Three sandwich-type zinc(II)–lanthanide(III) clusters: structures, luminescence and magnetic properties†

Xue-Qin Song, a Pan-Pan Liu, a Cai-yun Wang, a Yuan-An Liu, a Wei-Sheng Liu a,b and Mo Zhang a

Three new sandwich-type hexanuclear ZnII–LnIII clusters based on a methoxy substituted salicylamide Salen-like ligand and o-vaniline, [Zn2Ln4(HL)4(o-vaniline)2(OH)4(CH3OH)2]·2NO2·5CH3OH (Ln = Eu, Tb and Dy, H2L = 1{(2-hydroxy-4-methoxy-benzamido)-2{(2-hydroxy-3-methoxy-benzylideneaminoo)ethane}) were synthesised. Single-crystal structure analyses reveal that these ZnII–LnIII clusters display a hydroxyl bridged tetranuclear LnIII core sandwiched in an environment of two ZnII ions, four doubly deprotonated HL2− and two singly deprotonated o-vaniline. Photophysical determinations indicate that the ZnII–EuIII cluster shows mixed emissions both originating from ligands and EuIII ions, and the other two only display ligand-centered emission in visible region. The magnetic studies reveal that the ZnII–DyIII cluster displays rare ferromagnetic behavior with slow magnetic relaxation behavior at zero field.

Introduction

High-nuclearity heterometallic clusters containing ZnII–LnIII metal ions have blossomed into a promising topic of modern coordination chemistry and attracted increasing attention primarily because of their interesting magnetic and physical properties since the first ZnII–EuIII/SmIII heterometallic clusters were reported in 1995 by Brennan et al. This is attributed to: (a) magnetic behaviour that can easily be explained due to the diamagnetic character of the ZnII ion, and (b) LnIII ions are desired luminescent and magnetic species because of their characteristic 4f electronic configuration. The magnetic properties of ZnII–LnIII heterometallic compounds mainly arise from the intrinsic large spin ground state and the strong uniaxial magnetic anisotropy of some LnIII ions. It is expected that the incorporation of ZnII and LnIII ions into one coordination system may not only enhance the structural diversity, but also integrate the optical and magnetic properties of LnIII ions which can offer multifunctional properties. To our best knowledge, high-nuclearity ZnII–LnIII coordination clusters are still scarce because their design and controllable synthesis represent a formidable challenge. Consequently, only a few nanosized ZnII–LnIII clusters of varying nuclearities range from kite-like Ln3Zn2, square-shaped Ln4Zn8, cyclic Zn2Ln22, cubane-like Ln3Zn23, drum-like Ln8Zn5, triangular ring-like Ln3Zn6, and Ln4Zn6 (ref. 6) and triangular ring-like Ln2Zn6 (ref. 7) have been reported. Due to the strong easy-axis type magnetic anisotropy and large J(L+S) value originating from lanthanide ions,* the magnetic exploration for LnIII-based compounds, especially for single-molecule magnets (SMMs), have stimulated a wide range of research interests. Among which, DyIII ions are the most appealing mainly because they have an inherent strong spin–orbital coupling effect and very large magnetic anisotropy of the 5H15/2 ground state. It is well known that the coordination environment, the local ligand field and the magnetic interaction strength between metal ions can have impact on SMM behavior of DyIII containing systems. Undoubtedly, further exploration of DyIII containing SMMs deserves attention not only for better SMMs but also for deciphering the relaxation dynamics and mechanisms. Although several CuII–DyIII clusters displaying ferromagnetic behavior with slow magnetization relaxation systems have been reported, it is rare that ferromagnetic interaction with slow magnetic relaxation exists in ZnII–DyIII heterometallic clusters.

