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Polyolefin/graphene nanocomposites: a review

Sandeep N. Tripathi,@*a G. S. Srinivasa Rao,? Ajit B. Mathur® and Rakshvir Jasra®

Polymeric materials reinforced with nanofillers continue to fulfill the worldwide demand for alternative
materials with low cost and better physico-mechanical properties. These materials are prepared by
mixing polymers with nanofillers (e.g. layered silicates, metal oxides, carbon nanotubes (CNTs) and
graphene) using in situ or melt blending techniques for improved physico-mechanical properties. Among
all the nanofillers, CNTs and graphene have emerged as subjects of tremendous scientific interest and
have attracted a great deal of attention from across several disciplines in recent years. Among the
nanofillers, graphene has shown very good electrical, thermal, mechanical and gas barrier properties in
combination with polyolefins. The present review is an overview of polyolefin/graphene based
composites, especially of polypropylene (PP) and polyethylene (PE), with special emphasis on their

rsc.li/rsc-advances

1. Introduction

Polymer nanocomposites (PNCs) are multiphase materials,
which consist of a polymer or copolymer having nanoparticles
or nanofillers (having dimension of 1-50 nm) dispersed in the
polymer matrix, significantly affecting different physical prop-
erties. The majority of the research has focused on polymer
nanocomposites based on nanofillers such as metal oxides,
CNTs, carbon black (CB) and layered silicates to achieve
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methods of preparation, properties and potential applications.

improved mechanical, thermal, electrical and gas barrier
properties.”® Recently, graphene has emerged as the most
promising nanofiller, due to its extraordinary physical proper-
ties, which has opened a new class of polymeric nanomaterials.

Graphene, a new allotrope of carbon is a two dimensional,
one atom thick planer sheet composed of sp hybridised carbon
atoms arranged in a crystal honeycomb lattice and is the thin-
nest known material in the universe.*” It is one of the special
allotropes of carbon, which can be seen as the building block of
all graphitic forms (Fig. 1); it can be stacked up into graphite
(3D), rolled up into carbon nanotubes (1D) and wrapped up into
fullerene (0D). Defect free graphene has outstanding physico-
chemical properties with large surface area and an optical
transmittance of ~98%," high thermal and electrical
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Fig. 1 Representation of graphene sheet: mother of all graphitic
allotropes (reproduced with permission from ref. 4 copyright 2007
Nature Publishing Group).

conductivity and high mechanical properties.” These extraor-
dinary properties of graphene make it a promising nanofiller in
the field of polymer nanocomposites. It has also shown great
potential for application in electronics, photo-catalysis, sensors,
medicine and solar cells.**°

Polyolefin nanocomposites based on nanofillers offer
opportunities for the improvement of polyolefins (POs) with
relatively small amounts of nanofiller concentration. POs such
as polyethylene and polypropylene are the most abundant
synthetic polymers, having the largest tonnage in the world,
with respect to their production. It was estimated that more
than 60% of produced polyolefins (PE, PP) have been
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introduced into the market, whereas only 23% of other ther-
moplastics have been used for compounding purposes.'* POs
are produced by the polymerization of ethylene, propylene
alone or with other olefin monomers like butene-1 and hexene-1
using Ziegler-Natta and other catalysts. Depending on their
density and chain branching, polyethylenes (PEs) are classified
into different categories; e.g. low density polyethylene (LDPE),
linear LDPE, high density polyethylene (HDPE), ultrahigh
molecular weight polyethylene (UHMWPE) and polypropylenes
(PPs) are classified as isotactic, syndiotactic and atactic, based
on their stereo-regularity. Polyolefins became popular due to
their low cost, recyclability, good processability, non-toxicity
and biocompatibility. POs have a wide range of applications
in orthopaedic implants, durable equipment automobile parts,
consumer goods and industrial machinery. However, for
advanced/engineering applications, there is the need to
improve the physico-chemical and mechanical properties of
polyolefins by introducing new functionalities, adding nano-
fillers to the matrix, modifying the polymer matrix and
synthesizing a new type of polyolefin such as disentangled
ultrahigh molecular weight polyethylene (DUHMWPE)."?
Recently, graphene has been investigated as a promising
nanofiller for POs. Several articles are available where graphene
has been used for the reinforcement of polyolefins due to its
extraordinary physical properties.’*'*

