

Combinatorial optimization of the atomic compositions for green-emitting $\text{YBO}_3:\text{Ce}^{3+},\text{Tb}^{3+}$ and red-emitting $\text{YBO}_3:\text{Ce}^{3+},\text{Tb}^{3+},\text{Eu}^{3+}$ phosphors using a microplate reader†

Kohei Yano, Satoru Takeshita,‡ Yoshiaki Iso* and Tetsuhiko Isobe*

Microplate readers are versatile devices that can rapidly measure the photoluminescence intensities of multiple samples, and are widely used in biological chemistry. In this work, using a commercial microplate reader, we attempted to optimize the atomic compositions of green-emitting phosphor $\text{Y}_{1-x-y}\text{Ce}_x\text{Tb}_y\text{BO}_3$ and red-emitting phosphor $\text{Y}_{1-x-y-z}\text{Ce}_x\text{Tb}_y\text{Eu}_z\text{BO}_3$. We filled 48 individual wells of an alumina microplate with aqueous solutions of nitrates of Y^{3+} , Ce^{3+} , Tb^{3+} , and Eu^{3+} with different compositions, and then added an aqueous solution of boric acid to each well. After drying, the microplate was heated at 550 °C for 2 h in air, and then at 1100 °C for 3 h in a reducing atmosphere. $\text{Y}_{1-x-y}\text{Ce}_x\text{Tb}_y\text{BO}_3$ absorbed near ultraviolet light through 4f → 5d transitions of Ce^{3+} and emitted green fluorescence corresponding to 4f → 4f transitions of Tb^{3+} through $\text{Ce}^{3+} \rightarrow \text{Tb}^{3+}$ energy transfer. Moreover, $\text{Y}_{1-x-y-z}\text{Ce}_x\text{Tb}_y\text{Eu}_z\text{BO}_3$ emitted red fluorescence corresponding to 4f → 4f transitions of Eu^{3+} through $\text{Ce}^{3+} \rightarrow \text{Tb}^{3+} \rightarrow \text{Eu}^{3+}$ energy transfer under near-ultraviolet light. Measurement of the photoluminescence intensity of each well by a microplate reader revealed that the optimized green and red phosphors were $\text{Y}_{0.835}\text{Ce}_{0.025}\text{Tb}_{0.14}\text{BO}_3$ and $\text{Y}_{0.535}\text{Ce}_{0.005}\text{Tb}_{0.45}\text{Eu}_{0.01}\text{BO}_3$, respectively.

 Received 2nd February 2017
 Accepted 15th March 2017

DOI: 10.1039/c7ra01356f

rsc.li/rsc-advances

1 Introduction

Luminescent inorganic materials are widely used in various optoelectronic devices and bioassays, such as white light-emitting diodes (LEDs),^{1–5} displays,⁶ and biological labels,^{7–10} because of their high durability and thermal and chemical stabilities. Phosphors that emit visible colors under near-ultraviolet (near-UV) or blue excitation light are currently used as spectral conversion materials in white LEDs. White LEDs composed of a blue-emitting LED and $\text{Y}_3\text{Al}_5\text{O}_{12}$ (YAG): Ce^{3+} phosphor that converts blue light to yellow are widely available.¹¹ However, this conventional combination exhibits a low color rendering index

(CRI) because of the lack of a red component. Accordingly, red-emitting phosphors excited by blue LEDs have been used to improve the CRI of devices.³ White LEDs consisting of a near-UV LED and blue-, green-, and red-emitting phosphors have also been developed.³ Conventional red phosphors such as $\text{Y}_2\text{O}_3:\text{Eu}^{3+}$ and $\text{Y}_2\text{O}_2\text{S}:\text{Eu}^{3+}$ show poor photoluminescence (PL) efficiency under near-UV excitation.^{12–15} The absorbance of these phosphors are small in the near-UV region because 4f → 4f transitions of Eu^{3+} are forbidden and their line widths are narrow.¹⁶ To realize efficient red emission of Eu^{3+} , sensitizers with broad and strong absorption in the near-UV region are needed.

YBO_3 is used as a host crystal because of its high transparency and excellent optical damage threshold in the UV and visible regions.^{17–20} YBO_3 has been synthesized *via* a solid-state reaction at high temperature.²¹ In addition, YBO_3 has also been synthesized at low temperature by combustion,^{22,23,24} spray pyrolysis,^{24–27} the sol-gel method,^{28–33} and coprecipitation.^{34,35} Nohara *et al.* and Sato *et al.*^{36–38} reported that $\text{YBO}_3:\text{Ce}^{3+},\text{Tb}^{3+}$ emits green light through $\text{Ce}^{3+} \rightarrow \text{Tb}^{3+}$ energy transfer under near-UV excitation. Setlur and colleagues found that $\text{YBO}_3:\text{Ce}^{3+},\text{Tb}^{3+},\text{Eu}^{3+}$ emits red light *via* $\text{Ce}^{3+} \rightarrow \text{Tb}^{3+} \rightarrow \text{Eu}^{3+}$ energy transfer under near-UV excitation.³⁹ Sohal and co-workers reported that the PL intensities of Ce^{3+} and Tb^{3+} decreased and that of Eu^{3+} increased with increasing Tb^{3+} concentration in $\text{YBO}_3:\text{Ce}^{3+},\text{Tb}^{3+},\text{Eu}^{3+}$ at fixed concentrations of Ce^{3+} and Eu^{3+} .⁴⁰ The intensity ratio of red emission corresponding to the electric

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan. E-mail: iso@appc.keio.ac.jp; isobe@appc.keio.ac.jp; Fax: +81 45 566 1551; Tel: +81 45 566 1558; +81 45 566 1554