Recently, we reported a nitrate-bridged ZnII–DyIII dodecanuclear heterometallic cluster of Salen-like salicylamide ligand, 1-(2-hydroxy-benzamido)-2{(2-hydroxy-benzylideneaminoo)ethane, which represents an unusual example of ZnII–DyIII...
cluster that exhibits ferromagnetic SMM behavior. However, the blocking temperature is lower than the temperature limit of the magnetometer even an external field of 2 kOe was applied. For the sake of increasing energy barrier and therefore to improve the SMM properties of Zn$^{II}$–Dy$^{III}$ clusters of this kind of ligands, a new methoxy substituted Salen-like salicylamide ligand, 1-(2-hydroxy-4-methoxy-benzamido)-2-(2-hydroxy-3-methoxy-benzylideneamino)-ethane (H$_3$L, Scheme 1) was synthesised. The basis of the strategy presented herein, relies on the use of a new multidendate Salen-like salicylamide ligand as well as o-vanilline, which are elaborately selected to compartmentalize Ln$^{III}$ ions through oxygen based coordination pockets free of nitrate coordination. As a result, we succeeded in obtaining three heterometallic hexanuclear clusters, [Zn$_2$Ln$_4$(-vanilline)$_2$(OH)$_4$(CH$_3$OH)$_2$]·2NO$_3$·5CH$_3$OH (Ln = Eu, Tb and Dy). The photophysical properties of compounds Zn$_2$Eu$_4$, Zn$_2$Tb$_4$ and Zn$_2$ Dy$_4$ as well as the magnetic properties of Zn$_2$ Dy$_4$ have been explored and the results indicate Zn$_2$ Dy$_4$ shows mixed emissions both originating from ligands and Eu$^{III}$ ions, and the other two only display ligand-centered emission in visible region. Interestingly, the corresponding dysprosium containing complex Zn$_2$ Dy$_4$ shows typical ferromagnetic single molecule magnetic behavior with slow zero-field relaxation. To our best knowledge, it is rather infrequent to observe ferromagnetic coupling and zero-field slow magnetic relaxation coexisted in Zn$^{II}$–Ln$^{III}$ heterometallic clusters.

Experimental section

Materials

Methyl 2-hydroxy-4-methoxybenzoate, ethane-1,2-diamine and 3-methoxy-4-hydroxybenzaldehyde were obtained from Aladain. Solvents and all other chemicals were analytical grade, available commercially, and used as received.

Synthesis of the ligand

1-(2-Hydroxy-4-methoxy-benzamido)-2-(2-hydroxy-3-methoxy-benzylideneamino)-ethane (H$_3$L) is shown in Scheme 1. N-(2-Aminoethyl)-2-hydroxy-4-methoxybenzamide was prepared according to literature using methyl 2-hydroxy-4-methoxybenzoate instead.$^{13}$ 10 mmol (1.52 g) o-vanilline was added to a 30 mL ethanol solution of N-(2-aminoethyl)-2-hydroxy-4-methoxybenzamide (2.10 g, 10 mmol) under stirring. The mixture was refluxed for 4 h to make a clear solution. Then the solution was rotary-evaporated to near dryness to obtain a pale-yellow solid. The yellow crystalline product obtained by ethanol recrystallization was washed with ethanol and dried in air. H$_3$L: 2.68 g, yield 78.0%. Mp 166–167 °C. Analytical data, calc. for C$_{18}$H$_{20}$N$_2$O$_5$: C, 62.78; H, 5.85; N, 8.13; found: C, 62.81, H, 5.85, N, 8.17; IR (KBr, v cm$^{-1}$): 3393 (w), 2938 (w), 1649 (s), 1598 (s), 1544 (m), 1467 (m), 1389 (m), 1251 (s), 1204 (m), 1160 (m), 1076 (m), 1022 (m), 958 (m), 831 (m), 736 (m).$^1$H NMR (CDCl$_3$, 400 MHz) δ: 3.77 (m, 3H, CH$_3$), 3.80 (m, 3H, CH$_2$), 3.80 (m, 2H, CH$_2$), 3.85 (m, 2H, CH$_3$), 6.71 (s, 1H, ArH), 6.80 (m, 1H, ArH), 6.88 (m, 1H, ArH), 6.97 (m, 1H, ArH), 7.23 (m, 1H, ArH), 7.35 (m, 3H, CH=—N), 8.41 (t, 1H, NH, J = 4 Hz), 12.21 (s, 2H, OH).