Several review articles are available on graphene based
polymer nanocomposites, which address the production and
improved properties of polymer graphene composites.’*** The
present review is mainly focused on graphene based polyolefin
nanocomposites and will not discuss other polymer graphene
composites. The following is a quick review of methods of
preparation of graphene, its derivatives and their physical
properties. In addition, current progress on polyolefin (e.g
LDPE, LLDPE, HDPE, UHMWPE and PP) nanocomposites based
on graphene and their improved properties are also reviewed.
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Finally, the potential applications and future scope of this
exciting new class of polyolefin/nanocomposites are discussed.

2. Synthesis of graphene oxide (GO)/
reduced graphene oxide (RGO)

Graphene was first isolated by Novoselov et al. in 2004 via
micromechanical exfoliation using the “scotch tape” method;"
since then, a number of methods have been reported for the
synthesis of graphene, such as chemical vapour deposition
(CVD),**?* arc discharge,** epitaxial growth on SiC,**** unzip-
ping carbon nanotubes®**® and chemical reduction of graphite
oxide.?>?*** All the methods have their own advantages and
disadvantages, such as micromechanical exfoliation; e.g. the
scotch tape method offers quality graphene for electronic
application, but gives low yield. CVD and epitaxial growth of
graphene on silicon substrate produces bulk quantities of gra-
phene, but it is very costly and requires high temperature.
Unzipping of carbon nanotubes provides high quality graphene
nanoribbons, but takes more time. These methods are very
attractive for the synthesis of graphene for fundamental studies
and electronic applications, but are not suitable for polymer
nanocomposites, which require graphene in bulk quantities as
a nanofiller.

2.1 Chemical vapour deposition (CVD) method

The CVD method involves the thermal decomposition of hydro-
carbon gases, e.g. methane at high temperature (~1000 °C) and
low pressure, and its deposition on a substrate in a furnace
provides a straight forward method for the synthesis of graphene.
A number of different hydrocarbons, catalysts and inert gas
combinations have been used by several researchers in the past
for the growth of graphene on different substrates such as SiO,,*
SizN, (ref. 32) and MgO® by the CVD technique. However, almost
all the reported CVD techniques are based on metal-catalysed
growth, which is complicated and needs skilled post growth
techniques to be employed for the removal of these metal cata-
lysts, which hamper the use of the graphene in electronic devices.

2.2 Reduction of graphite oxide

Currently, the most viable method for the bulk production of
graphene for nanofiller applications in polymer nanocomposites
is the exfoliation and reduction of graphite oxide, which is
prepared by the oxidation of graphite. The synthesis of graphite
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oxide is more than 150 years old; its first synthesis was reported
by Brodie® in 1859. Later on, graphite oxide was prepared by
using the Staudenmaier’* and Hummers®” methods, where
graphite was oxidized to graphite oxide using strong oxidative
reagents such as KClO;, KMnO, and NaNO; in the presence of
concentrated H,SO,4, HNO3, or a mixture of both. Among all the
other methods reported for the preparation of graphite oxide,
the Hummers' method is the most popular one in which KMnO,
and NaNO; are used as oxidizing agents for the oxidation of
graphite in the presence of concentrated H,SO,, depending on
the requirement of the extent of oxygen functionalities (Fig. 2).
Choudhary et al.*® also prepared graphite oxide from graphite by
using the modified Hummers' method.

