhibitory data available for both PDE4B and
PDE4D was selected based on the following extra ltration
steps: (i) the difference between their inhibitory powers (i.e. IC50

of nanomolar potency) for the two isoforms of PDE was less
than or equal to 2-fold. In other words, we made sure that the
chosen compounds were not selective inhibitors in the case of
isoforms PDE4B and PDE4D, (ii) compounds with more than
one value reported for their IC50 were removed from the data
set. Inhibitory activities of compounds were converted to pIC50
This journal is © The Royal Society of Chemistry 2017
(�log IC50 � 10�9) and the values are available in a CSV le
provided on GitHub at https://github.com/chaninn/PDE4/.
Protein descriptors

Structures of human PDE4B (PDB ID: 3O0J) and PDE4D (PDB
ID: 2PW3) were obtained from the Protein Data Bank (Fig. 10).
Available PDB structures for PDE4B and PDE4D represent the
catalytic domain of the proteins. Since GRIND descriptors are
extracted from the 3D structures of proteins, the presence of the
missing residues in the PDB les can negatively affect the
process of descriptor calculation. Therefore, we chose 3O0J and
2PW3 structures as there were no missing residues reported in
their PDB les. In addition, since 2PW3 represents the structure
of PDE in complex with its native substrate, we used 2PW3 as
the reference structure to extract those residues that make up
the enzyme's cavity and have the potential to interact with the
compounds. From the center of the cAMP, a cutoff of 10 Å was
used and those residues falling within the applied cutoff were
considered as compound interacting residues. The sequence of
3O0J was then aligned using Clustal Omega web server, version
1.2.4 44 and cavity amino acids were identied in correspondent
positions for the PDE4B isoform (Fig. 2). In accordance with our
previous work,41 albeit slight changes, we modied the
ALMOND algorithm and introduced an ALMOND-like algo-
rithm with the ability to calculate the GRIND descriptors for
complex structures such as protein cavity. Briey, our algorithm
works by following 3 steps: (i) calculating MIFs using the
program GRID45 and nding the points with favorable interac-
tion energies, (ii) reducing the points to those showing the best
interaction energies, using the genetic algorithm.46,47 Both the
intensity of a point and the mutual node–node distances
between the selected points are considered in the ltering
process, (iii) for each MIF pairs of interaction, energies are
multiplied and the greatest product is kept for each internode
distance. This way a set of the chosen node is converted to a set
of descriptors.

DRY (–CH3), O (carbonyl oxygen), N1 (amide nitrogen) and
TIP probes were used for computing the MIFs. These probes are
representatives for hydrophobic interactions, hydrogen bond
acceptors, hydrogen bond donors and molecular shape,
respectively. A grid spacing of 0.5 Å was applied while the center
and size of the GRID box were adjusted to cover all compound
interacting residues. The following parameters were applied in
the case of the genetic algorithm: (i) population size of 200, (ii)
maximum generation of 200, (iii) two-point crossovers with the
rate of 0.8, and (iv) mutations with the rate of 0.01. Regarding
each MIF, 2000 nodes were extracted and the smoothing
window of 0.2 Å was used, resulting in 224 descriptors for each
auto/cross MIF–MIF multiplication. Since we applied four types
of probes (resulting in a nal number of 10 auto/cross MIF–MIF
combinations), the total number of 2240 descriptors for each
protein isoform were calculated. Descriptors showing the same
value for PDE4B and PDE4D were removed, resulting in the nal
number of 2200 descriptors for each protein isoform.

z-Scales were calculated for non-conserved compound
interacting residues (8 residues). These residues were encoded
RSC Adv., 2017, 7, 28056–28068 | 28057
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Fig. 1 Flowchart summarizing the PCM modeling of PDE4 inhibitors.
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by three z-scale descriptors (z1, z2 and z3), as derived by Sand-
berg et al.,48 representing hydrophobicity, size/polarizability
and polarity, respectively. Using these three z-scale descriptors
we reached a total number of 8 � 3 ¼ 24 descriptors for each
protein.
Compound descriptors