† Electronic supplementary information (ESI) available: XRD profiles, crystallite sizes, and actual metallic compositions of the samples taken from the libraries of $\text{Y}_{1-x-y}\text{Ce}_x\text{Tb}_y\text{BO}_3$ ($0 \leq x \leq 0.1$, $0 \leq y \leq 0.4$) (Fig. S1 and Table S1), $\text{Y}_{1-x-y-z}\text{Ce}_x\text{Tb}_y\text{Eu}_z\text{BO}_3$ ($0 \leq x \leq 0.05$, $0 \leq y \leq 0.90$, $z = 0.05$) (Fig. S2 and Table S2), and $\text{Y}_{1-x-y-z}\text{Ce}_x\text{Tb}_y\text{Eu}_z\text{BO}_3$ ($x = 0.005$, $0 \leq y \leq 0.795$, $0 \leq z \leq 0.20$) (Fig. S3 and Table S3); PL spectra of $\text{Y}_{0.845}\text{Ce}_{0.005}\text{Tb}_{0.15}\text{BO}_3$ and $\text{Y}_{0.82}\text{Ce}_{0.005}\text{Tb}_{0.15}\text{Eu}_{0.025}\text{BO}_3$ synthesized in the wells of a microplate (Fig. S4); PL and PLE spectra, and CIE coordinate with a color diagram of $\text{Y}_{0.535}\text{Ce}_{0.005}\text{Tb}_{0.45}\text{Eu}_{0.01}\text{BO}_3$ (Fig. S5). See DOI: 10.1039/c7ra01356f

‡ Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan. E-mail: s.takeshita@aist.go.jp.

dipole transition ($^5D_0 \rightarrow ^7F_2$) relative to orange emission corresponding to the magnetic dipole transition ($^5D_0 \rightarrow ^7F_1$) was improved because of the highly distorted symmetry around the Eu³⁺ local site. YBO₃:Ce³⁺,Tb³⁺ and YBO₃:Ce³⁺,Tb³⁺,Eu³⁺ have various relaxation routes whose probabilities depend on the concentrations of individual dopants. For YBO₃:Ce³⁺,Eu³⁺, the Eu³⁺ emission is quenched by metal-to-metal charge transfer (MMCT) from Ce³⁺ to Eu³⁺ to form Ce⁴⁺ and Eu²⁺ under near-UV excitation.³⁹ When YBO₃:Ce³⁺,Eu³⁺ is codoped with a high concentration of Tb³⁺, Ce³⁺ absorbs near-UV light through the 4f \rightarrow 5d transition, and then sequential energy transfer occurs from Ce³⁺ to Tb³⁺ to Eu³⁺, followed by red emission from Eu³⁺.

The combinatorial method is used to fabricate multiple products called a “library” by reacting various combinations of feedstocks. The library is analyzed to identify an optimal product. This method can drastically shorten the time for experimental planning, execution, and analysis. In recent years, combinatorial chemistry has been widely used for drug analysis and synthesis of functional inorganic materials including fluorescent compounds.⁴¹⁻⁴⁷ Chen *et al.*⁴⁶ developed a unique drop-on-demand inkjet delivery system, which they used to optimize the composition of red-emitting phosphor Y₂O₃:Bi³⁺,Eu³⁺. Su and colleagues determined the optimum composition of yellow-emitting phosphor (Lu_{1-x}Gd_x)₃Al₅O₁₂:Ce_{3y} through a combinatorial procedure.⁴⁷ However, these methods used custom-made equipment to analyze each sample in the libraries.

Microplate readers are common commercial devices often used to simultaneously measure the fluorescence intensities of a number of samples, *e.g.*, fluorescently-labeled biomolecules, in a library.⁴⁸⁻⁵⁰ As a result, microplate readers can drastically shorten analysis time. In this work, we attempt to optimize the atomic compositions of green-emitting phosphor YBO₃:Ce³⁺,Tb³⁺ and red-emitting phosphor YBO₃:Ce³⁺,Tb³⁺,Eu³⁺ excited by near-UV irradiation through combinatorial synthesis and simultaneous analysis using a microplate reader.

2 Experimental section

2.1 Preparation of YBO₃:Ce³⁺,Tb³⁺ and YBO₃:Ce³⁺,Tb³⁺,Eu³⁺ libraries

Yttrium(III) nitrate hexahydrate (Kanto, 99.99%), cerium(III) nitrate hexahydrate (Kanto, 98.5%), terbium(III) nitrate hexahydrate (Kanto, 99.95%), and europium(III) nitrate hexahydrate (Kanto, 99.99%) were dissolved in ultrapure water to prepare 0.5 M aqueous solutions of RE(NO₃)₃ (RE = Y, Ce, Tb, Eu). Boric acid (Aldrich, 99.99%) was dissolved in ultrapure water to prepare a 0.6 M aqueous solution. Each of the 48 wells of an alumina microplate was filled with an aqueous nitrate solution (1 mL), which is a mixture of the prepared RE(NO₃)₃ solutions with a desired ratio and boric acid (4 mL), and then the microplate was dried at 80 °C. This process was repeated five times by human hands. After drying, the 48 mixtures in the microplate were ground by human hands and pre-heated in a muffle furnace at 550 °C for 2 h in air, following cooling to room temperature. Each sample was reground and then heated at 1100 °C for 3 h in a reducing atmosphere using carbon board to obtain YBO₃:Ce³⁺,Tb³⁺ and YBO₃:Ce³⁺,Tb³⁺,Eu³⁺ phosphors.