Graphite is composed of stacked graphene sheets with an
interlayer spacing of 3.4 A and in the same way, graphite oxide is
composed of graphene oxide (GO) sheets stacked with an inter-
layer spacing of 8.4 A.*® Based on theoretical and experimental
studies, the structure of graphene oxide contains a number of
oxygen functionalities such as hydroxyl, carboxyl, epoxide and
carbonyl groups. The Lerf-Klinowski model*** proposed the
most likely description of the graphite oxide structure, where
graphite oxide contains pristine aromatic “islands” separated
from each other by aliphatic regions, which contain oxygen
functionalities such as hydroxyl, carbonyl, epoxide and double
bonds, as shown in Fig. 2. Conversion of graphite to graphite
oxide, followed by exfoliation leads to the large scale production of
graphene oxide, also known as functionalized graphene, which
can be readily dispersed in water and organic solvents. Graphene
oxide (GO) is electrically insulating and thermally unstable;
therefore, to restore its electrical and thermal properties, its
reduction is necessary. A number of methods are available for the
exfoliation and reduction of graphite oxide to reduced graphene
oxide (Fig. 3). The term “reduced graphene” is used because the
complete reduction of graphene oxide to graphene does not occur.

There are basically two methods available for the exfoliation
and reduction of graphite oxide to reduced graphene oxide.

2.2.1 Chemical reduction of graphite oxide. Chemically
reduced graphene oxide (RGO) was prepared by a stable colloidal
dispersion of graphite oxide followed by the reduction of exfoli-
ated graphite oxide using reducing agents. Stable dispersion of
GO can be obtained by exfoliation of graphite oxide via ultra-
sonication in water or alcohol. A number of reducing agents are
used for the reduction of GO to RGO such as hydrazine
hydrate*** (Fig. 4), dimethyl hydrazine,** sodium borohydride
followed by hydrazine,* hydroquinone* and lithium aluminium
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Fig. 2 Schematic representation of the oxidation of graphite to graphite oxide.
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Fig. 3 Schematic representation of reduction of GO to RGO.

hydride.* Stankovich et al.** have proposed the following mech-
anism for the formation of RGO from graphite oxide, which
shows that the reduction of GO restores the sp® character of
carbon (ie. >C=CJ), resulting in increased electrical conduc-
tivity of RGO.
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Thermal reduction methods have one advantage over the
chemical reduction of graphite oxide to produce thermally
reduced graphene oxide (TRG) sheets, i.e. there is no need for
solvent for the dispersion of graphite oxide. TRG has the C: O
ratio of ~10 : 1, as compared to 2 : 1 for graphite oxide,*® which

O -HZO Ny
v?%/n HoN-NHy  ———

2.2.2 Thermal reduction of graphite oxide. Thermal exfo-
liation and reduction of graphite oxide to thermally reduced
graphene oxide (TRG) can be achieved by the rapid heating of
dry graphite oxide for a very short period (30 s) at high
temperature (~1000 °C) under inert atmosphere.**** Exfoliation
of graphite oxide to GO takes place due to the pressure gener-
ated by the evolved CO,, which occurs due to the decomposition
of epoxy, carboxyl and hydroxyl groups of GO that exceeds van
der Waals forces holding GO sheets to each other.

ultrasonication
‘ 60 min in DMF
graphene

NH-NH,

can be increased to 660 : 1 via heating at higher temperature
(1500 °C), or for longer time.*

3. Properties of graphene

Graphene has exceptionally high material properties, very close
to their theoretical limits, such as electrical and thermal
conductivity, strength, stiffness and low density. Graphene is
the only allotrope of carbon in which each single atom is
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Fig. 4 Preparation of PE/graphene composites by in situ polymerization, post polymerization mixing and precipitation methods (reproduced
with permission from ref. 58 copyright 2014 American Chemical Society).
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exposed for chemical reaction from both sides, which is
attributed to its 2D structure. In addition, various types of
defects occur in graphene due to its modification increasing its
chemical reactivity.

Graphene is a zero-band gap semiconductor with remarkably
high electron mobility at room temperature, having reported
values of ~15 000 cm® V™' s7'.* The electron mobility in gra-
phene is independent of temperature between 10 K and 100 K,
which is ascribed to its defect scattering mechanism. Scattering
by the acoustic phonons of graphene intrinsically limits the
room temperature mobility to 200 000 cm® V™' s~ which is
attributed to the two-dimensional nature of graphene. In
addition, the charge carriers can travel through graphene
without scattering, which results in ballistic transport. Single
layer graphene has a very high electrical conductivity value of
~6000 S cm ™', where chirality is not a limiting factor in its
conductivity as in the case of CNTs. The impressive mechanical
properties of graphene originate from its geometrical architec-
ture, i.e. sp> hybridized carbon atoms with C-C bond length
0.142 nm. Graphene is one of the strongest materials ever
discovered, with a breaking strength 100 times greater than
a film of steel of the same thickness.** It has a Young's modulus
of 1 TPa and ultimate tensile strength of 130 GPa,*® which
is measured by the nanoindentation using atomic force
microscopy.