Structures were obtained from ZINC website.49,50 All geometries
were optimized using SYBYL version 7.3 51 and the Tripos force
eld was applied with a distance-dependent dielectric and the
Powell conjugate gradient algorithm convergence criterion of
0.01 kcal mol�1 Å�1. To calculate the partial atomic charges, the
Gasteiger–Huckel method was used. GRIND 3D descriptors
were calculated using the same algorithm as the one applied for
calculating the descriptors of PDEs. The following modica-
tions were considered when compared to proteins, (i) the GRID
box was adjusted in a way that the whole compound was placed
within, (ii) since the structure of compounds are less complex
28058 | RSC Adv., 2017, 7, 28056–28068
when compared to that of proteins, the number of extracted
nodes and smoothing window were 100 and 0.4 Å for each MIF,
respectively. As there are ten descriptor types (i.e. DRY–DRY, O–
O, N1–N1, etc.) and each descriptor type has 62 distance itera-
tions (starting from 0.4 and ending at 0.4 � 62 ¼ 24.8), there-
fore upon applying the mentioned parameters, a nal set of 620
descriptors was obtained for compounds. Descriptors showing
the same value for all compounds were removed thereby
resulting in a nal number of 495 descriptors for each inhibitor.
Feature selection

Feature selection was applied to select the best tted GRIND
descriptors. GA-PLS consists of three basic steps: (i) generation
of the initial chromosomes. Each chromosome contains
different genes representing the presence/absence of a variable,
(ii) calculation of Q2 parameter to evaluate the tness of each
chromosome, (iii) reproduction in which processes such as
crossing-over and mutation were carried out. Steps (ii) and (iii)
This journal is © The Royal Society of Chemistry 2017
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Fig. 2 Protein structures (top panel) and sequence alignment (bottom panel) of investigated phosphodiesterase isoforms PDE4B (PDB ID: 3O0J)
and PDE4D (PDB ID: 2PW3). Environmental residues (indicated by red colored residues in the top panel and red text in the bottom panel)
surrounding the cAMP substrate (colored orange) were selected for further descriptor generation.
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continues until the designated number of generations was
achieved.47,52 PLS Toolbox 3.5 53 was used and the genetic algo-
rithm with default parameters was applied on both the
compound and protein descriptors. The nal numbers of 70
and 334 GRINDs were selected by the genetic algorithm for
compounds and proteins, respectively.
Compound–protein cross-terms

In the present study, cross-terms are simply mathematical
products of the compound descriptors with those of the
proteins, representing the interaction space between
compounds and proteins. Since compound and protein
descriptors are 70 and 358 (24 z-scales + 334 GRINDs)
This journal is © The Royal Society of Chemistry 2017
respectively, the total number of cross-terms for each
compound–protein complex is 25 060 (70 � 358). All descrip-
tors were mean-centered and scaled to unit variance before
cross-terms calculation. To prevent small blocks of descriptors
being masked by large ones, we used block-scaling.
Multivariate modeling

Descriptors of the compounds, protein cavity residues and their
cross-terms were correlated to the pIC50s using partial least
squares (PLS) regression. Briey, PLS correlates the X matrix of
predictors with the Y response variables by simultaneously
projecting them to the PLS components and nding linear
relationships between them. PLS modeling was performed
RSC Adv., 2017, 7, 28056–28068 | 28059
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using PLS Toolbox 3.5. The optimal number of latent variables
to use for the construction of the PCM model was selected
according to the method of Haaland and Thomas,54 which
resulted in the use of 14 latent variables.

For a PCM model consisting of P protein descriptors, L
compound descriptors and C � P cross-terms, the regression
equation is expressed as follows:

pIC50 ¼ pIC50 þ
XC

c¼1

CcDc
C þ

XP

p¼1

CpDp
P þ

XC�P

c¼1;p¼1

CcpDc
CDp

P (1)

where pIC50 represents the average pIC50; Dc and Dp represent
compound descriptors and protein descriptors, respectively; Cc,
Cp and Ccp are regression coefficients of compound descriptors,
protein descriptors and compound–protein cross-terms,
respectively.
Model validation

To assess the ability of the model for predicting the IC50 of
a new compound, data splitting was applied to select 20% as an
external set while using 80% as the internal set. This study
makes use of two types of external set that are termed as follows:
(i) external-compounds and (ii) external-complexes. In the
former, 12 compound–protein complexes were randomly
excluded from the modeling process while in the latter 10
compounds (and its associated bioactivity against the two iso-
forms, which results in 20 bioactivity data points or compound–
protein complexes) were excluded as the external set. Since
information related to these complexes has not been seen in the
PLS model, it is assumed that they could not have had an
inuence on the PLSmodel. Thus, we applied these two external
sets consisting of 32 compound–protein complexes (making up
the 20% subset) to evaluate the extrapolation capability of the
model whereas the internal set consisting of 130 compound–
protein complexes (constituting the 80% subset) was evaluated
for its intrapolation capability. Thus, the internal set was used
as both a training set as well as subjected to Venetian blinds
cross-validation (VB-CV). Furthermore, the predictive model
trained using the internal set was applied on the external sets as
to evaluate the general assessment of the model's predictive
power in regards to its bioactivity and selectivity toward new
compounds.