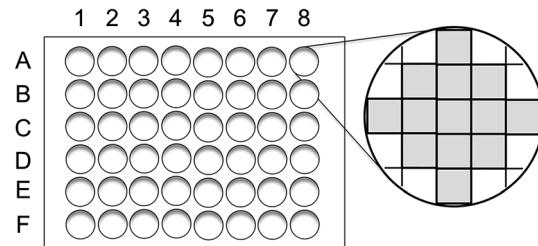


Fig. 1 Division of each well in a microplate into 13 blocks for PL intensity evaluation.

2.2 Characterization

Powder X-ray diffraction (XRD) profiles were measured using an X-ray diffractometer (Rigaku, Rint 2200) with a Cu K α radiation source. The elemental composition of YBO₃:Ce³⁺,Tb³⁺ and YBO₃:Ce³⁺,Tb³⁺,Eu³⁺ powder samples was determined by the fundamental parameter method using an X-ray fluorescence analyzer (Rigaku, ZSX mini II). Both PL and photoluminescence excitation (PLE) spectra were measured using a fluorescence spectrometer (JASCO, FP-6500) equipped with a 150-W Xe lamp. The PL intensity of each well of the microplate was measured using a multi-detection microplate reader (DS Pharma Biomedical, Powerscan HT) with an excitation band-pass filter (BT-7082220; 360 \pm 40 nm). Emission band-pass filters [BT-7082210 (545 \pm 40 nm) and BT-7082226 (645 \pm 40 nm)] were used to detect green and red emission, respectively. Each well of a microplate was divided to 13 blocks, as shown in Fig. 1, and the PL intensity of each well was defined as an average of three strongest PL intensity among the 13 blocks. The PL measurement of 48 wells was completed in \sim 8 min. To determine the precision of the procedure, Y_{0.82}Ce_{0.03}Tb_{0.15}BO₃ was synthesized in 48 wells of a microplate and the PL intensity of each well was evaluated from a representative value, which was the average of the three highest PL intensities among 13 blocks. The relative deviation of representative values of PL intensities was within 8.0%.

3 Results and discussion

3.1 Structural properties of the Y_{1-x-y}Ce_xTb_yBO₃ library

XRD profiles of samples from the Y_{1-x-y}Ce_xTb_yBO₃ library (0 \leq x \leq 0.1, 0 \leq y \leq 0.4) with a wide range of Ce³⁺ and Tb³⁺ concentrations synthesized in the wells of a microplate were measured (see Fig. S1†). All the XRD peaks except for that at 27.5° belonged to YBO₃ with hexagonal structure. The peak at 27.5° possibly originated from the byproduct Y₃BO₆, which accidentally formed through the evaporation of boron. Actual metallic compositions of typical samples (shown in Table S1†) were evaluated to be close to loading ones except for that of the sample taken from well A-7.

3.2 Photoluminescence spectra of the Y_{1-x-y}Ce_xTb_yBO₃ library

Fig. 2 shows PL and PLE spectra of Y_{0.98}Ce_{0.02}BO₃ and Y_{0.83}-Ce_{0.02}Tb_{0.15}BO₃ synthesized in the wells of a microplate. The

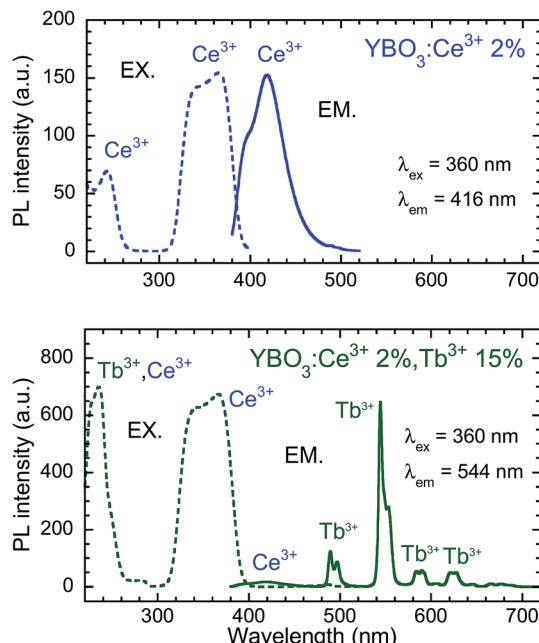


Fig. 2 PL and PLE spectra of $\text{Y}_{0.98}\text{Ce}_{0.02}\text{BO}_3$ and $\text{Y}_{0.83}\text{Ce}_{0.02}\text{Tb}_{0.15}\text{BO}_3$ synthesized in the wells of a microplate.

PL intensity at 416 nm corresponding to the $5\text{d} \rightarrow 4\text{f}$ transition of Ce^{3+} for $\text{Y}_{0.83}\text{Ce}_{0.02}\text{Tb}_{0.15}\text{BO}_3$, which exhibited Tb^{3+} emission in the wavelength region of 480–640 nm, was lower than that for $\text{Y}_{0.98}\text{Ce}_{0.02}\text{BO}_3$. In the PLE spectrum of $\text{Y}_{0.83}\text{Ce}_{0.02}\text{Tb}_{0.15}\text{BO}_3$ monitored at the $\text{Tb}^{3+} \text{D}_4 \rightarrow \text{F}_5$ emission wavelength $\lambda_{\text{em}} = 544$ nm, the excitation peak corresponding to the $4\text{f} \rightarrow 5\text{d}$ transition of Ce^{3+} was observed at 360 nm. This result indicates that energy transfer occurred from Ce^{3+} to Tb^{3+} .

