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Host defense peptides (HDPs) represents a class of ubiquitous and rapid responding immune molecules

capable of direct inactivation of a wide range of pathogens. Recent research has shown HDPs to be

promising candidates for development as a novel class of broad-spectrum chemotherapeutic agent that

is effective against both pathogenic microbes and malignant neoplasm. This study aims to quantitatively

explore the relationship between easy-to-interpret amino acid composition descriptors of HDPs with

their respective bioactivities. Classification models were constructed using the C4.5 decision tree and

random forest classifiers. Good predictive performance was achieved as deduced from the accuracy,

sensitivity and specificity in excess of 90% and Matthews correlation coefficient in excess of 0.5 for all

three evaluated data subsets (e.g. training, 10-fold cross-validation and external validation sets). The

source code and data set used for the construction of classification models are available on GitHub at

https://github.com/chaninn/pepbio/.
1 Introduction

The emergence and increasing incidences of antibiotic resis-
tance by pathogenic microbes poses a global threat.1 Due to
their evolutionary conservation, components of the innate
immune system are an interesting resource to look for novel
antibiotics and thus remain effective for combating foreign
pathogens. Host defense peptides (HDPs) are small cationic
peptides (i.e. usually less than 100 amino acids in length), found
ubiquitously in living organisms (i.e. fungi, plants, reptiles,
mammals, etc.) and constitute an important component of the
innate immune system.2 Most importantly, is the fact that the
bactericidal activity of HDPs appears to be negligibly affected by
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the myriad of defensive mechanisms exerted by microbes
against conventional antibiotics such as penicillin. Hence,
HDPs can be considered to be an important and novel class of
antibiotics that can address the threat of emerging and re-
emerging diseases caused by drug-resistant pathogens.

Another major contemporary health threat for which HDPs
have shown great potential for, is the treatment of cancer.3

Despite advances in various therapeutic schemes, malignant
neoplasm remains the leading cause of mortality. Chemotherapy
is themainstay of contemporary cancer treatments and are known
to possess many shortcomings including low specic toxicity, the
potential to induce secondary malignancies and the frequent
emergence of multi-drug-resistant (MDR) cancer cell strains. The
latter being the major cause for failure of chemotherapy and is
a sign of poor prognosis for patients.4 In addition to their anti-
microbial potential, HDPs have been demonstrated to be prom-
ising candidates as anticancer agents that possess high specicity,
rapid and direct target neutralizing ability (i.e. especially those of
MDR phenotype) and so far have no observed tendency of
inducing resistance in all targeted cancer strains.5 In addition to
the health threats posed by pathogenic microbes6 and malignant
neoplasms,7HDPs are not limited to the host defense system such
as direct neutralization of pathogens8,9 but they have been
demonstrated to be effective against an even wider spectrum of
pathogens including viruses,10 parasites11 and fungi.12 In addition
to direct pathogen neutralization, HDPs have been observed to be
potent immunological modulators, regulating inammatory
responses13,14 as well as recruiting dendritic cells.15
RSC Adv., 2017, 7, 35119–35134 | 35119
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HDPs are very diverse in nature and have been reported in
almost all forms of life, from single celled microorganisms to
more complex organisms such as humans. On the basis of their
secondary structures, HDPs can be broadly classied into four
classes as follows: (i) a-helical peptides (e.g. LL-37), (ii) b-sheet
peptides stabilized by two to four disulde bridges (e.g. lecto-
fericin, androctonin, RTD-1 and hepcidin-20), (iii) ab complex
with one to three disulde bridge (e.g. drosomycin) and (iv) non-
ab peptides with extended structures (e.g. indolicidin). Fig. 1
summarizes the structural diversity of HDPs. a-Helical peptides
are most abundant and extensively well characterized owing to
their small size and ease of chemical synthesis.16 In general,
they are twelve to y amino acids in length with helical
conformation and slightly bent at the center of the molecule.
One of the characteristic property of a-helical peptides is that in
aqueous solution they are usually unstructured but adopt the
amphipathic helical structure upon interaction with the target
cell membrane. This structural alignment of the polar and non-
polar residues on the opposite side of the helical coat allows
optimal interaction of the peptide with the host membrane. b-
Fig. 1 Overview of the structural diversity of HDPs. Residues are color
coded green, blue, red and yellow to represent hydrophobic, posi-
tively-charged, negatively-charged and disulfide bridge, respectively.

35120 | RSC Adv., 2017, 7, 35119–35134
Sheet peptides are the second largest group of HDPs that are
characterized by the presence of single, hairpin motif contain-
ing two to eight Cys residues in relatively dened positions
involving one to four disulde bonds for stabilization.17 The
average length of residues is approximately twenty to thirty
residues in length. ab complex is also known as cysteine
stabilized a-helical and b-sheets superfamily and it is charac-
terized by the presence of an a-helix and generally three anti-
parallel b-sheets that is stabilized by two to four disulde
bonds.18 Most peptides from this group have limited antimi-
crobial activity and are active against the lamentous fungi.
Non-ab peptides is comprised of very few peptides and they are
characterized by the presence of higher proportion of certain
amino acids such as Trp, Arg, Pro, Gly and His.19 However, these
peptides have highly variable secondary structures that are
mostly in the extended conformation.