Preparation of complexes

General procedure. 27 µL (0.2 mmol) triethylamine was added to a 15 mL acetonitrile solution containing 0.1 mmol (0.028 g) H$_3$L and 0.1 mmol (0.015 g) o-vanilline. Then 0.1 mmol (0.021 g) Zn(NO$_3$)$_2$·2H$_2$O was added and the solution was stirred for 4 h to obtain a suspension. 0.1 mmol Ln(NO$_3$)$_3$·6H$_2$O in 5 mL of methanol was added to this epinephelus solution and after another 4 h a clear solution was obtained. The mixture was stirred overnight and filtered into a sealed glass vial for crystallization at room temperature. After about three weeks pale yellow single crystals suitable for crystal analysis were obtained which were collected by filtration, washed with cold methanol, and dried in the air.

[Zn$_2$Eu$_4$(-o-vanilline)$_2$(OH)$_4$(CH$_3$OH)$_2$]·2NO$_3$·5CH$_3$OH (Zn$_2$Eu$_4$$^{III}$). The empirical formula and the molecular weight is C$_{95}$H$_{118}$Eu$_4$N$_{10}$O$_{43}$Zn$_2$ and 2826.64 respectively. Yield: 36.7 mg, 52% based on Eu(NO$_3$)$_3$·6H$_2$O. Analytical data (%), calc.: C, 40.37; H, 4.21; N, 4.96; found: C, 40.22; H, 4.20; N, 4.98; IR (KBr, ν cm$^{-1}$): 3456 (w), 1618 (s), 1541 (s), 1470 (s), 1446 (s), 1383 (m), 1217 (s), 1168 (s), 1130 (m), 1074 (m), 734 (m), 594 (m).

[Zn$_2$Tb$_4$(-o-vanilline)$_2$(OH)$_4$(CH$_3$OH)$_2$]·2NO$_3$·5CH$_3$OH (Zn$_2$Tb$_4$$^{III}$). The empirical formula and the molecular weight is C$_{95}$H$_{118}$Tb$_4$N$_{10}$O$_{43}$Zn$_2$ and 2854.48 respectively. Yield: 34.2 mg, 48% based on Tb(NO$_3$)$_3$·6H$_2$O. Analytical data (%), calc.: C, 39.97; H, 4.17; N, 4.91; found: C, 40.16; H, 4.19; N, 4.94; IR (KBr, ν cm$^{-1}$): 3435 (w), 1618 (s), 1543 (s), 1448 (s), 1445 (s), 1385 (m), 1217 (s), 1168 (s), 1130 (m), 1074 (m), 737 (m), 592 (m).

[Zn$_2$Dy$_4$(o-vanilline)$_2$(OH)$_4$(CH$_3$OH)$_2$]·2NO$_3$·5CH$_3$OH (Zn$_2$Dy$_4$$^{III}$). The empirical formula and the molecular weight is C$_{95}$H$_{118}$Dy$_4$N$_{10}$O$_{43}$Zn$_2$ and 2868.68 respectively. Yield: 30.1 mg, 42% based on Dy(NO$_3$)$_3$·6H$_2$O. Analytical data (%), calc.: C, 39.77; H, 4.15; N, 4.88; found: C, 39.94; H, 4.13; N, 4.90; IR (KBr, ν cm$^{-1}$): 3440 (w), 1618 (s), 1544 (s), 1470 (m), 1446 (m), 1386 (m), 1211 (m), 1164 (m), 1130 (m), 1093 (m), 740 (m), 594 (m).