Fig. 3 depicts the PL (excitation wavelength $\lambda_{\text{ex}} = 360$ nm) and PLE ($\lambda_{\text{em}} = 544$ nm) spectra of the samples from the $\text{Y}_{0.98-y}\text{Ce}_{0.02}\text{Tb}_y\text{BO}_3$ library, in which the Ce^{3+} concentration was fixed at 2 at% and the Tb^{3+} concentration was varied from 0 to 30 at%. The maximum PL intensity at 544 nm corresponding to the $\text{D}_4 \rightarrow \text{F}_5$ transition of Tb^{3+} was observed when the Tb^{3+} concentration was 15 at%. The PL intensity of the $\text{Ce}^{3+} 5\text{d} \rightarrow 4\text{f}$ emission simply decreased with increasing Tb^{3+} concentration. The efficiency of $\text{Ce}^{3+} \rightarrow \text{Tb}^{3+}$ energy transfer and PL intensity of the $\text{Tb}^{3+} \text{D}_4 \rightarrow \text{F}_5$ emission at 544 nm are plotted as a function of Tb^{3+} concentration in Fig. 4. Energy transfer efficiency, η , is given by:

$$\eta = 1 - \frac{I}{I_0} \quad (1)$$

where I_0 and I are the PL intensities of Ce^{3+} at 416 nm in the absence and presence of Tb^{3+} , respectively.⁵¹ The PL intensity of Tb^{3+} increased with η and reached its maximum value when the Tb^{3+} concentration was 15 at%. Over 15 at% Tb^{3+} , η approached unity, and the PL intensity of Tb^{3+} decreased. This decrease is attributed to concentration quenching of Tb^{3+} due to enhancement of probability of a non-radiative relaxation through the energy migration of $\text{Tb}^{3+} \rightarrow \text{Tb}^{3+}$.

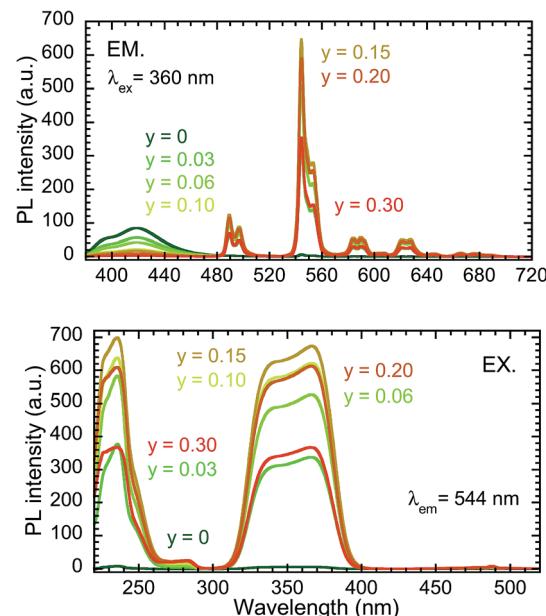


Fig. 3 PL and PLE spectra of samples from the $\text{Y}_{0.98-y}\text{Ce}_{0.02}\text{Tb}_y\text{BO}_3$ library ($0 \leq y \leq 0.3$).

3.3 Optimization of the atomic composition of the $\text{Y}_{1-x-y}\text{Ce}_x\text{Tb}_y\text{BO}_3$ phosphor

To roughly determine the optimum atomic composition range of the $\text{Y}_{1-x-y}\text{Ce}_x\text{Tb}_y\text{BO}_3$ phosphor, a $\text{Y}_{1-x-y}\text{Ce}_x\text{Tb}_y\text{BO}_3$ library with various Ce^{3+} and Tb^{3+} concentrations over wide ranges of $0 \leq x \leq 0.1$ and $0 \leq y \leq 0.4$ was prepared. Fig. 5(a) shows a fluorescence image of the library under near-UV excitation and measured PL intensities of each well measured by the microplate reader. Strong emission was observed when the Ce^{3+} concentration was 2–3 at% and Tb^{3+} concentration was 15 at%.

Next, a $\text{Y}_{1-x-y}\text{Ce}_x\text{Tb}_y\text{BO}_3$ library with narrow ranges of $0.020 \leq x \leq 0.045$ and $0.02 \leq y \leq 0.16$ was prepared to find the optimum atomic composition for this phosphor. As illustrated

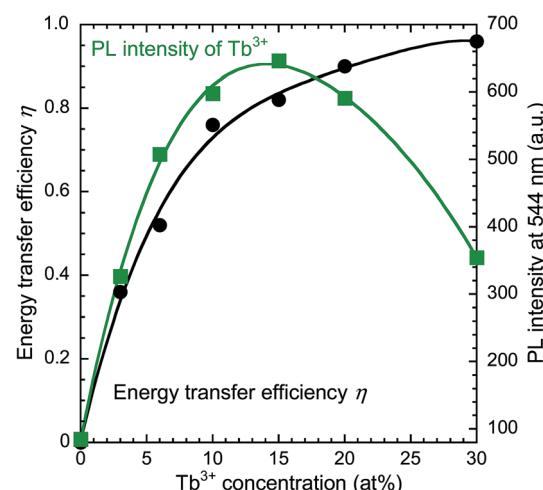
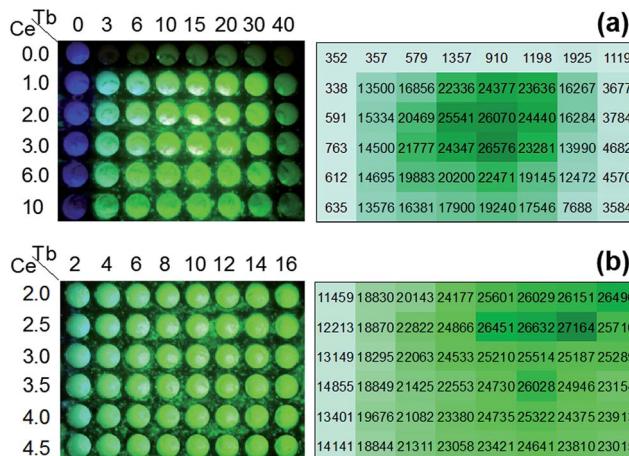



Fig. 4 Dependence of the energy transfer efficiency and PL intensity of $\text{Y}_{0.98-y}\text{Ce}_{0.02}\text{Tb}_y\text{BO}_3$ ($0 \leq y \leq 0.3$) samples on Tb^{3+} concentration.