The specific heat and thermal conductivity (TC) of graphene
is determined by the phonons, which are the elastic waves
propagated in graphene lattice. The thermal conductivity of
graphene is isotropic. Graphene is known to be a perfect
thermal conductor with thermal conductivity value at room
temperature of 5000 W m~' K~ *,* which is much higher than
the thermal conductivity of other carbon structures such as
carbon nanotubes, graphite and diamond. Graphite, which can
be prepared by restacking graphene sheets and the 3D version
of graphene, shows a thermal conductivity of ~1000 Wm ™' K™,
i.e. five times smaller than graphene. The study of thermal
conductivity in graphene can have important applications in
graphene-based electronic devices.>

In addition to these properties, graphene has an extremely
high surface area of 2630 m> g~' (theoretical limit), and gas
impermeability,> which indicates that graphene has great
potential for improving gas barriers, electrical, mechanical and
thermal properties of matrix polymers in polymer nano-
composites. The present article is focused on polyolefin nano-
composites based on graphene and its derivatives.

4. Polyolefin/graphene
nanocomposites

The most essential step in polymer nanocomposites is the
compatibility and dispersion of nanofillers in the polymer
matrix. A well dispersed state ensures maximum reinforcement,
which will affect the neighbouring polymer chains and conse-
quently, the properties of the whole matrix. Therefore, large
efforts have been concentrated on achieving a homogeneous
and well-dispersed system by developing either covalent or non-

This journal is © The Royal Society of Chemistry 2017
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covalent functionalization of the filler surface. The earlier
reports on polymer composites with exfoliated graphite fillers
emerged from studies on the intercalation chemistry of graphite
(GIC). In 1958, it was discovered that alkali metal-GICs could
initiate the polymerization of ethylene.*® In 1993 Bunnell et al.*
proposed the production of polymer nanocomposites by
incorporating graphite nanoplatelets (derived from GICs exfo-
liated either by shear grinding or thermal treatment) as fillers,
where they suggested that with 20 wt% incorporation of
graphite flakes in polyethylene or polypropylene, the stiffness of
the finished product approached that of aluminium. However,
it was not until 2000 that a detailed study of the morphology
and properties of an exfoliated graphite nanocomposite was
published. The discovery of graphene in 2004 (ref. 19) has
opened up new method of incorporation in polymer matrices.

5. Method of preparation of
polyolefin/graphene composites

In order to facilitate the industrial fabrication and application
of graphene based polymer composites, the direct use of RGO or
TRG as fillers to prepare polymer composites is preferred. The
effective utilization of graphene composites strongly depends
on the homogeneous dispersion of graphene and the interfacial
interaction between the polymer matrix and graphene. Hence,
to achieve high degree of graphene dispersion in polyolefins
during processing without affecting the properties, three
different techniques may be used: in situ polymerization,
solvent blending and melt processing. In addition to poly-
olefins, various other types of matrices such as poly(methyl
methacrylate), polyethylene glycol, polyamide, epoxy resins,
poly(ethylene terephthalate), polystyrene etc. have also been
used to prepare polymer/graphene nanocomposites for
improved electrical, thermal and mechanical properties.
Herein, various methods of preparation and properties of
polyolefin/graphene composites such as in situ polymerization,
solvent blending and melt blending methods are discussed.