Quantitative structure activity relationship (QSAR) seeks to
understand the correlation between the physicochemical
properties of biomolecules with their observed bioactivities
through the use of statistical or machine learning
approaches.20,21 Although several QSAR studies have been re-
ported for predicting a wide range of HDP bioactivities (e.g.
antibacterial, anticancer, antifungal and antiviral), they may fall
into the following situations: (i) models may be based on rela-
tively small data sets,22–24 (ii) even if they are based on large data
sets they are typically conned to modeling only one of the
aforementioned bioactivities23,25–27 and lastly (iii) models may be
predictive but are oen not interpretable.28

In regards to the rst point, the ability of QSAR models to
predict unknown properties depends largely on the nature and
size of the training set. Prediction accuracy and condence for
an unknown peptide sequence varies according to how well the
training set represents the unknown peptides. Not only that, the
stability and predictivity of the models are dened by the
training set.29 Thus, one QSAR model will have a narrow
applicability domain and low generalization capability if they
are based on small and similar sequence. Secondly, predictive
models based on large data sets may be of potential utility for
any single bioactivity under investigation but may not be
extrapolated to other bioactivities. As such, it is desirable to
comparatively construct and analyze the predictive models for
several HDP bioactivities at the same time so that comparisons
and generalizations may be made.

In this study, QSAR models of the bioactivity of HDPs were
constructed from large data sets constituting antibacterial,
anticancer, antifungal and antiviral peptides. To the best of our
knowledge, this study represents the rst large-scale QSAR
investigation spanning several classes of HDPs. Rather than
exploring a single bioactivity type, this study explores multiple
bioactivities of HDPs, so as to allow better contrast of key
structural features governing the various bioactivities. Decision
tree and random forest classiers provided a robust perfor-
mance as evaluated by statistical parameters derived from
internal and external validations. The underlying features gov-
erning the origin of HDP bioactivities obtained from this study
may be of potential use for the future design of novel HDPs with
desired bioactivity.
This journal is © The Royal Society of Chemistry 2017
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2 Materials and methods
2.1 Data collection

The data set of HDPs along with their activity classes were taken
from the Database of Antimicrobial Activity and Structure of
Peptides (DBAASP),30 which is a manually curated database of
HDPs with their therapeutic activity. The data set compiled
from DBAASP constituted a total of 6195, 26 916, 102 229 and
2503 peptides (as of September 3, 2015) against cancer, fungus,
bacteria and virus, respectively. Redundant sequence strings
were removed using the duplicated function from the which
function to create an index in which those containing redun-
dant sequence strings were removed with the matrix indexing
operator. Consequently, this approach produced data sets of
597, 2582, 96052 and 540 HDPs with anticancer, antifungal,
antibacterial and antiviral bioactivities, respectively. Non-
canonical amino acids were removed using the protcheck
function from the R package protr.31 This resulted in a total of
8413 HDPs with anticancer (466), antifungal (2179), antibacte-
rial (5255) and antiviral (514) activities.
2.2 Negative HDP data set

As there are no source of experimentally proven non-HDPs,
a more recent benchmark data set provided by Xiao et al.32

was used as a negative set. The translate function from the R
package seqinr was used to convert the DNA strings to protein
strings. Protein sequence containing stop codon of DNA strings
during the translation were removed with protcheck function
from R package protr. The nal non-HDP data set contained
a total of 1710 sequences.
2.3 Data partitioning

One of the issues with random sampling is that each split may
have a larger or smaller proportion of some classes. This is
particular true for cases when a class (i.e. HDPs with anticancer
properties) represents a very small proportion of a data set
which may then lead the class to be omitted from the training
data set. To address this, stratied random sampling was used
to generate random partition that have approximately the same
proportion of each class (i.e.HDPs with antibacterial properties,
HDPs with anticancer properties, HDPs with antifungal prop-
erties and HDPs with antiviral properlies).

The data set was divided into two groups, which are internal
training set and external testing set. The createDataPartition
function from caret R package was used to split the data in
which 80% of the data set was used as a training set while the
remaining 20% were used as the external testing set.
2.4 External sets

The aforementioned data subset constituting 20% from the full
data set was taken from each of the 100 independent data splits
and used as the external set. Furthermore, in order to truly
assess the external predictability of models, an additional set of
non-redundant peptides were obtained from the Dover
Analyzer, which was developed by Aguilera-Mendoza et al.,33 and
This journal is © The Royal Society of Chemistry 2017
used as an additional external validation set whose peptides are
not included in the training and test set derived from the
aforementioned data partitioning. This additional external set
consisted of 11 028 unique HDP peptides.

2.5 Peptide descriptors

There are an abundance of available descriptor sowares that
could potentially be used to represent protein sequences for
performing QSAR studies.34–37 Of these, the composition of
amino acids are simple, interpretable and yet robust descrip-
tors. Thus, HDP sequences were encoded by amino acid
composition (AAC) and dipeptide composition (DPC) descrip-
tors. In addition, composition class (CC) descriptors were also
employed for describing the sequence features of investigated
HDPs.

AAC is the proportion of each amino acid type (e.g. His, Thr,
Tyr and so forth) within a protein sequence. The fractions of all
20 natural amino acids were calculated as:

f ðrÞ ¼ Nr

N
r ¼ 1; 2;.; 20 (1)

where Nr is the number of the amino acid type r and N is the
length of the sequence. AAC descriptors were computed using
the extractAAC function from the R package protr.

DPC is the fraction of dipeptides from a protein sequence
which gives rise to 400 descriptors and can be dened as:

f ðr; sÞ ¼ Nrs

N � 1
r; s ¼ 1; 2;.; 20 (2)

where Nrs is the number of dipeptide represented by amino acid
type r and type s. DPC descriptors were computed using the
extractDC function from the R package protr.

CC is dened as the global composition of the amino acid
property in a protein as described by a set of 21 descriptors. CC
descriptors were computed using the extractCTDC function
from the R package protr.