Physical measurements

Elemental analyses were performed on a Perkin-Elmer 2400 Series II CHNO elemental analyzer. IR spectra were recorded in the range 400–4000 cm$^{-1}$ on a Perkin-Elmer FTIR spectrometer using KBr pellets. X-ray powder diffraction (XRPD) patterns of the samples were recorded on a X-ray diffractometer (Rigaku D/Max 2200PC) with a graphite monochromator and Cu Kα radiation (λ = 1.5418 Å) at room temperature with a scan speed of 0.2 s per step and a step size of 0.02 (2θ), while the voltage and electric current were held at 40 kV and 20 mA. Thermogravimetric analysis experiments were performed using a TGA/
NETZSCH STA449C instrument heated from 25–800 °C (heating rate of 10 °C min⁻¹, nitrogen stream). Emission and excitation spectra were recorded with a Hitachi F-7000 spectrophotometer equipped with quartz cuvettes of 2.5 cm path length. The luminescence decays were recorded using a pumped dye laser (Lambda Physics model FL2002) as the excitation source. The magnetic susceptibility measurements were obtained on a Quantum Design SQUID magnetometer MPMS-XL. Measurements were performed on a polycrystalline sample of 30.09 mg for ZnII DyIII. Direct-current magnetic susceptibility measurements were carried out at 2–300 K for dc applied fields at 1000 Oe. Field dependence of the magnetization magnetic susceptibility measurements on the polycrystalline samples were performed with the same magnetometer. Alternating-current susceptibility measurements were carried out utilizing an oscillating ac field of 3.0 Oe and frequencies ranging from 20 to 1600 Hz under 0 and 2000 Oe dc field respectively. All crystalline samples for photoluminescence and magnetic studies were obtained from a single batch and characterized by PXRD, TG, EA and IR spectra.

X-ray crystallography

Suitable pale yellow block crystals of ZnII EuIII (0.24 × 0.18 × 0.14 mm³), ZnII TbIII (0.32 × 0.26 × 0.14 mm³) and ZnII DyIII (0.33 × 0.31 × 0.23 mm³) were coated with perfluoropolyether oil before mounting. Intensity data of all the complexes were recorded at 293(2) K employing a Bruker SMART APEX II CCD diffractometer equipped with a monochromatized Mo Kα radiation (λ = 0.71073 Å) source. No crystal decay was observed during the data collections. In all cases, absorption corrections based on multis-scans using the SADABS software were applied. The structures were solved by direct methods and refined on F² by a full-matrix least-squares procedure. SHELXL was used for both structure solutions and refinements. All non-hydrogen atoms were refined anisotropically. The positions of hydrogen atoms were calculated and isotropically fixed in the final refinement. The SMART and SAINT software packages were used for data collection and reduction respectively. Crystallographic diagrams were drawn using the DIAMOND software package. Also severely disordered methanol molecules in ZnII EuIII, ZnII TbIII and ZnII DyIII were removed by SQUEEZE during the structural refinements. For details about the squeezed material, see CIF in ESL. Therefore, five methanol molecules which were determined on the basis of TGA and elemental microanalysis, and the data treated with the SQUEEZE routine within PLATON were added to the molecular formula of ZnII EuIII, ZnII TbIII and ZnII DyIII respectively.

Result and discussion

Synthesis and characterization

A stepwise synthetic protocol was employed to prepare the three heterometallic hexanuclear ZnII–LnIII clusters. A suspension solution of zinc containing solution was obtained from the treatment of Zn(NO₃)₂·2H₂O with mixture of H₄L₄, o-vanilline and triethyleneamine in CH₃CN in a 1 : 1 : 2 molar ratio. Addition of a solution of Ln(NO₃)₃·6H₂O in MeOH followed by magnetic stirring gave a clear pale yellow solution from which yellow crystals suitable for crystal analysis of ZnII EuIII, ZnII TbIII and ZnII DyIII were obtained during the evaporation of the solvent after three weeks. The series of compounds were soluble in methanol, DMSO and DMF. Their chemical formulas were confirmed by elemental analysis. Consistent with the successful formation of the desired compounds, the characteristic bands of carbonyl and imine of the H₄L₄ (1648 and 1598 cm⁻¹) hypochromic shifted about 30 and 49 cm⁻¹, with two new bands presented at IR spectra ca. 1618 cm⁻¹ and 1544 cm⁻¹ respectively. The none but x₁ (1380 cm⁻¹) of the free nitrate groups’ appearance in the IR spectra of the three compounds clearly indicates the exclusive existence of free nitrate groups as further confirmed by X-ray crystallography analysis as follows.

