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In this paper, polycrystalline perovskite (CHsNHsPbl,Cls_,) photodetectors with a structure of Au/
CH3NH3Pbl,Cls_,/Au are prepared and are shown to have good performance. The measured electrical
parameters demonstrate that the current behavior of the perovskite photodetectors is dependent of
work temperature from 300 K to 350 K. We find that only space charge limited conduction mechanism

fits the current—voltage (/-V) curves under small external voltage (0.1-0.7 V) both under darkness and

illumination. The lattice vibration scattering plays the major role in the dark, leading to a decreased

current as the temperature increases under the same external voltage, and an enlarged current

increasing with the temperature is due to the leading role of the ionized impurity scattering. At each

temperature, the rising slope of the /-V curves decrease with the increase of voltage both under dark
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and illumination. The values of on/off ratio, responsivity and detectivity increase with the measured

temperature, which indicates that the polycrystalline perovskite photodetector can work with better
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rsc.li/rsc-advances

1. Introduction

Recently, hybrid organic-inorganic lead halide perovskites
(CH3NH;3PbX;, where X = Cl, Br, and I) have attracted great
attention as light absorbers not only for frequently studied
solar cells'™ but also for (LEDs)," ™ field-effect transistors
(FETs),***® lasers,"” " and photodetectors.?**® The perovskites
have excellent semiconductor properties, such as a direct band
gap, a broad absorption range and high carrier mobility.?***
Until now, there are several research works reported on Metal-
Semiconductor-Metal (MSM) photodetectors based on Si or
GaAs,*** and several significant efforts to fabricate high
performance CH;NH;PbX; photodetectors have been made:
Makhsud 1. et al. produced a light detector showing high gain-
bandwidth product using large perovskite single crystals,* Hao
Lu et al. made the first all perovskite self-powered nanosystem
by integrating a solar perovskite with a perovskite photode-
tector,® and Z. Lian et al. reported a lowest detectable
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performance at high temperature. However, the stability in the dark gradually becomes weak as the
temperature increases, especially at 330 K and above.

irradiance power density of 2.12 nW cm™ 2, with the highest
responsivity of 953 A W' and external quantum efficiency of
2.22 x 10°%.%* These high property perovskite photodetectors
are prepared with several structures, like Au/perovskites/Au,>***
Pt/Ti/perovskites/Pt/Ti,*® ITO/perovskites/ITO,>” and the solar
cell structures.”*® Basic electrical parameters such as on/off
ratio, responsivity and detectivity are measured under
different illumination intensities>?***” and optical wave-
length.”**” Although so many remarkable efforts have been
made to detect the characteristics of photodetectors based on
CH;3;NH;PbX; single crystals under different structures and
conditions, polycrystalline perovskites photodetectors are rarely
discussed, which should be considered owing to their low
preparation cost. In addition, temperature-dependence studies
are significant for the performance and reliability of the
photodetectors, which should be focused on by researchers.

In this work, several Au/CH;NH;PbI,Cl; ,/Au photodetec-
tors are prepared and measured. X-ray diffraction (XRD), pho-
toluminescence spectroscopy (PL), and Scanning Electron
Microscope (SEM) are given to detect the quality of the perov-
skite film. Key parameters like on/off ratio, responsivity,
detectivity, rise time and fall time are calculated. For detail
analysis of the temperature-dependence studies, the electrical
parameters are measured under different temperatures vary
from 300 K to 350 K (perovskites are considered to decompose
at higher temperature). Several current mechanisms are fitted
to explain the strange phenomenon of I-V curves.

This journal is © The Royal Society of Chemistry 2017
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2. EXpe rimental application. Fig. 1(c) gives the XRD measurements of the crys-
tallized perovskite thin film, which strong peaks at 14.08°,