Y-Scrambling was applied to test the robustness of the
models. In this approach the variable Y is randomly shuffled,
and a newmodel with scrambled data is generated to ensure the
robustness of the PCM models and to rule out the possibility of
chance correlations. Therefore, we built 100 new models using
randomly shuffled variable Y. The R2 andQ2 values of scrambled
and unscrambled models were plotted versus correlation coef-
cients between original and scrambled Y values. Regression
line was conducted and the intercepts for R2 and Q2 (R2 inter-
cept and Q2 intercept) were calculated.

Previous studies have revealed that in order to ensure the
robustness of the models and to rule out the possibility of
chance correlations, the R2 intercept and the Q2 intercept
should not exceed 0.3 and 0.05, respectively.55 Along with these
validations, we randomly selected from BindingDB 10 new
28060 | RSC Adv., 2017, 7, 28056–28068
compounds with different selectivity for PDE4B and PDE4D and
used this set as an external set to validate the power of the
model for selectivity prediction of new inhibitors. Since infor-
mation related to these compounds have not been used in the
PLS model, this way we could make sure of the reliability of our
model for predicting the selectivity of newly designed inhibi-
tors, which we term the external-compound set.
Applicability domain analysis

Applicability domain (AD) was applied to estimate the likeli-
hood of reliable prediction for the investigated compounds. The
uncertainty of predictions refers to the number of compounds
falling outside the AD. The most popular method for deter-
mining AD was described by Gramatica et al.56 and Tropsha
et al.,57 which encompasses the computation of leverage values
for each investigated compound. Using the leverage value we
can identify whether a new compound falls within or outside
the domain. Leverage values are calculated via adjustment of X
as to yield the hat matrix H:

H ¼ X(XTX)�1XT (2)

where X is a two-dimensional matrix made of n compounds and
m descriptors whereas XT is the transpose of X. Meantime, the
leverage value of the ith compound (hi) is the ith diagonal
element of H:

hi ¼ xTi (X
TX)�1xi (3)

where xi is the descriptor row-vector of the ith compound. The
warning leverage h* is calculated by:

h* ¼ 3(p + 1)/n (4)

The leverage value along with the William's plot is usually
applied to assess the AD of QSAR models. The William's plot is
built by depicting the standardized residuals versus the leverage
value for each compound's hi. If the ith compound has hi > h*
then it means that the ith compound applies a great impact on
the QSAR model and may be excluded from the AD.
Contribution of compound properties to protein selectivity

Since the signicance of a compound descriptor to protein
selectivity can be obtained from coefficients of cross-terms
involving descriptors of interest, we applied the following
equation to assess the contribution of a GRIND descriptor to the
selectivity for a particular protein isoform.

Dycp ¼ dy

dDc

¼ Cc þ
XP

p¼1

CcpDp (5)

where ycp represents the change in selectivity of the cth

descriptor of compounds for a particular protein isoform p with
descriptors D1, D2.Dp. Cc and Ccp denotes regression coeffi-
cients while Dc(P + 1 # c # P + C) and Dp(1 # p # P) denotes
descriptors for compounds and protein isoforms, respectively.
This journal is © The Royal Society of Chemistry 2017
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Results and discussion

Non-specic inhibitors may inhibit several isoforms of phos-
phodiesterase, resulting in toxic side effects. Regarding the
inhibition of PDE4D isoform in particular, with available
developed inhibitors of PDE4, there are ndings which suggest
that inhibition of PDE4D is associated with the dose-limiting
gastrointestinal side effects, while PDE4B seems to play major
roles in activation of the T-cell receptor.5,28,58–60 These investi-
gations and studies similar to them, can justify the rational for
the development of selective inhibitors for PDE4B and PDE4D.
While the former can act as potential therapeutics for allergic
inammation and asthma,20 the latter can reduce inammation
and improve cognition.61 Since PDE4B and PDE4D are
subclasses of PDE isoform 4, the sequences of their catalytic
Fig. 3 Plots of experimental versus predicted pIC50 values for the train
complex) sets.