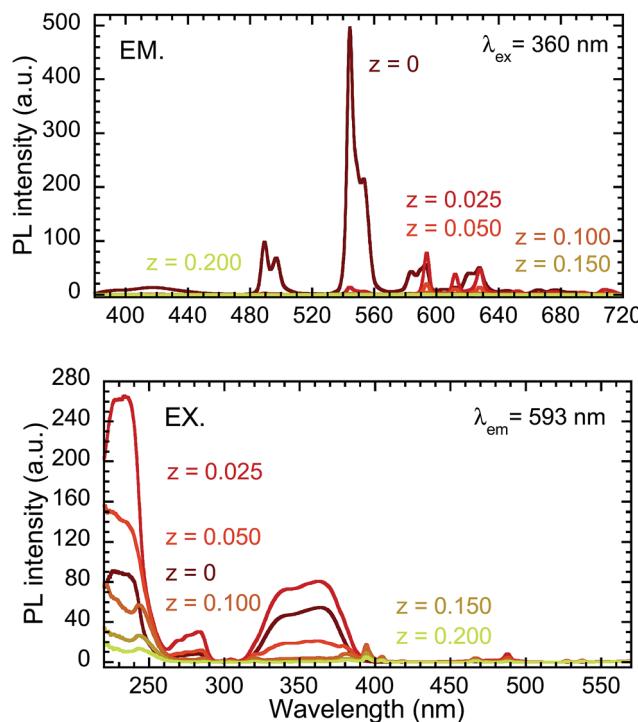


Fig. 7 PL and PLE spectra of samples from the $Y_{0.845-z}Ce_{0.005-Tb_{0.15}}Eu_2BO_3$ library ($0 \leq z \leq 0.2$).

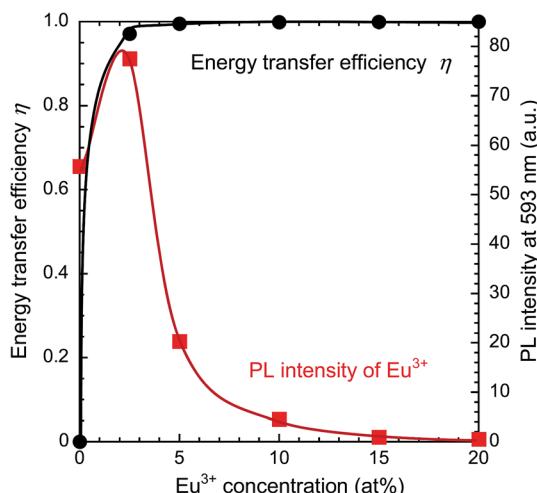


Fig. 8 Dependence of the energy transfer efficiency and PL intensity of $Y_{0.845-z}Ce_{0.005-Tb_{0.15}}Eu_2BO_3$ ($0 \leq z \leq 0.2$) on Eu^{3+} concentration.

ranges of $0 \leq x \leq 0.05$ and $0 \leq y \leq 0.90$ and a fixed Eu^{3+} concentration of 5 at% was prepared. Fig. 9(a) shows a fluorescence image of the library under near-UV excitation and the average value of the three strongest red emission intensities in each well measured by a microplate reader. The strong emission was observed for Ce^{3+} and Tb^{3+} concentrations of 0–2 and 40–90 at%, respectively. To determine the optimum concentration of Ce^{3+} , a $Y_{1-x-y-z}Ce_xTb_yEu_2BO_3$ library with narrow ranges of $0 \leq x \leq 0.025$ and $0.34 \leq y \leq 0.90$ and at a fixed Eu^{3+} concentration of 5 at% was prepared. As illustrated in Fig. 9(b), the strong