400 pm Al,0; was employed as the insulating substrate, and a pair ~ 28.41°, and 43.19° can be assigned to (110), (220), and (330)
of interdigitated Au-film electrodes (2000 pm long and 250 um diffractions of CH;NH;PbI;, respectively. PL data of PVK film in
wide for each one) were deposited on the substrate, which have 34  Fig. 1(d) indicated a strong bandgap photoluminescence
fingers and the same interspacing distance of 150 pm. Methyl- centered at 770 nm. Fig. 2(a) gives the typical current-voltage (I-
ammonium iodide (CH;NH;I) and lead chloride (PbCl,) were V) curves of the perovskite photodetector in the dark and under
prepared according to previous work.”® The preheated precursor 10 mW cm ” illumination intensity, the voltage was swept in
solution at 70 °C was used for fabricating the MAPbI; ,Cl, thin the sequence 0 — 10V — 0V (forward)jand 0 - —10V —» 0V
film. Next, the CH;NH,PbI;_,Cl, precursor solution was spin (reverse). Several key parameters are calculated by eqn (1) and
coated onto the treated substrate at a rate of 4000 rpm for 30 s. The ~ (2). On/off ratio is the ratio of photocurrent (I,,) to dark current
wet perovskite film was then annealed on a hot plate to complete  (I4), responsivity (R) indicates how efficiently the detector
the crystallization. The photodetector with a structure of Au/ responds to an optical signal, and Ljgp, is the incident light
CH;NH;PbI;_,Cl/Au/Al,O5; was completed and shown in Fig. 1(a). power, which is the product of illumination intensity and illu-
The diffraction patterns of the CH;NH,PbI,_,Cl, films were mination area (9.9 x 10~® m?). For the detectivity (D), g is the
detected by XRD measurements (New D8-Advance, Cu Ka). The elementary charge, and I is the dark current density when the
steady-state PL measurements were acquired using a fluorescence  dark current is dominated by the shot noise.* The device
spectrometer (Horiba FluoroMax®-4) with an excitation wave- performance plotted against external bias are illustrated in
length of 460 nm. The surfaces of the PVK films were prepared by ~ Fig. 2(b), R is not given in the figure (about 10 > AW ') as R is
SEM (JEOL JSM-6701F). Current-voltage (I-V) measurements were ~ proportional to the current under the same light power. The
analyzed under different temperatures (300 K, 310 K, 320K, 330K,  highest detectivity (3 x 10'* jones) and highest on/off ratio (77)
340 K, and 350 K) and different illumination intensity (dark and are shown in Fig. 2(b), indicating a good performance
10 mW cm™*) with A = 550 nm (Keysight B1500A semiconductor ~ photodetector.
parameter analyzer). A solar simulator (xenon lamp, Oriel, AM

Ipn
1.5G light) and optical attenuators were used for adjustable illu- R= I.j 1)
g P J thhl
mination. The transient photocurrent response was performed
under a 550 nm pulse light from a light-emitting diode. b Ton/ Lign -
(2q1y)"

3. Results and discussion

The smooth perovskite film was illustrated by SEM in Fig. 1(b), Fig. 2(a) and (b) illustrates the changed current of the
proving that the polycrystalline PVK film is ideal for device photodetector under dark and light illumination. The on/off

(a) (b).
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Fig.1 (a) Photodetector with a structure of Au/CHsNHzPbls_,Cl,/Au, (b) FE-SEM images of crystallized CHzNH3zPbls_,Cl, film, (c) XRD data from
crystallized CH3NHzPbls_,Cl, film, (d) photoluminescence spectroscopy (PL) spectrum of CHzNHzPbls_,Cl, film.
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Fig.2 (a) Current—voltage (/-V) curves of the perovskite photodetector in the dark and under 10 mW cm™2 illumination intensity, L: light D: dark
F: forward R: reverse (b) on/off ratio and detectivity (D) plotted against external bias. (c) Rise time and (d) fall time of photocurrent during

switching of light illumination.

ratio is increased with the reduced applied voltage. Herein, the
rise time and fall time of the photodetector are defined as the
time taken for the 10% to increase to 90% of the peak value. The
rise time (180 pus) and fall time (150 ps) are calculated by Fig. 2(c)
and (d). The fast response of the device is promising for large-
area photodetector applications. Temperature-dependence is
a quite significant property for device application. I-V curves of
the perovskite photodetector under temperatures vary from
300 K to 350 K are illustrated in Fig. 3(a) and (b). Strange
phenomenon is observed that the photocurrent rises and the
dark current falls as the temperature increases. For each
temperature, the rising slope of the I-V curve decreases with the
increase of voltage.

Several current mechanisms are applied to explain the
phenomenon: space charge limited conduction (SCLC), Poole
Frankel conduction (P-F), Fowler Nordheim tunneling (F-N
tunneling).**** The definition and fitting formula are given in
ESLt We found only SCLC mechanism fits the I-V curves under
small external voltage (0.1-0.7 V) both under dark and illumina-
tion as shown in Fig. 3(c) and (d), indicating that the I-V curves fit
ohmic characteristics when low voltage is applied. F-N tunneling
and P-F mechanisms are not suitable here, seen in Fig. S1.}

Here we consider the scattering mechanism should be
responsible for the phenomenon in Fig. 2. There are two main
carrier scattering mechanisms: ionized impurity scattering and
lattice vibration scattering. Relationships between current and
carrier scattering are shown in eqn (3)—(5).