Fig. 4 Plots of the experimental (A) and predicted (B) pIC50 values of 10
PDE4D. Compounds are denoted by filled circles and correspondingly la

This journal is © The Royal Society of Chemistry 2017
domains are substantially conserved and indeed their struc-
tures are highly similar. Therefore, designing compounds with
the ability of discriminating one subclass from the other is
a signicantly challenging task. Considering that the properties
of proteins are exploited in addition to the features of
compounds in PCM modeling, PCM models would be able to
catch differences in patterns of chemical interactions with
regard to different compound–protein complexes. Furthermore,
in the case of isoforms and their subclasses (e.g. PDE4) which
show high sequence/structural similarities, PCM can catch
chemical space differences, even those raised by the slightest
sequence/structural dissimilarities. Therefore, using the PCM
approach, we could capture some structural features that can be
considered while designing compounds with higher selective
tendencies towards a specic subclass of PDE4.
ing, cross-validation and external (external-compound and external-

compounds from the external-compound data set for PDE4B versus
beled by their ZINC ID.

RSC Adv., 2017, 7, 28056–28068 | 28061
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PCM modeling and assessment of the model validity

Since the positive impact of GRIND descriptors on modeling
and the signicance of using z-scale-GRIND combinatorial
descriptors have been already conrmed,41 we applied
a combination of z-scale descriptors and GRIND descriptors in
our modeling. Prior to modeling, feature selection was carried
out with regard to GRIND descriptors using genetic algorithm
in order to nd the best tted structural descriptors. Subse-
quently, 70 and 334 features were selected for compounds and
proteins, respectively. In addition to GRIND descriptors, 3 z-
scale descriptors were calculated in the case of proteins,
resulting in a total number of 358 descriptors per protein iso-
form. z-Scale are the result of principal component analysis
(PCA) performed on physicochemical properties of 87 natural/
articial amino acids. The rst three PCs, called z1, z2 and z3,
are the representatives of the largest variations of physico-
chemical properties. Correlation between the descriptor matrix
(consisting of compound descriptors, protein descriptors and
their cross-terms) and biological activities (pIC50s) were made
using PLS.

Prior to modeling, a set of 12 randomly selected complexes
were le out. We used this set in addition to 10 new compounds
as an external set to validate the predictivity power of the model
for activity and selectivity of new compounds. The resulting
PCMmodel passed all the internal and external validation tests.
Excellent values were observed for R2 (0.99), Q2 (0.92) and Q2

pred (0.97), which are the indices for training, cross-validation
and external cross-validation, respectively. Fig. 3 shows the
experimental pIC50 values for the 32 complexes plotted versus
their predicted values, revealing the highly effective predictivity
power of the model. Moreover, 10 new compounds with activity
Fig. 5 Y-Scrambling plot of pIC50 for the PCM model. The Y-axis
represents R2 (blue circles) and Q2 (red circles) coefficients for the
original model and 100 models built based on randomly scrambled
response data. The X-axis designates the correlation coefficient
between the original and permuted response data.

28062 | RSC Adv., 2017, 7, 28056–28068
against both isoforms were also randomly selected from the
structure IDs deposited in the BindingDB (chemical structures
along with their pIC50 values for PDE4B and PDE4D are
provided as Data S4, Data S5 and Data S6, respectively). Prior to
descriptor calculation, compounds geometries were optimized
using SYBYL 7.3 (see the Methods for details). Comparing
Fig. 4A with Fig. 4B reveals that not only is our model excellently
able to predict the most active (43152221, 28529556 and
36268834) and the least active (35090994, 64548397 and
35999278) compounds, but is also capable of predicting the
selectivity trend of new compounds towards PDE4B and PDE4D
(with the exception of compound 28529556) most marvelously.
Finally, the results of the Y-scrambling test (R2 intercept of 0.05
and Q2 intercept of�0.04) was able to conrm the robustness of
the model (Fig. 5).
Applicability domain