5.1 In situ polymerization

In situ polymerization is a convenient processing technique,
and has been extensively used for the preparation of polymer
nanocomposites based on graphene derivatives such as GO,
RGO or TRG, which involves the incorporation of graphene
derivatives during the polymerization of monomer to improve
the dispersion between two phases. The main advantage of this
method is that it enables monomers present in and out of the
graphene interlayers to polymerize to form polymer nano-
composites in which the graphene platelets are delaminated at
the nano level. In situ polymerization is very important for the
preparation of insoluble and thermally unstable polymers,
which cannot be processed by solution or melt compounding.
Depending on the required molecular weight and molecular
weight distribution of polymers, chain transfer, free radical,
anionic and ring-opening metathesis polymerizations can be
used for the in situ polymerization technique. Although in situ
polymerization is a very attractive technique for well dispersed

RSC Aadv., 2017, 7, 23615-23632 | 23619
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graphene composites, there are few reports available on LDPE/
graphene composites.

Mecking et al.*® prepared polyethylene/TRG nanocomposites
using in situ polymerization of ethylene in an aqueous solution
in the presence of surfactant (Fig. 4) and by the post polymer-
ization mixing (PPM) approach, and compared it with
commercial graphene. It was found that PE/TRG composites
show a lower percolation threshold (2 wt%) than commercial
samples (20 wt%).

Ultra high molecular weight polyethylene (UHMWPE) is
a unique class of polyethylene produced by the polymerization
of ethylene monomer in the presence of Ziegler-Natta catalyst.
Sarma et al. have reported the synthesis of UHMWPE* using
single site catalyst and disentangled ultra-high molecular
weight polyethylene (DUHMWPE) new polymer® by a novel
non-cryogenic process under controlled conditions with low
entanglements. Rastogi et al.** have also reported the synthesis
of low entangled UHMWPE, also called disentangled UHMWPE,
which can be processed in the solid-state below melt tempera-
ture in the form of the uniaxial drawn tapes and films with
higher tensile strength and tensile modulus. UHMWPE has
a wide spectrum of applications as synthetic ice, biomedical
applications.®*** However, the increasing demand for applica-
tions with increased mechanical as well as electrical properties
of UHMWPE has led to the application of other techniques for
preparation of reinforced composites with enhanced mechan-
ical and electrical properties.

The in situ polymerization process is very useful in the
preparation of UHMWPE graphene nanocomposites. Ramazani
et al.* reported the synthesis of UHMWPE composites using GO
supported Ziegler-Natta catalyst. They used mono and bi-
supported ZN catalyst using magnesium ethoxide and GO as
catalyst support. Mulhaupt et al.®* synthesized UHMWPE gra-
phene composites in the presence of single site chromium
catalyst supported on functionalized graphene (FG) using the
polymerization filling technique (PFT), where the fillers are
used as catalyst supports to enable polymer chain growth
directly from the surface of nanofillers (Fig. 5).

PP has a variety of applications in automotive industries,
packaging and labelling, textile industries (e.g. ropes, thermal
wear and carpets made up of nonwoven fibers), stationery, and
laboratory equipment. In spite of so many applications, PP has
poor impact behaviour, shrinkage and relatively low stiffness at
low temperature, which leads to replacement with engineering
plastics. Therefore, several works have been carried out to

thermal

ﬁ
reduction

750°C
Crl supported
on FG

graphite oxide

Fig. 5 Schematic representation of single-site chromium catalyst
(Crl) supported on functionalized graphene (FG) (reproduced with
permission from ref. 65 copyright 2012 American Chemical Society).
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reinforce PP using CNTs®* and graphene® to improve the
physical, mechanical and physicochemical properties such as
fracture toughness, impact strength, electrical and thermal
conductivity, and flammability of polypropylene.

Huang et al.*®® reported PP/GO nanocomposite preparation
using in situ ZN polymerization. First, the GO supported catalyst
system based on titanium and magnesium metal (TiCl,/BuMgCl)
was prepared, and subsequent in situ polymerization of
propylene led to the uniform dispersion of GO sheet in the PP
matrix, which had better dispersion and exfoliation of the gra-
phene sheet (Fig. 6). The prepared PP/GO composite exhibited
electrical conductivity of 0.3 S m™ " at 4.9 wt% GO concentration.