I= Anq,uE( (3)

Wi o Ni—lT3/2

(4)
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w oo T (5)
where A is area, n is the concentration of carriers, g is carrier
charge, u is mobility, E is electrical field, u; is the mobility
governed by ionized impurity scattering, w, is the mobility
governed by lattice vibration scattering, N; is concentration of
the ionized impurity, and T is the temperature. The lattice
vibration scattering plays the major role in the dark where the
concentration of carriers is quite low. The current will decrease
as the temperature increases under the same applied voltage
without illumination. As photo-induced carriers enlarge n in
eqn (3), the current increases drastically under illumination
compare to that in the dark, and the leading role of scattering
mechanism changes to the ionized impurity scattering, which
means the current will enlarge with the increase of the
temperature under the same external voltage. As for each
temperature (in the dark and under light), the rising slope of the
I-V curve decreases with the increase of voltage. This is because
the concentration of carriers will not increase under the same
light illumination power, and the product of electrical field and
the mobility will gradually approach to the limit. The value of
current will reach 15 pA as the product of electrical field and the
mobility will gradually approach to the limit (seen in Fig. S27),
proving the conclusion above. The whole current mechanisms
based on different applied voltage are summarized and given in
Fig. 4(a).

The organic-inorganic metal halide perovskite is said to be
very unstable, especially under high temperature for a long time.
Hence, the effect of temperature on the stability and performance
of perovskite-based photodetector as a function of operation time
(0, 5,10, and 30 min) is given in Fig. S3(a)—(1).+ The photodetector
under illumination shows stable properties even after 350 K heat

This journal is © The Royal Society of Chemistry 2017
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Fig.3 -V curves of the perovskite photodetector as a function of temperature from 300 K to 350 K (a) under illumination of 10 mW cm~2, (b) in
the dark. F: forward R: reverse. SCLC mechanism fitting curves at temperatures vary from 300 K to 350 K (c) under illumination of 10 mW cm™2, (d)

in the dark.

treatment of 30 min. However, the stability in the dark gradually
becomes week as the temperature increases. The XRD spectra
and UV-Vis spectra of perovskite layer at different temperatures
are provided in Fig. S4(a) and (b).} Pbl, is seen due to the partial
thermal decomposition of the perovskite when the temperature
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V (V)

reverse.

climbs to 330 K and above, but the absorption curves under each
temperature show nearly no changes. Key parameters like on/off
ratio and detectivity of the perovskite photodetectors are calcu-
lated and illustrated in Fig. 4(b) and (c). Responsivity is propor-
tional to the photocurrent. It is obvious that the on/off ratio,

(a) Current mechanisms based on different applied voltage, (b) detectivity and (c) on/off ratio plotted against external bias under

RSC Aadv., 2017, 7, 20206-20211 | 20209
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responsivity and detectivity increase as the temperature increase,
which indicates that the perovskite photodetector can gain better
performance at high temperature (300 K to 350 K). But when
considering the stability by operating for 30 min or more, the
performance under high temperature (340-350 K) may be
reduced by the jumping dark current.

4. Conclusions

In this work, the polycrystalline perovskite film was applied to
fabricate photodetectors, suggesting an ideal material for device
application. Key parameters like on/off ratio, responsivity,
detectivity, rise time and fall time are calculated, proving that the
photodetectors are in good performance. For a detail analysis of
the temperature-dependence studies, the photodetectors based
perovskites demonstrate different current curves at different
temperatures. Under small external voltage, SCLC mechanism
fits well the dark and illumination I~V curves. The lattice vibra-
tion scattering plays the major role in the dark, leading to the
decrease of current as the temperature increases. At each
temperature, the rising slope of the I~V curve decreases with the
increased voltage because the product of electrical field and the
mobility will gradually approach to the limit. The effect of
temperature on the stability shows that the stability in the dark
gradually becomes week as the temperature increases, especially
in 330 K and above. The values of on/off ratio, responsivity and
detectivity increase with the measured temperature, which indi-
cates that the polycrystalline perovskite photodetector can work
with better performance at high temperature. However, the
performance under high temperature (340-350 K) may be
reduced due to the jumping dark current.
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