Thermal gravimetric analysis (TGA) were carried out under N₂ atmosphere to show their thermal stability. As shown in Fig. S1, the three hexanuclear complexes ZnII EuIII, ZnII TbIII and ZnII DyIII showed very similar TG curves, and ZnII DyIII is selected to describe as a representative. The thermal decomposition of ZnII DyIII occurs in a three-step process from 25 to 800 °C. The first stage takes place in the range of 27–112 °C with a weight loss of 3.36% which was caused by the release of three crystalline methanol molecules free of hydrogen bonding. Upon further heating to about 168 °C, the two crystalline hydrogen bonded nitrates and methanol molecules were lost and the weight loss was 6.54%. Above 172 °C, the entire architecture began to collapse. PXRD experiments were also carried out for ZnII EuIII, ZnII TbIII and ZnII DyIII to verify whether the crystal structures are truly representative of the bulk materials. As we can see in Fig. S2, the experimental patterns are in good agreement with that of the simulated ones indicating the as-synthesized samples are pure enough for spectroscopic and magnetic properties’ study.

Description of structures

Signal-crystal X-ray diffraction analysis revealed that the as-synthesized ZnII–LnIII clusters are all sandwich-type hexanuclear compounds with a formula of [ZnII_LnIII(HL)₄(o-vanilline)](OH)₄(CH₃OH)₂·2NO₃·5CH₃OH. For they are isostructural, here we select ZnII DyIII to describe their structure features in detail. The crystal structure of ZnII DyIII consists of a divalent cationic entity [ZnII₂DyIII₄(HL)₄(o-vanilline)](OH)₄(CH₃OH)₂]⁺⁻, two uncoordinated nitrate anions for charge balance, and five crystalline methanol molecules. A cursory glance at the structure reveals that a μ₃-OH°-bridged DyIII core is sandwiched between two layers composed of one ZnII, two HL²⁻ and one deprotonated o-vanilline (Fig. 1a) with the asymmetric unit shows half of the molecule. As depicted in Fig. 1b, Zn1 is in an tetragonal pyramidal geometry coordinated by two phenolate oxygen atoms from two different HL²⁻ ligands, one oxygen atom from μ₁-hydroxyl group, and two imine nitrogen atoms from two different HL²⁻ ligands. Meanwhile, two crystallographically independent DyIII ions (Dy1 and Dy2) are merely coordinated to eight oxygen atoms with Dy-O bond lengths range between 2.189 and 2.645 Å. Exact geometry analysis by SHAPE 2.1 software shows that the inner coordination sphere of eight-
coordinated Dy$^{III}$ ions are residing in distorted biaugmented trigonal prisms with a deviation of 6.174 for Dy1 and 8.035 for Dy2 from the ideal $C_3v$ symmetry (Fig. S3†). Owing to the two oxygen atoms from two hydroxyl groups (O11 and O15) and one phenoxo oxygen atom (O12) of singly deprotonated o-vanilline, Dy1 and Dy2 are bridged to give a trigonal pyramid [$Dy_2O_4$] unit. Furthermore, Zn1 is appended at Dy2 site with two oxygen bridges (O4 and O15) giving a $Zn...Dy$ distance of 3.609 (3) Å. Noticeably, the oxygen atoms both from two hydroxyl groups (O11) and four phenoxo oxygen atom of doubly deprotonated o-vanilline (O7) and singly deprotonated o-vanilline (O12) further bridged the crystallographically Dy1 and Dy2 forming two plane-sharing cubic units [$Dy_4O_8$] short of one vertex (Fig. 1c). The $Dy...Dy$ distance of the four precisely coplanar Dy$^{III}$ ions are 3.567(7) Å and 3.889(5) Å. Such tetranuclear subunits with four $\mu_2$-OH$^-\,$ displaced above and below the $Dy_4$ plane by 0.869(2) Å and 0.490(4) Å can be viewed as a parallelogram and the shortest edge, $Dy1...Dy2A$, is that which comprises three oxygen bridges. Noticeably, this structural characteristic is quite different from reported OH$^-\,$ bridged Dy$_4$ clusters.21