2.6 Data set modelability

Practically, it is not always possible to build robust predictive
models for all data sets. Thus, it is highly desirable to utilize
a statistical criteria for a priori determination of the feasibility
for building robust predictive models for any given data set.
Recently, themodelability index (MODI) has been introduced by
Golbraikh et al.38 for estimating the feasibility of a predictive
model. The procedure of the calculation of MODI is briey
described below:

2.6.1 Step 1. When the values of Pi and Pj dened with m-
dimensional vector are given, the normalized Euclidean
distance (�Dnormalized) will be constructed as follows:

dij ¼ kPi � Pjk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
k¼1

�
Pik � Pjk

�2s
(3)

di ¼

Xn

j¼1

dij

n� 1
(4)
RSC Adv., 2017, 7, 35119–35134 | 35121
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Dnormalized ¼ D�minðDÞ
maxðDÞ �minðDÞ (5)

where dij, di and n are the distance scores between two peptides,
mean Euclidean distance and a number of peptides,
respectively.

2.6.2 Step 2. For every peptide in a data set, the MODI can
be easily calculated by determining its rst nearest neighbor
(i.e. a peptide with the smallest Euclidean distance), belonging
to the same or different class, as follows:

MODI ¼ 1

C

XC
i¼1

Nsame
i

N total
i

(6)

where C is the number of classes (i.e. C¼ 2 for binary data sets),
Nsame
i is the number of peptides of ith activity class that have

their rst nearest neighbors belonging to the same class i and
Ntotal
i is the number of peptides belonging to class i. The data set

is considered modelable if the MODI index is greater than the
threshold value of 0.65. An in-house developed R code was used
to compute the MODI index.
2.7 Data scaling

Oen time, there is a great deal of variation in the range and
distribution of each descriptor in the data set. This may create
a problem for data mining. Thus, min–max normalization was
applied where descriptors were rescaled to a standard range
(e.g. 0–1). Furthermore, the family function named apply func-
tion with margin set at 2 was used to normalize the column set
of descriptor block.
2.8 Exploratory data analysis

So as to provide an overview on length of amino acid sequence,
exploratory data analysis was performed using standard statis-
tical methods. A total of HDPs having therapeutic effects
against bacteria, cancer, fungus and virus were represented by
histograms. All graphical gures and plots were made using the
R statistical package ggplot2.39
2.9 Principal component analysis

Principal component analysis (PCA) provides a detail account
on the structural information inside data structures. The two
most useful features of PCA are loadings and scores. Loadings
simultaneously reveals correlations between all descriptors
whereas scores reveals the similarities and differences among
samples. The fundamental assumption of PCA is that PC with
a high explained variance is considered to possess systemic
variances whereas PC with low explained variance is perceived
as noise. Thus, it is important to decide on how many numbers
of PC sufficiently represent the information presented in the
data. By including the higher order PCs, it may over t the
model, which may in turn result in poor generalization of data
structures. Thus, to obtain optimal PCs which were deemed
enough to provide meaningful information, Horn's parallel
analysis was applied.40 Descriptors with a variance close to 0 (i.e.
less than one percent of variation in a column of a data frame)
35122 | RSC Adv., 2017, 7, 35119–35134
were removed with the function nearZeroVar and argument
uniquecut set to 1 from the R package caret.41 The prcomp and
kmeans functions from R package stats was used to perform
PCA and K-means clustering, respectively.42 Prior to PCA anal-
ysis, all data were centered and scaled to have a unit variance
using the argument of center and scale. The paran function with
the argument of iterations set at 5000 from the R package paran
was utilized to perform Horn's parallel analysis in order to
determine the optimal number of PCs.43

2.10 Multivariate analysis

Decision tree (DT) is a transparent classier that uses a tree-like
structure to model the relationship between features and
classes. The route toward modeling of activity classes of HDPs
begins at the root node, whereby they are passed through
decision nodes that require choices to be made based on
features (i.e. a feature of amino acid composition). These
outcomes split the data across branches that indicate potential
class of a decision. At last, the nal decision can be made where
a predictive tree is terminated by leaf nodes, which provides
a particular expected class, resulted from a series of decision.
The J48 function from RWeka R package,44,45 an implementa-
tion of the Java-based machine learning package Weka,46 was
utilized to build predictive models. To avoid the possibility of
chance correlation arising from the random seed in the
machine learning calculation, models were built for 100 times
whereby the mean and their corresponding standard deviation
of statistical parameters were reported.

Random Forest (RF) is an ensemble classier made up of
several DTs. Similar to the DT classier, classication starts at
the root node where the data set is applied and splits according
to the threshold values of each descriptor node (i.e. ACC and
DPC) and subsequently ows outward until the decision leaf
node (i.e. the class label) is reached. However, for each tree,
bootstrap sampling is used to train the model thereby mini-
mizing the variance. The RF classier was generated using the R
package ranger using a total of 500 trees.

It is worthy to note that two types of models were constructed
in this study: (i) one multi-class model and (ii) several binary
class models.

