Open Access Article. Published on 09 March 2017. Downloaded on 8/3/2025 12:41:52 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

RSC Advances

ROYAL SOCIETY
OF CHEMISTRY

View Article Online
View Journal | View Issue

CrossMark
& click for updates

Cite this: RSC Adv., 2017, 7, 15582

Enantioselective Barbier-type allylation of ketones
using allyl halide and indium in watert
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We disclose herein an efficient enantioselective Barbier-type allylation of ketones using allyl halide and
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indium metal in water. The reaction was catalysed by chiral bis(imidazoline) to afford homoallylic

alcohols having quaternary stereocenters in good yield with moderate to good enantioselectivity. Based
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Optically active tertiary homoallylic alcohols are an important
class of synthetic intermediates because they often act as useful
chiral building blocks for the synthesis of biologically active
compounds. One of the most efficient methods for the synthesis
of optically active tertiary homoallylic alcohols would be the
catalytic enantioselective allylation of ketones. Although there
are many papers on the catalytic enantioselective allylation of
aldehydes, catalytic enantioselective allylation of ketones have
been far less explored probably due to their low reactivity and
the difficulty in enantiofacial discrimination of ketones.*
Recently, catalytic enantioselective allylations of ketones using
stannanes,” silanes,> boron reagents,* allylalcohols,” and
manganese compounds® using various chiral catalysts have
been reported. However, these reactions rely on strictly anhy-
drous conditions or on the use of corrosive or toxic reagents. On
the other hand, Barbier-type allylation using allyl halide and
indium metal has shown to be an effective method for the
synthesis of homoallylic alcohols, because organoindium
compounds have low toxicity, and they have the ability to
tolerate the reaction in water.” Therefore, there are several
papers on the enantioselective Barbier-type allylation of ketones
with allyl halides using a stoichiometric amount of chiral
additives and indium metal in an organic solvent.®* However,
there is no report on the catalytic enantioselective Barbier-type
allylation of ketones in water using indium metal and allyl
halides.® Recently, Kobayashi and co-workers first reported the
catalytic enantioselective allylation of ketones in water using
allylboronate and a catalytic amount of indium(0) and bis(ox-
azoline) catalyst to give a product with 52% ee.'® Despite the
pioneering progress achieved in enantioselective reaction of
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on experimental investigation, a possible transition state has been proposed to explain the origin of the

allylation with ketones in water, the development of novel
catalyst systems with acceptable catalytic activity and stereo-
selectivity still remains a major challenge. On the other hand,
we recently reported the enantioselective three-component
synthesis of optically active propargylamines in water'* and
the enantioselective allylation of ketimines using chiral bis(i-
midazoline) catalysts.'> Therefore, our research interest was
expanded to the catalytic enantioselective Barbier-type

Table 1 Enantioselective Barbier-type allylation of 3-bromoaceto-
phenone 1a using various allyl halides 2a—c, indium, and bis(imida-
zoline) catalyst 4a—d“

R-Pybim (10 mol%)

o) In powder (2.0 equiv.)
Br . o~ Additive B o
. r
X H,0, 0°C, Time \©/i N
1a 2a:X=Cl 3a
2b: X =Br
2c: X =1
! A
(3.0 equiv.) R, W/EJ\FNR R-Pybim
N 4a: R = tBuCO
P T Nl\)- h 4b:R = Ac
4 4c: R = PhCO
Ph Ph 4d:R=Ts

Run X 4 Additive (equiv.) Time (h) Yield (%) ee (%)
1 cl 4a — 18 0 —
2 Br 4a — 18 10 54
3 I 4a — 18 80 76
4 I a4 — 18 5 16
5 I 4 — 18 80 60
6 I ad — 18 85 27
7° I 4a — 24 75 16
8 I 4a  SDS‘(0.2) 18 99 30
9 Br 4a Nal(3.9) 18 99 86

¢ Reaction conditions: 1a (0.10 mmol), allyl halide (3.0 equiv.), In (2.0
equiv.), and 4 (10 mol%) in water (0.10 M) were used. ” In THF.
¢ Sodium dodecyl sulfate.
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allylation using allyl halide and indium metal using chiral
bis(imidazoline) catalysts in water.

First, we examined the enantioselective Barbier-type allylation
of 3-bromoacetophenone with various allyl halides (3.0 equiv.)
and indium powder (2.0 equiv.) using 10 mol% of chiral bis(i-
midazoline) ligand in water. The results are shown in Table 1.

To our delight, the reaction using allyl iodide as allyl halide
afforded product 3a in high yield with moderate enantiose-
lectivity, although the reaction using allyl chloride or -bromides
gave product 3a in low yield (Table 1, entries 1-3). Although we
investigated the effect of the substituent on imidazoline cata-
lysts, changing the substituent on nitrogen in imidazoline
catalysts from a tert-butylcarbonyl group to an acetyl, benzoyl or
tosyl group could not improve the enantioselectivity of product
3a (Table 1, entries 4-6). When the reaction was carried out in
THF instead of water, the enantioselectivity was significantly
reduced (Table 1, entry 7). In order to improve yield and enan-
tioselectivity, we added some additives. Sodium dodecyl sulfate
(SDS) was added to the reaction mixture as a surfactant, but
stereoselectivity could not be improved (Table 1, entry 8).** On
the other hand, the addition of 3.9 equiv. of Nal to the reaction
of allyl bromide 2b and 1a improved the yield and enantiose-
lectivity of 3a (Table 1, entry 9 vs. 2).