Fig. 6 illustrates the applicability domain (AD) of the PCM
model as dened by the Williams plot. The entire data set was
split into two sets consisting of internal (80%) and external
(20%) subsets, as described earlier in the Materials and
methods section. As can be seen in the Williams plot, nearly all
compounds are located within the boundaries of the applica-
bility domain thereby suggesting a well-dened AD for the
proposed PCM model.
Model interpretation and analyzing the contribution of
compound properties for protein isoform selectivity

It has been shown by several X-ray crystallography investiga-
tions5,14,62 that aromatic–aromatic interaction plays a major role
Fig. 6 Analysis of the applicability domain as evaluated via theWilliams
plot.
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Fig. 7 Plot of important features showing the contribution of compound descriptors toward PDE inhibition. Y-Axes indicate the regression
coefficients of descriptors. The interval within each sub-plot represents the node–node distance range of 0 and 24.8 Å for each respective
GRIND descriptor. Descriptors that significantly discriminate between PDE4B and PDE4D are indicated by the numbered arrows.
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in the average affinity of compounds toward the PDE4 isoforms.
This is to be expected since nearly all available inhibitors are
engaged in interacting with more than one aromatic ring and
there is a considerable distribution of residues with aromatic
side chains (e.g. Phe, Tyr and Trp) inside the protein cavity as
well. Contribution of compound descriptors to the protein
selectivity was assessed based on the measurements. Since Dycp
can be considered as a regression coefficient of a GRIND
descriptors for a specic protein isoform, comparing values for
different protein isoforms can assess the impact of that specic
compound property to their selectivity for a specic protein
isoform. Fig. 7 illustrates the values for structural descriptors of
compounds (selected by genetic algorithm) with regards to
PDE4B and PDE4D. The X-axis tick labels represent a distance
range from 0 Å to 24.8 Å. Some structural descriptors, showing
highly discriminative behavior towards different isoforms of
PDE4, are indicated in the gure and will be discussed in
details.
DRY–DRY descriptor at distance of 14 Å

According to the unied PLS model, the DRY–DRY descriptor
shows a signicantly positive coefficient at the distance of 14 Å
with regard to isoform PDE4B, in particular (Fig. 7, arrow 1).
Comparing the chemical space of the enzymes cavities revealed
the position where A197 in PDE4B is substituted by Ser in
PDE4D. A closer look further revealed the presence of a hydro-
phobic residue (position 163) in the distance of almost 14 Å
from position 197 of both cavities (Fig. 8A). Seeing that, Ser
cannot be involved in hydrophobic interactions, this nding is
highly compatible with the PLS coefficient of the DRY–DRY
descriptor which is only positive for isoform PDE4B. Based on
the PLS coefficient for the DRY–DRY descriptor and the struc-
tural evidence, our nding suggests that compounds having
dual hydrophobic moieties with a distance of nearly 14 Å in
their structures might show higher selectivity towards PDE4B.
Fig. 8 Close-up structural representation of the cavity of PDE4B (A) and
(L163 and A197) from PDE4B are located at a distance of 13.6 Å from each
14 Å. Panel (B) shows that the two H-bond acceptor moieties (S197 and
which coincides with the O–O descriptor at a distance of 10 Å. Panel (C
residue (I267) are located at a distance of 12.7 Å from each other, which

28064 | RSC Adv., 2017, 7, 28056–28068
Fig. 8A clearly highlights the important role of hydrophobic–
hydrophobic interactions toward selectivity.
O–O descriptor at distance of 10 Å

It seems that mutations in positions 197 and 201 are signi-
cantly critical for compound–protein selectivity, as they are
captured twice by our PLS model. As clearly shown in Fig. 7
(arrow 3), a highly positive coefficient for the O–O descriptor
exists at a distance of 10 Å with regard to PDE4D, while the
correspondent descriptor is signicantly negative for PDE4B. In
addition, structural inspection of the enzymes cavities revealed
that there is a spatial distance of 10 Å between the side chains of
positions 197 and 201 (Fig. 8B). While these positions are
occupied by Ser and Asn (both having side chains capable of
accepting hydrogen bond) in PDE4D, the S197A substitution
renders the O–O descriptor unfavorable in the case of PDE4B.
This nding suggests that compounds with dual hydrogen
donor moieties, located at a distance of 10 Å from each other,
can possibly t better in the cavity of PDE4D rather than in the
cavity of PDE4B. Out of the plenty amino acids involved in the
cavities of PDE4B and PDE4D, only 8 positions are not
conserved. This denitely strengthens the necessity of applying
these differences for the modeling process, as a few of them
captured by our model has given a rise to valuable information.
DRY–O descriptor at distance of 12.4 Å