2.11 Validation of QSAR models

There aremany statistical assessment tools that have been used to
assess effectiveness and efficiency of predictive models. The
following assessment parameters were used in this study: accu-
racy (Ac), sensitivity (Sn), specicity (Sp) andMatthews correlation
coefficient (MCC), which corresponds to the percentage of
correctly classied instances, the ratio of instances correctly
classied as positive to all positive instances, the ratio of instances
correctly classied as negative to all negative instances and the
measure of the performance in terms of both positive and nega-
tive instances, respectively. These parameters can be calculated
using the following equations:

Ac ¼ TPþ TN

ðTPþ TNþ FPþ FNÞ � 100 (7)
This journal is © The Royal Society of Chemistry 2017
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Sn ¼ TP

ðTPþ FNÞ � 100 (8)

Sp ¼ TN

ðTNþ FPÞ � 100 (9)

MCC ¼ TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞp (10)

where TP represent the instances of true positives, TN repre-
sents the instances of true negatives, FP represents the
instances of false positives and FN represents the instance of
false negatives. It should be noted that the range of MCC is from
�1 to 1 in which the value of 1 indicates the best possible
prediction while �1 indicates the worst possible prediction. On
the other hand, a value of 0 suggests the occurrence of random
prediction.
2.12 Applicability domain analysis

The applicability domain (AD) estimates the likelihood that the
model reliably predict based on the extent of the feature space
of the model. Although there are several methods for dening
the applicability domain, k-nearest neighbors is a simple and
robust approach for determining the AD of the model. Briey,
the Euclidean distance of each sample to its ve nearest
neighbors in the training set was calculated. Then, the
normalized mean similarity of the sample to its neighbors were
binned into four quantiles in which each quantile was plotted
against the peptide's accuracy in the prediction. The aim is to
look for a distance threshold in which the classication model
can reliably predict the correct class of new peptides.
2.13 Reproducible research

To facilitate the reproducibility of QSAR models described
herein, the R source codes and associated data sets used to
construct the models are made publicly available on GitHub at
https://github.com/chaninn/pepbio/.
3 Results and discussion

The notion that the biological activity of HDPs is governed by
their physicochemical properties is the paradigm of QSAR. This
study employs simple and interpretable descriptors for pre-
dicting the bioactivity (e.g. antibacterial, anticancer, antifungal
and antiviral) of peptides. In the development of QSAR models,
it is advisable to start from simple and interpretable descriptors
along with machine learners and then gradually proceed up to
complex descriptors. When the predictive performance between
complex and simple machine learners are comparable, it is
advisable to select simple models. For that reason, commonly
used and highly interpretable protein descriptors (i.e. based on
composition of amino acids) and interpretable DT and RF
classiers were selected for building the QSAR models. A
schematic representation on the research framework performed
herein is summarized in Fig. 2.
This journal is © The Royal Society of Chemistry 2017
3.1 Peptide space analysis

The peptide space of HDPs were explored so as to deduce the
relative molecular diversity of the data set investigated herein.
This was achieved by means of exploratory data analysis and
PCA analysis.

Firstly, exploratory data analysis was performed to discern
the general characteristics of HDPs targeting bacteria, cancer,
fungus and virus. A summary of the sequence length of these
HDPs is provided in Fig. 3 as histogram plots. It can be observed
that the region with the most count for all classes were within
the range of 10 and 20. A close inspection revealed that the
length of HDPs with antibacterial, anticancer, antifungal and
antiviral activities were 21.63 � 13.59, 19.23 � 11.35, 23.91 �
14.61 and 19.46 � 12.14, respectively. Moreover, sequence
length of the negative data set was also comparable with a value
of 21.70 � 8.82.

Secondly, PCA analysis (Fig. 4) was performed to discern the
relative molecular diversity of the constituent peptides in the
investigated data set. The decision on how many principal
component (PC) should be retained is an important issue in
PCA analysis. The result from Horn's parallel analysis revealed
that the adjusted eigenvalues of PC1, PC2 and PC3 were 1.23,
1.12 and 1.02, respectively thereby indicating that three PCs
should be retained as it is over the threshold of 1. Particularly,
the three PCs provided sufficient information for describing the
data structure as the total explained variance for the rst three
PCs was 68.15%.

PC1 accounted for 25.28% of data variation, which is also the
highest explained variance of all the PCs thus, it can be
considered as the most informative PC. For the PC1, the load-
ings of the positive end is dominated by Lys and Leu while the
negative end was dominated by Gly. PC2 accounts for the
22.54% of explained variance and the descriptors providing the
highest loadings at the positive ends were Leu while the other
end was dominated by Ile. PC3 accounted for 20.33% of the data
variance in which the loading of PC3 stems Ala on the positive
ends whereas Ile on the negative end.
3.2 Multivariate analysis

DT models for differentiating HDPs as having antibacterial,
anticancer, antifungal or antiviral activity were built using
either AAC or DPC as descriptors, which accounted for the
composition of single amino acids and dipeptides, respectively.
Two different approaches were taken in preparing the data sets
for prediction. The rst type entailed the generation of four
separate binary class data sets in which each of the four
bioactivities were combined with peptides obtained from Xiao
et al.32 as the negative bioactivity set. The second type is a simple
merger of all four bioactivities considered in this study in
combination with the aforementioned negative set, termed
herein as the multi-class model. The predictive performance of
the resulting DT models were assessed via 10-fold cross-
validation and external set using statistical parameters
comprising of Ac, Sn, Sp and MCC.

Prior to model construction, the modelability of the data set
was evaluated using the MODI index. Particularly, antibacterial,
RSC Adv., 2017, 7, 35119–35134 | 35123
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Fig. 2 Schematic representation on the workflow of QSAR modeling of HDPs.
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anticancer, antifungal, antiviral and the combined HDP data
sets built using AAC/DPC descriptors afforded MODI values of
0.942/0.941, 0.953/0.922, 0.942/0.941, 0.945/0.929 and 0.490/
35124 | RSC Adv., 2017, 7, 35119–35134
0.618, respectively. It can be clearly seen that nearly all data
sets met the established cut-off of 0.65 for modelable data sets
with the exception of the combined HDP data set. A closer look
This journal is © The Royal Society of Chemistry 2017
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Fig. 3 Histogram plots of the frequency distribution of the amino acid length of HDPs with antibacterial (A), anticancer (B), antifungal (C) and
antiviral (D) bioactivities.