Having established the reaction conditions, Barbier-type
allylation of various ketones with allyl bromide, indium
powder and Nal using 10 mol% of chiral bis(imidazoline) ligand
4a in water was examined (Table 2). The reaction of acetophe-
none 1b afforded product 3b in good yield with moderate
enantioselectivity (Table 2, entry 2). The reaction of electron-
deficient ketone 1c-g having fluoro, chloro, or bromo groups

Table 2 Enantioselective Barbier-type allylation of various ketones
la—-l using various allyl bromide 2b, indium, and bis(imidazoline)
catalyst 4a“

4a (10 mol%)

0 Nal (3.9 equiv.)
J\ - In powder (2.0 equiv.) OH
R'”TR? = ) R 4/\
H,0, 0°C, Time R?
1a-l 2b (3.0 equiv.) 3a-x
Entry 1 R' R® Time (h)  Yield (%) ee (%)
1 la  3-BrC¢H, CH, 18 99 86
2 1b Ph CH; 18 86 65
3 1c  3-FC¢H, CH; 18 89 80
4 1d  3-CIC¢H, CH; 48 76 76
5 le  3-IC¢H, CH, 18 99 89
6 1f  2-BrCgH, CH, 48 40 59
7 1g  4-BrCeH, CH, 48 78 65
8 ith  3-MeOCgH, CH,; 48 92 74
9 1i  3-MeCgH, CH, 18 80 84
10 1j  3-Thienyl CH; 24 90 55
11 1k  2-Naphthyl CH, 24 94 71
12 11 Ph CF; 18 77 86

¢ Reaction conditions: 1 (0.10 mmol), 2b (3.0 equiv.), Nal (3.9 equiv.), In
(2.0 equiv.), and 4a (10 mol%) in water (0.10 M) were used.
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Exact Mass: 1398.0
Found: 1397.7

Fig. 1 ESI mass spectrum for the mixture of 4a, 2b, Nal and indium in
water.

in the para or meta position were tolerated in this reaction
condition and gave products 3c-g with good stereoselectivity
(59-89% ee, Table 2, entries 3-7), although the reaction of ortho-
substituted ketone 1f gave product 3f in low yield and enan-
tioselectivity (Table 2, entry 6). Ketones 1h, i bearing an
electron-donating methyl and methoxy group gave corre-
sponding products 3h, i in high yield with good enantiose-
lectivity (Table 2, entries 8 and 9). Ketones 1j, k having
a naphthyl or heteroaryl group such as the thienyl group also
afforded products 3j, k in moderate yield with good enantiose-
lectivity (Table 2, entries 10 and 11). These reaction conditions
were also applicable to the reaction of trifluoromethyl ketones
1l (Table 2, entry 12). The absolute configurations of products
3a-d, f-1 were determined in comparison with the value of the
specific rotation reported in the literature (see ESIf). To our
knowledge, these results are the first examples for the indium-
mediated catalytic enantioselective Barbier-type allylation of
ketones in water.

In order to clarify the reaction mechanism, we conducted
spectroscopic analysis. The "H NMR spectrum for the mixture of
2b, 4a, Nal, and indium powder showed a new methylene signal
at 2.85 ppm (see ESIf). Chan and co-workers reported that 'H
NMR peaks for allylindium(u) and allylindium(i) in water were
observed at 2.8 ppm and 1.7 ppm, respectively, and that ally-
lindium(m) make a allylindium sesquihalide species.™
Furthermore, the ESI-mass spectroscopic analysis for the reac-
tion mixture of 2b, 4a, Nal, and indium powder showed complex
A (Fig. 1: cation mode, calcd for Cs;Hs5;13InN5O3 as complex A:
1398.0 found: 1397.7). This signal implied a complex between
allylindium(m) sesquihalide and 2b."*

From the above consideration and absolute stereochemistry of
the products, the assumed transition state for the enantioselective

OH
E—— R1/I£;I/\

R1\\\/\
=0
R? (R)-isomer
Re-face N= . )
Ph““H/N‘COtBu (R'>R?)

Fig. 2 Assumed transition state for the Barbier-type allylation of 1
using 4a.
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Barbier-type allylation of ketones using 4a in water is shown in
Fig. 2. The allylation of ketones would proceed through a six-
membered transition state including In(m) species.’® Allylindium
sesquihalide dissociates to monomeric allylindium species by
coordination to bis(imidazoline), then indium(m) cation coordi-
nates to ketones. In this transition state, indium(m) makes an
octahedral structure,” and the allyl group approaches the Re-face
of ketones avoiding steric repulsion between the phenyl group in
4a and substituent for ketones to give (R)-homoallylic alcohols.
Further studies are required to fully elucidate the mechanistic
detail of the Barbier-type allylation reaction of ketones with 4a.

In conclusion, we developed an enantioselective allylation of
ketones using chiral bis(imidazoline) catalysts. To our knowl-
edge, this is the first example of the highly enantioselective
allylation of ketones using Barbier-type allylation of allyl halide
and indium in water. Further experiments are in progress to
study the scope of the asymmetric synthesis in water using
bis(imidazoline) catalyst to other reactions.
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