Inspecting the PLS coefficients revealed the presence of
a signicantly positive coefficient for DRY–O descriptor at
a distance of 12.4 Å with regard to PDE4D, while the corre-
spondent descriptor is hardly considerable for PDE4B (Fig. 7,
arrow 2). The structural analysis showed that the spatial
distance between positions 201 and 267 of the enzyme cavity
(12.7 Å) is very close to that of the highly positive DRY–O
descriptor (Fig. 8C). Based on the positive PLS coefficient and
the similar distance between positions 201 and 267, it seems
PDE4D (B and C). Panel (A) illustrates that two hydrophobic residues
other, which corresponds to the DRY–DRY descriptor at a distance of
N201) from PDE4D are located at a distance of 10 Å from each other,
) reveals that an H-bond acceptor moiety (N201) and a hydrophobic
is in agreement with the DRY–O descriptor at distance of 12.4 Å.

This journal is © The Royal Society of Chemistry 2017
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that the I267M substitution (i.e. Ile is much more hydrophobic
than Met) in PDE4B causes the inefficiency of the mentioned
DRY–O descriptor in this isoform. Therefore, it is expected that
inhibitors with dual hydrophobic/hydrogen donor moieties,
placed in a distance close to that of the DRY–O descriptor, show
better selectivity for isoform PDE4D.

Applicability of the model and the design of new inhibitors

To conrm the applicability of the PLS model and to show the
impact of the differential descriptors on the selectivity, a few
compounds were designed by modifying the studied inhibi-
tors. The following criteria were considered for the selection of
template compounds: (i) the selected compounds have exactly
the same values of IC50 for PDE4B and PDE4D. This would
make it easier to compare the changes in the predicted pIC50

values. (ii) The selected compounds lack the structural
descriptor whose role is being studied. In this respect, the
impact of a descriptor on the change of the pIC50 could be
Fig. 9 Modification strategies utilized to investigate the effects of differe
compounds used in the PCM modeling (first column consisting of ZIN
(second column consisting of 384317300, 267350770 and 362687950) th
descriptors, respectively.

This journal is © The Royal Society of Chemistry 2017
easily investigated by producing the desired descriptor values
via modication of the compound structure. According to the
mentioned criteria, inhibitors with ZINC IDs of 38431730,
26735077 and 36268795 were selected as template structures
for applying structural modications, which corresponded to
DRY–DRY, DRY–O and O–O descriptors, respectively. As is
illustrated in Fig. 9, the following structural modications
were applied on each compound in order to create the
descriptors being investigated here: (i) in order to make
a DRY–DRY descriptor at a distance of 14 Å for 38431730,
we substituted the carboxyl group by two methyl moieties
(384317300), (ii) the DRY–O descriptor at a distance of 12.4 Å
was created for 26735077 by converting the methyl group
of the hydrocarbon chain to hydroxyl moiety (267350770),
(iii) the nal modication was performed on 36268795 in
order to provide this compound with the O–O descriptor
at a distance of 10 Å. To do so, the methyl group linked to the
ve-membered ring was replaced by a hydroxyl group
nt functional moieties on the selectivity of compounds. Three template
C ID 38431730, 26735077 and 36268795) as well as their derivatives
at were used to generate the discussed DRY–DRY, O–O and DRY–O

RSC Adv., 2017, 7, 28056–28068 | 28065
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Fig. 10 Plot of the experimental/predicted pIC50 values of template
(cyan color) and designed (red color) compounds for PDE4B versus
PDE4D. Experimental pIC50 values are shown for template
compounds while predicted pIC50 values are shown for designed
compounds. It should be noted that the former had identical pIC50

values for both isoforms.
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(362687950). The designed compounds were subsequently
put in the test set in order to predict their new biological
activity.

Fig. 10 shows the predicted pIC50 for each compound against
PDE4B and PDE4D. Comparing the predicted pIC50 values with
the experimental ones reveals that the selectivity ratios of
Fig. 11 Conformational analysis of PDE4B and PDE4D as assessed by B-
(A) shows the normalized B-factor values of each residues of PDE4B and
which blue and red bars correspond to flexible residues in PDE4B and
2PW3) while gray shaded areas correspond to cavity residues.