Fig. 4 Peptide space of HDPs. Peptides are colored on the basis of
their bioactivities: antibacterial (red), anticancer (green), antifungal
(blue), antiviral (purple) and the negative set (gray).
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indicated that modelability of the HDP data set built using AAC
descriptors provided poorer MODI value than DPC descriptors
with respective values of 0.490 and 0.618.

Table 1 shows the overall performance of models built with
AAC descriptors. It can be seen that all binary class models
afforded good performance with Ac, Sn, Sp and MCC in excess
of 96%, 91%, 92% and 0.89, respectively. In comparison to the
binary class models, the multi-class models exhibited
a decrease in the overall performance.

A closer look at results from both 10-fold CV and external
sets revealed a mild decrease of Ac from 96–97% for binary class
models to roughly 93% for the multi-class model. Similarly, the
Sn of the multi-class model exhibited a slight decrease for some
models (i.e. anticancer, antifungal and HDPs exhibited a drop
in performance from 95–99% to roughly 94%) whereas a slight
gain was seen in some (e.g. antibacterial and anticancer
exhibited a gain in performance from 91–93% to 94%).
Conversely, a steep decrease in Sp was observed where values
dropped from 92–98% in binary class models to 69–71% in the
multi-class model. Similarly, MCC also showed a sharp drop
from 0.89–0.94 in binary class models to 0.51–0.53 in the multi-
class model.

Table 2 summarizes the performance of models built with
DPC descriptors. In comparison to models built with AAC
descriptors, binary class models constructed as a function of
DPC descriptors were found to afford a slight decrease in the
prediction performance as can be seen from the 10-fold CV and
external sets. Particularly, Ac decreased from 96–98% to 92–
96%, Sn decreased from 91–99% to 78–98%, Sp decreased from
92–98% to 82–97% and MCC decreased from 0.89–0.94 to 0.78–
0.88. As for the multi-class model, the performance did not
differ signicantly whether models were built with AAC or DPC
descriptors. Particularly, Ac, Sn and MCC afforded no apparent
difference while Sp was found to improve slightly from 69–71%
to 73–75%.
This journal is © The Royal Society of Chemistry 2017
The lower level of performance of the multi-class models
when compared to that of binary class models could be attrib-
uted to the higher degree of complexity and the inherent
heterogeneity of positive samples in the data set (i.e. the HDP
class comprising of four bioactivities). Likewise, this contrib-
uted to the lower MODI value of the multi-class model (i.e. 0.490
and 0.618 for models built with AAC and DPC descriptors,
respectively) when compared to those of the binary class models
(i.e. 0.942–0.953 and 0.922–0.941 for models built with AAC and
DPC descriptors, respectively).
RSC Adv., 2017, 7, 35119–35134 | 35125
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Eriksson and Johansson47 established that when the R2 � Q2

margin is in excess of 0.2–0.3 then there is a possibility for
chance correlation or the presence of outliers in the data set
whereas if the R2� Q2 margin is less than 0.2–0.3 then it is likely
to be predictive and reliable. As the original concept was based
on regression metrics (e.g. R2 � Q2), we will be extrapolating the
concept to the classication problem by also considering the
samemagnitude of themargin where we will deemmodels to be
reliable and predictive if the difference of statistical metrics (e.g.
Ac, Sn and Sp) between the training and 10-fold CV sets as well
as the training and external sets are less than 20–30%. On
a similar note, the same margin magnitude of 0.2–0.3 was
applied for the MCC metric.

In general, binary class models built with AAC and DPC
descriptors afforded relatively low margins in the difference of
statistical metrics (i.e. less than 10% for Ac, Sp and Sn while less
than 0.1 for MCC) between the training set and the 10-fold CV
set as well as the difference between the training set and the
external set. A closer observation of the binary class models
revealed that AAC models provided slightly lower margins than
the DPC models.

As for the multi-class models of both AAC and DPC models
produced lower margin than the binary class models for Ac and
Sn whereas the Sp and MCC parameters of multi-class models
afforded poorer results in which margins were about 2–6 folds
higher than their binary class counterpart (i.e. Sp margin of 13–
23% versus 1–6%, respectively, and MCC margin of 0.14–0.21
versus 0.04–0.12, respectively). Moreover, multi-class DPC
models afforded lower margins than their AAC counterpart for
all metrics evaluated. In summary, classication models based
on AAC descriptors afforded the best performance as it could
perform comparatively well on both binary and multi-class
models.

In addition, classication models based on the combined
use of AAC and DPC descriptors, termed herein as AAC + DPC,
were also evaluated and their results are summarized in ESI
Table S1.† This model performed on par with models built with
AAC descriptors while affording slightly higher performance for
multi-class models. Moreover, ESI Table S2† lists the classi-
cation performance of models built with CC descriptors and it
was observed that binary class models yielded comparable
performance with that of AAC models. However, the multi-class
models were of poorer quality in which CV models produced
a moderate drop in performance by 0.05–0.08 while the external
set showed a signicant loss in predictivity.
Table 3 Summary of the prediction accuracy of the four quantiles as
a function of the normalized five nearest neighbors. Quantiles were
obtained from binning the Euclidean distance

Quantile
Normalized Euclidean
distance N

Accuracy
(%)

Q1 0.0–0.18 86 100%
Q2 0.18–0.27 85 97.6
Q3 0.27–0.36 85 98.8
Q4 0.36–1.00 86 80.2
3.3 Benchmark against the RF classier

In addition to the use of the DT classier for constructing
classication models, the RF classier was also applied in the
construction of classication models as to benchmark against
the DT classier using the same descriptor sets and the
prediction results are summarized in ESI Tables S3–S6† for
models built using AAC, DPC, AAC + DPC and CC descriptors. In
general, it was found that classication models built using the
DT classier performed consistently well for both binary and
multi-class models whereas the RF classier performed
This journal is © The Royal Society of Chemistry 2017
extremely well on binary models while performing poorly on the
multi-class model. Such substantial deterioration in its perfor-
mance may be ascribed to the fact that RF models are built with
bootstrapped samples for its constituent trees. Thus, there is
a substantial chance that bootstrapped samples contain only
a few to none of the minority class that would produce trees
with poor performance in predicting the minority class.48,49 In
light of the overall good performance and reliability of DT
models, they were selected for further investigation on the
underlying features that are important for the model's perfor-
mance as well as their biological relevance in governing the
observed bioactivity.