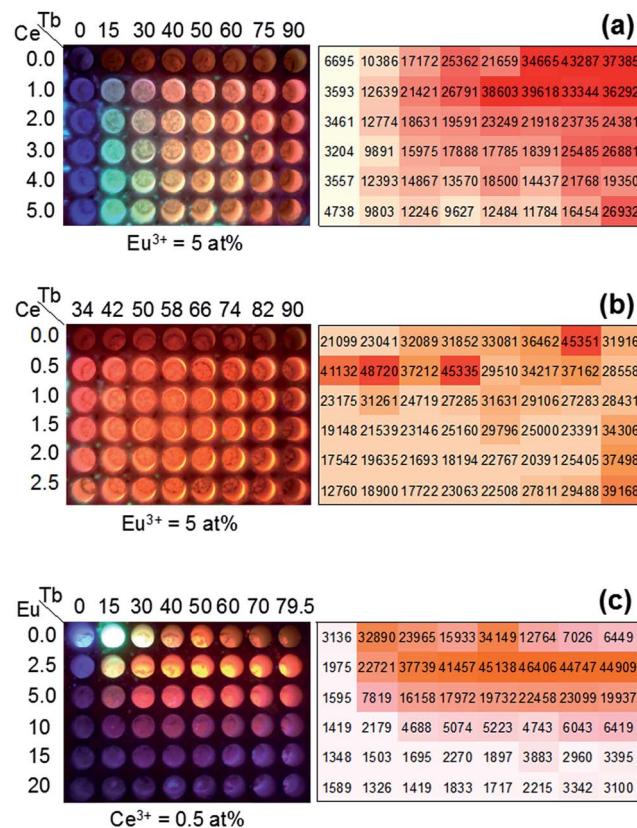


Fig. 9 Fluorescent images of $Y_{1-x-y-z}Ce_xTb_yEu_2BO_3$ libraries under near-UV excitation and values of red emission intensity ($\lambda_{ex} = 360$ nm) in each well measured by a microplate reader. $Y_{1-x-y-z}Ce_xTb_yEu_2BO_3$ libraries with (a) ($0 \leq x \leq 0.05$, $0 \leq y \leq 0.90$, $z = 0.05$), (b) ($0 \leq x \leq 0.025$, $0.34 \leq y \leq 0.90$, $z = 0.05$), (c) ($x = 0.005$, $0 \leq y \leq 0.795$, $0 \leq z \leq 0.20$), and (d) ($x = 0.005$, $0.40 \leq y \leq 0.80$, $0.005 \leq z \leq 0.030$).

emission was found when the concentrations of Ce^{3+} and Tb^{3+} were 0.5 at% and 40–60 at%, respectively. Therefore, the optimum concentration of Ce^{3+} was 0.5 at%.

A $Y_{1-x-y-z}Ce_xTb_yEu_2BO_3$ library with wide concentration ranges of $0 \leq y \leq 0.795$ and $0 \leq z \leq 0.20$ and at a fixed Ce^{3+} concentration of 0.5 at% was prepared. Fig. 9(c) reveals that strong emission was obtained for concentrations of Tb^{3+} of 40–80 at% and Eu^{3+} of 2.5 at%. Then, a $Y_{1-x-y-z}Ce_xTb_yEu_2BO_3$ library with narrow ranges of $0.40 \leq y \leq 0.80$ and $0.005 \leq z \leq 0.030$ and a fixed Ce^{3+} concentration of 0.5 at% was prepared to determine the optimum composition of this phosphor. Fig. 9(d) indicates that $Y_{0.535}Ce_{0.005}Tb_{0.45}Eu_{0.01}BO_3$ is the optimum composition with the strongest red PL intensity. Red to orange ratios were calculated from the PL intensities attributed to $^5D_0 \rightarrow ^7F_1$ transition (O) at 593 nm and $^5D_0 \rightarrow ^7F_2$ transition of Eu^{3+}

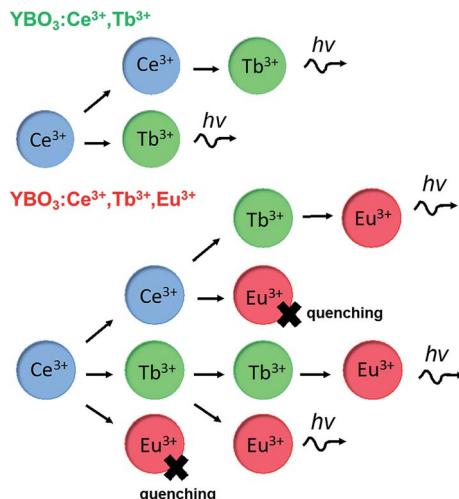


Fig. 10 Schematic illustration of the energy transfer routes in $\text{YBO}_3:\text{Ce}^{3+}, \text{Tb}^{3+}$ and $\text{YBO}_3:\text{Ce}^{3+}, \text{Tb}^{3+}, \text{Eu}^{3+}$.

(see PL and PLE spectra shown in Fig. S5†). There were two large red peaks assigned to the ${}^5\text{D}_0 \rightarrow {}^7\text{F}_2$ transition at 611 nm (R_1) and 627 nm (R_2) due to Stark splitting. Calculated ratios were $\text{R}_1/\text{O} = 0.484$ and $\text{R}_2/\text{O} = 0.621$. CIE coordinate obtained from the PL spectrum was (0.636, 0.359) (also shown in Fig. S5†).

3.7 Factors determining the optimum composition of the $\text{Y}_{1-x-y-z}\text{Ce}_x\text{Tb}_y\text{Eu}_z\text{BO}_3$ phosphor

The optimum concentration of Ce^{3+} and Tb^{3+} in $\text{Y}_{1-x-y}\text{Ce}_x\text{Tb}_y\text{BO}_3$ were 2.5 and 14 at%, respectively. In contrast, the optimum concentrations of Ce^{3+} , Tb^{3+} , and Eu^{3+} in $\text{Y}_{1-x-y-z}\text{Ce}_x\text{Tb}_y\text{Eu}_z\text{BO}_3$ were 0.5, 45, and 1.0 at%, respectively. We note that the optimum concentrations of Ce^{3+} and Tb^{3+} for $\text{Y}_{1-x-y-z}\text{Ce}_x\text{Tb}_y\text{Eu}_z\text{BO}_3$ were lower and higher, respectively, compared with those in $\text{Y}_{1-x-y}\text{Ce}_x\text{Tb}_y\text{BO}_3$. This means the addition of Tb^{3+} suppresses the quenching of Eu^{3+} emission by inhibiting MMCT from Ce^{3+} to Eu^{3+} which results from enhancing probability of the $\text{Ce}^{3+} \rightarrow \text{Tb}^{3+}$ energy transfer. Fig. 10 summarizes energy transfer routes in the phosphors. Because of the lower concentration of Ce^{3+} and higher concentration of Tb^{3+} in $\text{Y}_{1-x-y-z}\text{Ce}_x\text{Tb}_y\text{Eu}_z\text{BO}_3$ compared with those in $\text{Y}_{1-x-y}\text{Ce}_x\text{Tb}_y\text{BO}_3$, the possibility of $\text{Ce}^{3+} \rightarrow \text{Tb}^{3+}$ energy transfer could be higher than $\text{Ce}^{3+} \rightarrow \text{Eu}^{3+}$ energy transfer in $\text{Y}_{1-x-y-z}\text{Ce}_x\text{Tb}_y\text{Eu}_z\text{BO}_3$.