28066 | RSC Adv., 2017, 7, 28056–28068
modied inhibitors have been altered according to our expec-
tations. As shown, the selectivity ratio of 38431730, whose
carboxylate moiety was substituted by two methyl groups as to
generate the DRY–DRY descriptor of 384317300, has been
changed in favor of the PDE4B. In the case of 26735077 and
36268795 however, the derivatives 267350770 and 362687950

were in favor of increasing the selectivity ratios towards the
PDE4D, as expected. Taken together, the results obtained by the
compound design are indicative of the reliability of the
proposed PCM model. Moreover, all three descriptors appears
to be critical for the selective inhibition of PDE4B over PDE4D
and vice versa.
Conformational difference of PDE4B and PDE4D

According to data collected from the crystal structure of PDE4B,
it has been suggested that regions of the enzyme corresponding
to the cavity's residues are highly exible.63,64 Particularly,
results provided by crystallographic studies of PDE4 isoforms in
complex with their inhibitors have revealed that despite the
same observed pattern of compound–residue interactions,
there exists a signicant conformational difference. Interest-
ingly, the average B-factor of the PDE4B structure was found to
be higher than that of the PDE4D structure. Particularly, it can
be seen that there exists a higher degree of conformational
exibility in the cavity of PDE4B when compared to that of
PDE4D as shown in Fig. 11. Conformational variations reported
for PDE4B and PDE4D can be attributed to available mutations
in their sequences. For instance, it is known that T436 (PDE4B)/
N362 (PDE4D) mutation causes variation in conformational
properties of cavity residues followed by changes in the pattern
of H-bonding interactions.62 It has also been shown that the
factor values derived from their X-ray crystallographic structure. Panel
PDE4D while panel (B) shows the difference in the B-factor values in

PDE4D, respectively. Residue numbers are based on PDE4D (PDB ID:

This journal is © The Royal Society of Chemistry 2017
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active site of PDE4B is more hydrophobic in nature than that of
PDE4D thereby suggesting that attention to the hydrophobic
pocket can lead to effective subtype selective inhibitors.62 This
coincides with the results presented herein, which also suggests
the crucial roles played by hydrophobic interactions along with
some characteristic H-bond patterns in attaining the subtype
selectivity. A close look at designed compounds proposed
herein revealed that the substitution of a polar group with
a hydrophobic one (e.g. hydroxyl/methyl) can alter the subtype
selectivity in favor of PDE4B and vice versa when a hydrophobic
moiety is replaced by a polar one (e.g. methyl/hydroxyl) (Fig. 9
and 10).

Conclusion

Due to the involvement of PDE4 subfamilies in major clinical
disorders such as asthma, acrodysostosis, cognition disorder
and schizophrenia, the necessity for the discovery of novel
compounds with strong inhibitory properties towards these
subfamilies is substantially growing. However, since the
engagement of these subfamilies differs with regard to different
disorders and subcellular compartments, developing new
inhibitors without considering their selectivity properties can
lead to undesirable side effects. Particularly, in cases similar to
what is being presented here, when structural and sequence
similarities of proteins are signicant, the discovery of new
selective inhibitors could be much more challenging. One way
to overcome this issue is by applying the PCM approach in
which the model takes in to account protein-based information,
which in turn provides the opportunity of investigating the
compound–protein interaction space in greater detail and
thereby supporting the discovery of new selective inhibitors.
Therefore, we investigated the interaction space and the selec-
tivity properties that govern the inhibition of PDE4B and PDE4D
by applying the PCM approach. Furthermore, utilizing the
combination of z-scales and MIF-based GRIND descriptors, we
found that specic structural features such as the presence of
dual hydrophobic moieties at certain distances are crucial for
selectivity properties. Aside from the critical role of hydro-
phobic–hydrophobic interactions in selectivity, other types of
interactions such as hydrogen bonds with characteristic
patterns were also found to be play an important role in gov-
erning the selectivity of compounds towards a specic receptor.
The ability of the presented PCM model for capturing all of
these discriminative structural details can be attributed to the
consideration of the protein's structural/sequence differences
in the model. In this manner, we were able to discover that
substitutions such as A197S and I267M can inuence the
interaction space of investigated PDE4 and compounds. Finally,
we believe that our ndings can be taken into consideration for
designing compounds with better selectivity towards either
PDE4B or PDE4D.
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