**Luminescent properties**

Chromogenic Zn$^{II}$ components have been used as sensitizers for lanthanide luminescence following $f \rightarrow f$ and $d \rightarrow f$ energy-transfers.28 The photophysical properties of H$_3$L, o-vanilline, Zn$_2$Eu$^{III}$, Zn$_2$Tb$^{III}$ and Zn$_2$Dy$^{III}$ in solid state were studied and their emission spectrum is shown in Fig. 2.

Upon UV irradiation at 340 nm, both H$_3$L and o-vanilline present very broad bands ranging from 435 nm to 600 nm, which could be attributed to $\pi^* \rightarrow \pi$ and intramolecular charge transitions of H$_3$L and o-vanilline. The excitation spectra of Zn$_2$Eu$^{III}$ exhibits broad bands ranging from 325 nm to 425 nm upon Eu$^{III}$-centered emission (Fig. S4†). Excited at ca. 365 nm, Zn$_2$Eu$^{III}$ shows reddish luminescence and exhibits both ligand-centered ($\lambda_{max} = 456$ nm) and the typical $f \rightarrow f$ transitions of the Eu$^{III}$ ion with the former stronger than the latter. As for the characteristic emission of Eu$^{III}$ ion, the strong emission peak at 599 and 621 nm is assigned to magnetic dipolar $^5D_0 \rightarrow ^7F_1$ transition and the electric dipolar $^5D_0 \rightarrow ^7F_2$ transition respectively, the weak one at 582 nm can be attributed to the $^5D_0 \rightarrow ^7F_0$ transition. The intensity of the $^5D_0 \rightarrow ^7F_2$ transition is about 2.26 times stronger than that of the $^5D_0 \rightarrow ^7F_1$ transitions, higher than the value (0.67) for a centrosymmetric Eu$^{III}$ compound.21 The symmetry-forbidden emission $^5D_0 \rightarrow ^7F_0$ also appears in the emission spectra of Zn$_2$Eu$^{III}$. All these indicate that Eu$^{III}$ ions in Zn$_2$Eu$^{III}$ occupy sites with low symmetry and have no inversion center which is in good agreement with the result of the single crystal structure analyses. The luminescence decay of Zn$_2$Eu$^{III}$ is best described by a double-exponential process with significantly shorter lifetimes of $\tau_1 = 0.245$ ms, $\tau_2 = 0.097$ ms (Fig. S6†). In the case of Zn$_2$Dy$^{III}$, very strong blue emission with shortest lifetime of 9 ns (Fig. S7†) attributed to Zn–ligands system presented. It is well-known that the presence of OH$^-\,$ oscillators in the lanthanide first coordination sphere provides an efficient non-radiative path,22 so we can suggest that the observed weak Eu$^{III}$ luminescence in Zn$_2$Eu$^{III}$ and the absence of Tb$^{III}$/Dy$^{III}$-centered emission are mainly related to increases in non-radiative transitions due to the presence of OH$^-\,$ oscillators in the first coordination shell together with the mismatch between resonance energy levels of Ln$^{III}$ and excited states of ligands in these clusters. Notably, the emission spectra of the three clusters showed negligible changes when excited at different wavelengths as shown in Fig. S8–S10.†