4 Conclusions

Metal nitrate aqueous solutions with different compositions and boric acid aqueous solution were reacted in alumina microplate wells to obtain libraries of the green-emitting phosphor $\text{Y}_{1-x-y}\text{Ce}_x\text{Tb}_y\text{BO}_3$ and red-emitting phosphor $\text{Y}_{1-x-y-z}\text{Ce}_x\text{Tb}_y\text{Eu}_z\text{BO}_3$. The compositions of both phosphors were optimized by evaluating the PL intensity of each microplate well measured by a versatile microplate reader. For the green-emitting phosphor, the concentrations of Ce^{3+} and Tb^{3+} were changed over wide ranges, and then over narrow ranges. The determined optimum composition of $\text{Y}_{1-x-y}\text{Ce}_x\text{Tb}_y\text{BO}_3$ was

$\text{Y}_{0.835}\text{Ce}_{0.025}\text{Tb}_{0.14}\text{BO}_3$. For the red-emitting phosphor, the concentration of Eu^{3+} was fixed at 5 at% and the concentrations of Ce^{3+} and Tb^{3+} were optimized similarly. The PL intensity of this phosphor was more sensitive to Ce^{3+} concentration than Tb^{3+} , and the determined optimum concentration of Ce^{3+} was 0.5 at%. Then, the concentrations of Tb^{3+} and Eu^{3+} were optimized at a constant Ce^{3+} concentration of 0.5 at%. The determined optimum composition of $\text{Y}_{1-x-y-z}\text{Ce}_x\text{Tb}_y\text{Eu}_z\text{BO}_3$ was $\text{Y}_{0.535}\text{Ce}_{0.005}\text{Tb}_{0.45}\text{Eu}_{0.01}\text{BO}_3$. The optimum concentration of Ce^{3+} was lower and that of Tb^{3+} was higher for the red-emitting phosphor compared with those of the green-emitting phosphor. This is attributed to suppression of $\text{Ce}^{3+} \rightarrow \text{Eu}^{3+}$ MMCT, which causes quenching of Eu^{3+} emission, using a lower Ce^{3+} concentration. The technique developed in this work will be useful to determine the optimum compositions of other phosphors.

References

- 1 D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin and S. L. Rudaz, *IEEE J. Sel. Top. Quantum Electron.*, 2002, **8**, 310–320.
- 2 H. A. Höpke, *Angew. Chem., Int. Ed.*, 2009, **48**, 3572–3582.
- 3 S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma and Q. Y. Zhang, *Mater. Sci. Eng., R*, 2010, **71**, 1–34.
- 4 A. Revaux, G. Dantelle, N. George, R. Seshadri, T. Gacoin and J. P. Boilot, *Nanoscale*, 2011, **3**, 2015–2022.
- 5 W.-Y. Huang, F. Yoshimura, K. Ueda, Y. Shimomura, H.-S. Sheu, T.-S. Chan, H. F. Greer, W. Zhou, S.-F. Hu, R.-S. Liu and J. P. Attfield, *Angew. Chem., Int. Ed.*, 2013, **52**, 8102–8106.
- 6 S. Zhang, *IEEE Trans. Plasma Sci.*, 2006, **34**, 294–304.
- 7 B. Dong, J. Wang, J. Sun, S. Xu, X. Bai, Z. Jiang, L. Xia, L. Sun and H. Song, *RSC Adv.*, 2012, **2**, 3897–3905.
- 8 K. M. Kim and J. H. Ryu, *J. Alloys Compd.*, 2013, **576**, 195–200.
- 9 I. L. Medintz, H. T. Uyada, E. R. Goldman and H. Mattoussi, *Nat. Mater.*, 2005, **4**, 435–446.
- 10 H. Dong, L.-D. Sun and C.-H. Yan, *Nanoscale*, 2013, **5**, 5703–5714.
- 11 V. Bachmann, C. Ronda and A. Meijerink, *Chem. Mater.*, 2009, **21**, 2077–2084.
- 12 J. Dhanaraj, R. Jagannathan, T. R. N. Kutty and C.-H. Lu, *J. Phys. Chem. B*, 2001, **105**, 11098–11105.
- 13 J.-G. Li, X. Li, X. Sun and T. Ishigaki, *J. Phys. Chem. C*, 2008, **112**, 11707–11716.
- 14 C. Guo, L. Luan, C. Chen, D. Huang and Q. Su, *Mater. Lett.*, 2008, **62**, 600–602.
- 15 J. Kuang, Y. Liu and D. Yuan, *Electrochim. Solid-State Lett.*, 2005, **8**, H72–H74.
- 16 R. Yu, H. Noh, B. Moon, B. Choi, J. Jeong, K. Jang, S. Yi and J. Jang, *J. Alloys Compd.*, 2013, **576**, 236–241.
- 17 D. Zou, Y. Q. Ma, S. B. Qian, B. T. Huang, G. H. Zheng and Z. X. Dai, *J. Alloys Compd.*, 2014, **584**, 471–476.
- 18 L. Jia, Z. Shao, Q. Lü, Y. Tian and J. Han, *Ceram. Int.*, 2014, **40**, 739–743.
- 19 K. S. Sohn, Y. Y. Choi and H. D. Park, *J. Electrochem. Soc.*, 2000, **147**, 1988–1992.