3.4 Model extrapolation

Recently, Aguilera-Mendoza et al.33 compiled a set of non-
redundant HDPs from 25 databases. Thus, to evaluate the
model's extrapolation capability in a real-world setting, this
large HDP set (i.e. peptides that are independent from the
aforementioned training and test sets) was used as an addi-
tional external validation set. Particularly, all of these peptides
were assigned the class label of HDP. Thus, a classication
model was built in a similar fashion as mentioned earlier in
which the original binary data set consisting of two class labels
(i.e. HDP versus non-HDP) was used as the training set. Such
trained model was then applied to predict the class label of this
additional external data set as being HDP or non-HDP. Since all
peptides in this external validation set was assigned the class
label of HDP therefore a correct prediction for this external set
would be to predict the class label as HDP. Results indicated
that all classication models could well extrapolate on this
additional external set as deduced from Ac values of 97.21,
94.89, 96.33 and 97.85% for models built with DT using AAC,
DPC, AAC + DPC and CC descriptors, respectively. Similarly, Ac
values of 98.39, 96.96, 98.11 and 98.45% were observed for
models built with RF using AAC, DPC, AAC + DPC and CC
descriptors, respectively.

3.5 Applicability domain analysis

Table 3 reports the prediction accuracy as a function of the
applicability domain in which sequences of the test set are
binned into four quantiles as a function of the Euclidean
distance (i.e. as averaged over ve nearest neighbors). For the
negative set, it can be seen that the accuracy deteriorated as the
sequence neighbor-averaged Euclidean distance increases. In
practice, a new peptide sequence showing a neighbor-average
RSC Adv., 2017, 7, 35119–35134 | 35127
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near 0.1 is likely to be predicted with good accuracy. On the
other hand, the second quantile of inactives displayed an Ac of
97.6% thereby indicating that the model could not predict the
three peptides that were negative. Nevertheless, these data show
that estimating the accuracy for each peptide prediction
constitutes a valuable source of information for understanding
the classication model.
3.6 Mechanistic interpretation of feature importance

Identifying and understanding the important features govern-
ing HDP bioactivities is an important rst step towards
designing HDPs with desirable properties. DT inherently
possess a built-in function for revealing important features of
data sets of interest. This study performed 100 independent
data splits followed by constructing DTs for each split with
important features based on information gain. Particularly, the
most used feature is also deemed to be the most important
feature. The feature importance of the four classes of HDPs are
deduced from two sets of descriptors namely the (i) AAC and (ii)
DPC descriptors. Interpretation of these descriptors are dis-
cussed and scrutinized in the forthcoming sections.

3.6.1 Importance of amino acid composition descriptors.
Fig. 5 summarizes the relative importance (in decreasing order)
of amino acids from four bioactivity classes of HDPs. A
comparative analysis of the top ten informative descriptors was
performed in order to deduce common amino acids found
amongst multiple bioactivity classes as summarized by the
Venn's diagram in Fig. 6. It can be seen that there exist one set
of three amino acids (e.g. Thr, Val and Phe) that are found in all
four bioactivity classes of HDPs. Two sets of amino acids are
found in three out of four bioactivity classes; particularly, the
rst set is comprised of Pro and Gly with bioactivity against
bacteria, cancer and fungus while the second set contains Trp,
Cys and Leu with bioactivity against cancer, fungus and virus.
Similarly, two sets of amino acids have been found to be active
against two out of four bioactivity classes; particularly, the rst
set consists of Gln and Asn with bioactivity against bacteria and
fungus while the second set is comprised of Tyr and Lys with
bioactivity against cancer and virus. As for distinguishing
features that are solely found in specic bioactivity classes, it
can be seen that only the antibacterial and antiviral activities
contained amino acids that are found only in their bioactivity
classes. Particularly, the former bioactivity class contains Glu,
His and Ile while the latter bioactivity class is comprised of Tyr
and Lys.

Amongst the important AACs shown in Fig. 5, Thr proclaims
a signicant role in all four bioactivity classes of HDPs. Thr is
abundantly found in the intestinal mucin and plasma g-glob-
ulin and are involved in many physiological and biochemical
processes including promoting growth, enhancing immune
mechanisms and stimulating lymphocyte proliferation.50–53 Thr
takes part in the immune system by aiding the production of
antibody as a major component of g-globulin.50,54 The impor-
tance of Thr in the bioactivity of HDPs is related to its role in
glycosylation, which is the most common form of post-
translational modication involving the linkage between N-
35128 | RSC Adv., 2017, 7, 35119–35134
acetylactosamine (GalNAc) of membrane glycoproteins and the
hydroxyl group of Thr residue. When a cell undergo tumori-
genesis, it has the likelihood of being glycosylated. In this
manner, anticancer peptides are rich in Thr residues and are
thus more susceptible to induce cytotoxicity towards cancer
cells.55,56 Moreover, Hara and Yamakawa57 reported that O-
glycosylation of a Thr residue led to an increase in the anti-
bacterial activity of lebocin. In addition, Thr substitution on the
HIV protease inhibitory peptide resulted in a signicant
enhancement of its antiviral activity.58