**Magnetic properties**

The static magnetic behaviour of the Zn$_2$Dy$^{III}$ complex through direct current (dc) magnetic measurements between 2 and 300 K with an applied dc field of 1000 Oe was performed on microcrystalline samples. As observed in Fig. 3a, the $\chi_MT$ value almost remains unchanged from 300 to 12 K with a value of 57.44 cm$^3$ K mol$^{-1}$ at 300 K which is fairly close to the expected
were observed below 20 K as shown in Fig. 4. In plots of both magnetically coupled spins, at higher temperatures, the 4f° configuration of LnIII is split into $^{2S+1}L_J$ states, and further into Stark components under the crystal-field perturbation, and the effect of depopulation of the Stark components of DyIII is nearly equal of the ferromagnetic interactions. In the low-temperature range obviously implies the presence of ferromagnetic coupling between DyIII ions, and it is strong enough to overcome the effect of depopulation of the Stark components of DyIII. Such strong ferromagnetic interactions are rare for both LnIII-LnIII clusters and LnIII complexes. Its occurrence may result from the connecting of two [Dy2Zn] building blocks through two $\mu_6$-OH− bridges. In ZnII2DyIII, the [Dy4O6] core was closely wrapped and the Dy−OH−Dy angles with shortest distance of 3.567(7) Å are 96.51 and 98.76°, which therefore may lead to the strong uniaxial anisotropy of the DyIII ion. By comparison, a similar Dy4 clusters with the Dy−OH−Dy angle above 103.95° exhibits antiferromagnetic interactions. The $M$ vs. $H$ data below 8 K show a rapid increase in the magnetization at low magnetic fields (Fig. 2b) which is expected for materials having ferromagnetically coupled spins. At higher fields, $M$ increases slowly reaching a value of 36 $\mu_B$ which almost close to the theoretical value of 40 $\mu_B$ of four DyIII ions. The nonsuperposition of $M$ vs. $H$ in different fields (Fig. 2b inset) suggests the presence of significant magnetic anisotropy and/or low-lying excited states in ZnII2DyIII.

In addition, it is worth mentioning that the $M$ vs. $H$ data do not exhibit a hysteresis effect above 2 K with sweep rates used (100–300 Oe min−1). The absence of the $M$ vs. $H$ hysteresis loop at 2 K may be caused by the presence of a relatively fast zero-field relaxation as ascertained as follows:

To further explore the dynamics of magnetization, we performed alternating current (ac) magnetic measurements on ZnII2DyIV. Expectedly, strong frequency dependences for the real $\chi^\prime_M$ and the imaginary $\chi^\prime\prime_M$ parts of the ac susceptibilities were observed below 20 K as shown in Fig. 4. In plots of both $\chi^\prime_M$ and $\chi^\prime\prime_M$, the peaks are observed above 20 Hz and shift to high temperature with increasing frequencies, which is the nature of slow magnetic relaxation. Noticeably, both $\chi^\prime_M$ and $\chi^\prime\prime_M$ below about 6 K increase with decreasing temperature, indicating the intervention of QTM. For Kramer’s ions, such as DyIII, dipole–dipole and hyperfine interactions allow the mixing of the two Kramer’s ground states at zero field, leading to the quantum tunnelling dynamics of the magnetization. Therefore, the temperature and frequency dependent ac susceptibility were measured under an applied 2000 Oe field which is also shown in Fig. 4. The diminishing of the upward $\chi^\prime_M$ and $\chi^\prime\prime_M$ at low temperatures can be taken as a clear indication of the efficient suppression of zero-field tunneling of magnetization occurring in ZnII2DyIV. In addition, compared with magnetization at zero-field, the out-of-phase component $\chi^\prime\prime_M$ for higher frequencies exhibits a series of frequency-dependent peaks around 16.5 K, with a second set around 6 K, which indicates two relaxation processes dominate for ZnII2DyIV under an applied 2 kOe field. The low temperature one (RLT) and high temperature one (RHT) could be ascribed to the two different DyIII ions centers in ZnII2DyIV.