20 X. Zhang, X. Zhang, Z. Zhao and J. Chauduhuri, *J. Mater. Sci.*, 2015, **50**, 251–257.

21 G. B. Chadeyron, M. E. Ghozzi, D. Boyer, R. Mahiou and J. C. Cousseins, *J. Alloys Compd.*, 2001, **317**, 183–185.

22 J. T. Ingle, R. P. Sonekar, S. K. Omanwar, Y. Wang and L. Zhao, *Combust. Sci. Technol.*, 2014, **186**, 83–89.

23 A. B. Gawande, R. P. Sonekar and S. K. Omanwar, *Combust. Sci. Technol.*, 2014, **186**, 785–791.

24 K. Y. Jung, E. J. Kim and Y. C. Kang, *J. Electrochem. Soc.*, 2004, **151**, H69–H73.

25 N. Joffin, B. Caillier, A. Garcia, P. Guillot, J. Galy, A. Fernandes, R. Mauricot and J. D. Ghys, *Opt. Mater.*, 2006, **28**, 597–601.

26 G. Jia, P. A. Tanner, C. K. Duan and J. D. Ghys, *J. Phys. Chem. C*, 2010, **114**, 2769–2775.

27 K. Y. Jung and H. K. Jung, *J. Lumin.*, 2010, **130**, 1970–1974.

28 D. Boyer, G. B. Chadeyron, R. Mahiou, C. Caperaa and J. C. Cousseins, *J. Mater. Chem.*, 1999, **9**, 211–214.

29 L. Lou, D. Boyer, G. B. Chadeyron, E. Bernstein, R. Mahiou and J. Mugnier, *Opt. Mater.*, 2000, **15**, 1–6.

30 Z. Wei, L. Sun, C. Liao, J. Yin, X. Jiang and C. Yan, *J. Phys. Chem. B*, 2002, **106**, 10610–10617.

31 Z. G. Wei, L. D. Sun, C. S. Liao, X. C. Jiang, C. H. Yan, Y. Tao, X. Y. Hou and X. Ju, *J. Appl. Phys.*, 2003, **93**, 9783–9788.

32 D. Boyer, G. Bertrand and R. Mahiou, *J. Lumin.*, 2003, **104**, 229–237.

33 H. Zhu, L. Zhang, T. Zuo, X. Gu, Z. Wang, L. Zhu and K. Yao, *Appl. Surf. Sci.*, 2008, **254**, 6362–6365.

34 K. N. Kim, H. K. Jung, H. D. Park and D. Kim, *J. Mater. Res.*, 2002, **17**, 907–910.

35 X. C. Jiang, C. H. Yan, L. D. Sun, Z. G. Wei and C. S. Liao, *J. Solid State Chem.*, 2003, **175**, 245–251.

36 R. Sato, S. Takeshita, T. Isobe, T. Sawayama and S. Niikura, *ECS J. Solid State Sci. Technol.*, 2012, **1**, R163–R168.

37 A. Nohara, S. Takeshita and T. Isobe, *RSC Adv.*, 2014, **4**, 11219–11224.

38 A. Nohara, S. Takeshita, Y. Iso and T. Isobe, *J. Mater. Sci.*, 2016, **51**, 3311–3317.

39 A. A. Setlur, *Electrochem. Solid-State Lett.*, 012, **15**, J25–J27.

40 S. Sohal, M. Nazari, X. Zhang, E. Hassanzadeh, V. V. Kuryatkov, J. Chaudhuri, L. J. Hope-Weeks, J. Y. Huang and M. Holtz, *J. Appl. Phys.*, 2014, **115**, 183505.

41 B. Lee, S. Lee, H. G. Jeong and K.-S. Sohn, *ACS Comb. Sci.*, 2011, **13**, 154–158.

42 K. H. Son, S. P. Singh and K.-S. Sohn, *J. Mater. Chem.*, 2012, **17**, 8505–8511.

43 S. P. Singh, W. B. Park, C. Yoon, D. Kim and K.-S. Sohn, *ECS J. Solid State Sci. Technol.*, 2016, **5**, R3032–R3039.

44 W. B. Park, S. P. Singh, M. Kim and K.-S. Sohn, *Inorg. Chem.*, 2015, **4**, 1829–1840.

45 J. W. Park, B. Y. Han, Y. S. Kim and K.-S. Sohn, *J. Nanosci. Nanotechnol.*, 2013, **6**, 3935–3958.

46 T. Chan, C. Kang, R. Liu, L. Chen, X. Liu, J. Ding, J. Bao and C. Gao, *J. Comb. Chem.*, 2007, **9**, 343–346.

47 X. Su, K. Zhang, Q. Liu, H. Zhong, Y. Shi and Y. Pan, *ACS Comb. Sci.*, 2011, **13**, 79–83.

48 B. Bender, C. Condra, R. J. Gould and T. M. Connolly, *Thromb. Res.*, 1995, **77**, 453–463.

49 H. Wang and J. A. Joseph, *Free Radical Biol. Med.*, 1999, **27**, 612–616.

50 M. U. Kassack, B. Hofgan, J. Lehmann, N. Eckstein, J. M. Quillan and W. Sadee, *J. Biomol. Screening*, 2002, **7**, 233–246.

51 X. Zhao, X. Wang, B. Chen, W. Di, Q. Meng and Y. Yang, *Proc. SPIE*, 2006, **6030**, 60300N.

52 X. Zhang, L. Zhou, Q. Pang and M. Gong, *J. Am. Ceram. Soc.*, 2014, **97**, 2124–2129.

53 X. Zhang, L. Zhou, Q. Pang and M. Gong, *Opt. Mater.*, 2014, **36**, 1112–1118.