Apart from Thr, Gln was also found to play an important role
in affording the antibacterial activity of peptides with a high
Gini index score. Gln is the most abundant free amino acid in
human blood and was widely described for its contribution in
the immune system. It was stated that Gln involves in
improving the intestinal permeability to reduce the risk of
systemic infections that originates in the gastrointestinal
tract.59 Furthermore, Gln is required for stimulation of some
immune cells such as lymphocytes and macrophages to defend
against infections.60 The functional role of Gln in antibacterial
peptides was proposed by Suarez et al.61 whereby Gln rich
portions of Moringa oleifera seed-derived Flo peptide is crucial
for antibacterial activity by mediating the aggregation and
sedimentation of bacterial cells. Bactericidal process of this
peptide is derived by aforementioned occulation effect in
conjunction with destabilization mechanism of hydrophobic
loop structure. Their ndings provide a notable importance of
Gln residues in antibacterial peptides.

According to the Gini index, Phe is not only the top-ranking
AAC for anticancer activity (Fig. 5A) but also a notable residue
for other bioactivity of HDPs (Fig. 6). Phe is well recognized for
its hydrophobic nature owing to the benzyl side chain. Because
of its hydrophobic property, Phe-rich peptides exhibit potent
antibacterial activity.62,63 Furthermore, the composition of Phe
is relatively prominent in anticancer peptides (ACPs) rather
than other antimicrobial peptides (AMPs)64,65 and have a note-
worthy function on anticancer activity. In particular, the Phe
residue has more favorable helix propensity than other
aromatic residues.66 Thus, the ndings of Shan et al.67 revealed
that Phe substituted peptide analogs possess higher helical
content which can be modulated to increase the anticancer
activity of peptides.68,69

Aromatic amino acid, Trp, is found to be the most important
AAC for antiviral activity (Fig. 5D). In general, Trp-rich peptides
are well known for their powerful antimicrobial activity induced
by their distinctive biochemical property to interact with and
insert into biological membranes. Moreover, broad spectrum
activities of Trp-rich peptides are in the range of antibacterial,
antiviral, antifungal, antiprotozoal and anticancer activities.70,71

The mechanism behind the bioactivities of Trp-rich peptides is
not clear yet, but the essential role of Trp residues was reported
by Giannecchini and colleagues72 whereby the deletion of Trp-
rich domain led to loss of antiviral activity of peptide 59. In
addition, the work of Kliger et al.73 also explained that the Trp-
rich region of DP178 peptide binds to the membrane of Human
Immunodeciency Virus type-1 (HIV-1) to inhibit cell fusion
and viral entry. As stated in previous literatures, there is no
This journal is © The Royal Society of Chemistry 2017

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7ra01388d


Fig. 5 Box plot for AAC feature usage for HDPs with antibacterial (A), anticancer (B), antifungal (C) and antiviral (D) bioactivities. Features with the
highest usage is deemed to be the most important.
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doubt that the electrostatic interaction of Trp to phosphatidyl-
choline of biological membranes is dominated by its aromatic
structure which serves as a membrane anchor.74,75 However,
additional studies are needed to further understand the in-
depth mechanism of Trp.

Another important AAC is Pro (i.e. a non-polar, aliphatic
amino acid), which is one of the top-ve AAC for both anti-
bacterial and antifungal activity. Particularly, Pro-rich peptides
represents a group of linear peptides and also a subgroup of
antifungal peptides (AFPs) in the antimicrobial peptide data-
base76 that is comprised of more than 30% Pro residues in their
primary structure.77 Some of the Pro-rich peptides exhibit not
only antifungal activity but also antibacterial activity.78,79 The
This journal is © The Royal Society of Chemistry 2017
prominent role of Pro residues in antifungal activity was dis-
cussed by Cabras et al.78 whereby Pro-rich peptides SP-B (i.e.
APPGARPPPGPPPPGPPPPGP) are able to form an unusual
secondary structure, polyproline helix type-II. Because of this
unusual secondary structure, Pro-rich peptides fail to generate
an amphipathic structure and this synergy is important to
mention for its consequences on enhancing antifungal activity
together with minimum hemolytic activity.80 In addition, Pro
residues promote peptide entry into lipid membrane bi-layer
without disrupting the cell membrane and allows subsequent
interaction with specic target inside the cell which is essential
for nontoxic antimicrobial activity.78,81
RSC Adv., 2017, 7, 35119–35134 | 35129
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Fig. 6 Venn's diagram of the common set of amino acids found amongst the four sets of bioactivity classes of HDPs. Image created using Venny
2.1.0 (http://bioinfogp.cnb.csic.es/tools/venny/).
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The results revealed that the aforementioned AAC descrip-
tors consisting of Thr, Gln, Phe, Trp and Pro were the most
signicant features governing the antibacterial, anticancer,
antifungal and antiviral activities of peptides as indicated in
this study or in existing literature.

3.6.2 Importance of dipeptide composition descriptors.
The feature usage plot of classication models constructed
using dipeptide descriptors is shown in Fig. 7, which reveals the
local sequence order important for distinguishing the various
HDP classes from the set of inactive peptides. To discover if the
informative dipeptides share common properties and thus
represent important patterns for distinguishing the different
HDP classes, they were converted into amino acid class
composition. Briey, amino acid class composition transforms
the peptide amino acid sequence into strings of structural or
property attributes, thus allowing a more compact representa-
tion of the sequence as well as showing whether similarity exists
in regards to the amino acid properties.