Soncini et al. used an electrostatic model to determine the magnetic anisotropy in dysprosium complexes and their results indicated the ground state of DyIII is doublet quantized along the anisotropy axis with an angular momentum quantum number $m_J = \pm 15/2$ in absence of high symmetry. Theoretical research has presented that the large magnetic anisotropy is obtained when only the low-lying ground state, $|\pm 15/2\rangle$ Kramer’s doublet, which in turn leads to strong magnetic anisotropy. The peak temperatures, $T_p$, obtained by the Lorentzian peak function fitting from plots of $\chi^\prime\prime_M$ deduce a linear plot of $1/T_p$ vs. $\ln(2\pi f)$ and obey the Arrhenius law $1/T_p = -k_B(\Delta E/k_B + \ln \tau_0)$ (Fig. 5), where $f$ is the frequency. The best fitting of out-of-phase component $\chi^\prime\prime_M$ under zero dc field yields the energy barrier $\Delta E/k_B = 56.7$ K and the relaxation time $\tau_0 = 4.8 \times 10^{-6}$ s, which are comparable to those of reported DyIII-based SMMS.

Plotting the relaxation time $\tau$ of out-of-phase component $\chi^\prime\prime_M$ under 2000 Oe dc field versus the temperature $T_p^{-1}$ and a linear
fitting of the thermally activated points to the Arrhenius law afford $\Delta E_i/k_B = 6.30$ K and the relaxation time $\tau_1 = 9.55 \times 10^{-3}$ s for RLT and $\Delta E_2/k_B = 67.1$ K and $\tau_2 = 1.66 \times 10^{-6}$ s for RHT (Fig. 6). As a comparison, the energy barriers extracted from the high temperature regions is only a slight increase of the energy barrier, indicating that the quantum tunneling effect in this compound is not very pronounced.\(^{29}\)

The frequency dependence of ac susceptibilities at zero field leads to the semicircle Cole–Cole plots of $\chi''_M$ vs. $\chi'_M$ (Fig. 7) at 8, 10, 12 and 14 K, respectively. The least-squares fitting results of the data are in good agreement with a distribution of single relaxation processes with $\alpha$ parameters of 0.07–0.15 ($\alpha = 0$ corresponding to an infinitely narrow distribution of relaxation times), which is also compatible with the value reported.\(^{29}\) The shift of the peak temperature ($T_p$) of $\chi''_M$ is measured by a parameter $\phi = (\Delta T_p/T_p)/(\Delta \log f)$ = 0.26, which falls in the range of a normal value for a superparamagnet.\(^{4}\)

**Conclusions**

The self-assembly of a methoxy substituted salicylamide Salen-like ligand and o-vanilline in Zn\(^{II}\)-Ln\(^{III}\) chemistry led to three sandwich-like heterometallic clusters with hydroxyl bridged tetranuclear Ln\(^{III}\) core swaddled by Zn\(^{II}\) ion and deprotonated ligands. Photophysical determination indicate that Zn\(^{II}\)Eu\(^{III}\) shows mixed emission both originating from ligands and Eu\(^{III}\) ions, and ligand-centered emission in visible region is exclusively found for Zn\(^{II}\)Tb\(^{III}\) and Zn\(^{II}\)Dy\(^{III}\). Interestingly, Zn\(^{II}\)Dy\(^{III}\) exhibits strong ferromagnetic magnetic behavior with a slow zero-field relaxation with $\tau_0 = 4.8 \times 10^{-7}$ s and $\Delta E/k_B = 56.7$ K. To our best knowledge, it is quite unusual that strong ferromagnetic coupling and slow magnetic relaxation coexist in Zn\(^{II}\)Ln\(^{III}\) heterometallic clusters. Our current studies on construction of high-nuclearity heterometallic clusters are helpful in achieving further insights into the rational design and preparation of novel multifunctional Zn\(^{II}\)-Ln\(^{III}\) heterometallic clusters. Further studies focused on the construction of d-f nanoclusters of Salen-like salicylamide ligands with other auxiliary ligands, different substitution and different d-metal ions are in progress in our group.

**Acknowledgements**

This work was supported by the National Natural Science Foundation of China (Grant: 21661019) and Gansu Natural Science Foundation of China. (Grant: 1212RJZA038).

**Notes and references**