Each amino acid was assigned into one of three groups for
each of the seven amino acid properties as proposed by Chothia
and Finkelstein.82 For example, if a three residue peptide is
composed of a hydrophobic, neutral and polar amino acid then
its corresponding class composition would yield the string
‘123’. Furthermore, a three residue peptide composed solely of
35130 | RSC Adv., 2017, 7, 35119–35134
hydrophobic residues would afford the string ‘111’. Moreover,
when dipeptides are converted into amino acid composition
then there are nine possible combinations that exists for each
property. The R statistical package protr provides a convenient
way for calculating the amino acid class composition as well as
providing a well compiled table that explains the class compo-
sition. However, it does not automatically provide the property
statistics for calculated peptides. Thus, an in-house C++ was
coded and used herein for the property analysis and the ob-
tained results are provided in ESI Table S7.†

The top twenty most important dipeptides of HDPs with
antimicrobial activity do not show signicant bias towards
a particular property composition. Dipeptides converted into
attribute classes were found to be fairly and evenly distributed
amongst the different possible combinations of the property
composition. This observation is in line with the work of ref. 83,
which states that the determining factors of AMPs at the/
hlglobal level are hydrophobicity, charge and helicity. As such,
effects of local sequence order are less important and are thus
reected by the absence of signicant property composition at
the dipeptide level.

ESI Table S8† describes the various characteristics of the
amino acid properties considered in the dipeptide analysis. As
four out of the twenty amino acids are non-neutral, therefore
This journal is © The Royal Society of Chemistry 2017
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Fig. 7 Box plots of DPC feature usage for HDPs with antibacterial (A), anticancer (B), antifungal (C) and antiviral (D) bioactivities. Features with the
highest usage is deemed to be the most important.
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there is a high probability for dipeptides to consist of two
consecutive neutral amino acids. On the other hand, HDPs with
anticancer activity displayed some interesting property patterns
in their twenty most distinguishing dipeptides. For the
secondary structure property, six dipeptides consisted of two
consecutive helical-forming amino acids while another six
consisted of one helical-forming amino acid followed by one
This journal is © The Royal Society of Chemistry 2017
strand-forming amino acid whereas none of the other seven
possible class combinations for the secondary structure prop-
erty was exhibited by more than two dipeptides. Similarly, ten
out of the twenty dipeptides were made of either two consecu-
tive polar amino acids or one neutral amino acid followed by
one polar amino acid. With the rest of the seven possible class
combinations thinly spread. For the property of solvent
RSC Adv., 2017, 7, 35119–35134 | 35131
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accessibility, nearly all the dipeptides were concentrated in
three possible class combinations. Five dipeptides were made of
two consecutive buried amino acids, another ve dipeptides
were made of two consecutive exposed amino acids and ve
additional dipeptides were made of one intermediately exposed
amino acid followed by one exposed amino acid. The remaining
possible class compositions were thinly spread.

It has previously been discovered that unlike AMPs, the
activity of oncolytic peptides were very sensitive to the effect of
amino acid sequence.84 As such, the fact that many of the twenty
most distinguishing dipeptides of the oncolytic peptides were
concentrated in certain property class compositions may be
a reection of this activity dependency on the sequence order
effect.

As for HDPs with antifungal activity, seven of their twenty
distinguishing dipeptides were made of one high polarizable
amino acid followed by one moderately polarizable amino acid.
None of the other nine possible class combinations for the
property of polarizability was exhibited by more than three
dipeptides. Another noteworthy dipeptide property pattern for
the antifungal peptides is that, there are eight dipeptides made
of two buried amino acid and six dipeptides made of one
exposed followed by one buried amino acid. Another dipeptide
feature to be noted is that there were six dipeptides consisting
of one positively-charged amino acid followed by a neutral one.
This is in contrast to the other HDP classes, which had few of
their twenty most distinguishing dipeptides consisting of
anything but two neutral amino acids. Lastly, HDPs with anti-
viral activity did not seem to have signicant preference for
a particular class composition in any of the property attributes
calculated, this is similar to the AMPs.

As can be seen in Fig. 5A and B, it was found that the top
ranked features for HDPs with antibacterial and anticancer
bioactivity, respectively, are distinctly different although, the
amino acids (e.g. Pro) were similar for HDPs having antibacte-
rial and anticancer properties. While there is no denitive
consensus on whether the mechanism of AMP and OLPs are
different,56 existing studies indicate that while AMPs and OLPs
have an overall similar action pathways, they have numerous
subtle yet important differences in both structure and activity
mechanism.84,85 In addition to potent activity in combating two
major contemporary health threats, namely pathogenic
microbes and malignant neoplasm, HDPs have shown strong
activity in combating other types of pathogens including, fungi
and viruses. It would therefore be of great interest to compare
whether different peptide structures are responsible for the
activity against different pathogens or are the different activity
types determined by a common structure. Thus, the results
obtained will be benecial for the identication of critical AMP
and OLP structures and as a guide for the future development of
HDPs as therapeutic for these classes of pathogens.

4 Conclusions

In spite of several decades of research into the structure–func-
tion relationship of HDP, we are far from fully understanding
the implications of these large volumes of data that are oen
35132 | RSC Adv., 2017, 7, 35119–35134
disparate and heterogeneous in nature. This is in concomitant
with the inherent complexity of developing HDP-based thera-
peutic drugs. Therefore, to improve the chances of success,
a map to guide the ne-tuning of structure–functional proper-
ties of HDP is needed. Thus, the results obtained from the
learning classiers provided general guidelines that may aid in
the understanding of the HDP activity. We hope that the nd-
ings gained from this study would promote further research in
the design and discovery of improved and efficient HDPs.
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