Many reports are available on in situ polymerized PP/
graphene nanocomposites with better compatibility and
dispersion of graphene sheets, along with improved physical
properties.®*”* Dang et al.”*> synthesized a PP/reduced graphene
oxide composite by using latex technology, which involved the
in situ reduction of GO in the PP latex and subsequent filtration
(Table 1). Morphological studies by SEM and XRD revealed the
homogeneous dispersion of RGO in the PP matrix, whereas near
the percolation threshold concentration, its dielectric proper-
ties were also improved with increasing the concentration of
RGO.

5.2 Solution blending

Solution blending is the most common method for preparing
graphene/polymer composites, especially with higher molecular
weight polymers, which involves mixing of graphene and matrix
polymer in a suitable solvent. A typical solution blending
involves three steps: dispersion of graphene in a suitable
solvent, mixing with the polymer solution (at room temperature
or elevated temperature) and recovery of the nanocomposite by
precipitating or casting a film. Rigorous mixing of graphene
with polymer in a solvent significantly enhances de-aggregation
and dispersion of graphene in the polymer matrix. Solution
based methods offer advantages of lower viscosities, which
facilitate uniform mixing and better dispersion of graphene.
One of the major disadvantages of this method is the use of
large quantities of solvents and their evaporation.

Kuila et al” have prepared LLDPE/graphene nano-
composites based on dodecyl amine-functionalized graphene
(DA-G), using xylene as solvent, by the solution blending
method. They observed the increased average crystallite size of
the nanocomposites by X-ray analysis. However, the percentage
of crystallinity was decreased due to the random interface. It
was also found that the thermal stability and the crystallization
temperature of the LLDPE/DA-G nanocomposites were
increased as observed through TGA and DSC, respectively. The
composites have also shown very good gas barrier properties for
0O, and N,. HDPE has very good physical properties, but the
incorporation of carbon nanomaterials will further enhance its
overall properties like strength, thermal and electrical proper-
ties. Many reports are available related to the incorporation of
graphene into the HDPE matrix using solution blending tech-
niques. Asmatulu et al.” prepared recycled HDPE/graphene
nanoflake composites by the solution blending method using

This journal is © The Royal Society of Chemistry 2017
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Fig. 6 Schematic of synthesis of PP/GO nanocomposites by in situ polymerization (reproduced with permission from ref. 68 copyright 2010

American Chemical Society).

Table 1 Polyolefin/graphene composites by in situ polymerization

Graphene type/loading (wt%)

PO/G composite Type Min. Max. Solvent Ref. Remarks
UHMWPE/FG FG 0.5 10.0 n-Heptane 65 Chromium based catalyst supported on
(single site catalyst supported) GNS for ethylene polymerization in

heptane

i-PP/GNS GNS 0.5 20.0 Toluene 67 Metallocene complex rac-
Me,Si(Ind),ZrCl, and methyl
aluminoxane as cocatalyst for propylene
polymerization

PP/GO GO 0.96 4.9 Hexane 68 TiCl,/BuMgCl catalyst supported on GO
for polymerization of propylene in
hexane

i-PP/graphene Graphene 0.1 2.0 Xylene 69 Complexation of ZN catalysts onto
graphene sheets for propylene
polymerization

i-PP/graphene GNS 0.12 2.0 Xylene 71 IPN was observed at a relatively low

toluene as the solvent. The maximum of 8 wt% of graphene was
incorporated to get improvement in the mechanical, thermal,
and dielectric properties of the polymer nanocomposites as
a function of graphene concentration. The surface hydrophobic
properties were slightly increased at lower concentrations and
then reduced at higher concentrations of graphene, due to
increased surface smoothness.

Suner et al.” reported the synthesis of UHMWPE/GO nano-
composites using the ball milling technique by first dispersing
graphene oxide in ethanol and blending with UHMWPE in the
same dispersion of GO-ethanol mixture, followed by the ball
milling of the slurry at 400 rpm. They observed the improved
physical properties of the composites such as mechanical,
thermal and wettability behaviour of the UHMWPE/GO nano-
composite. Rastogi et al” reported the synthesis of D/
UHMWPE/reduced graphene oxide composites by the solvent

This journal is © The Royal Society of Chemistry 2017

graphene concentration by annealing the
sample for 1-6 h

blending method and they found improved rheological and
electrical conductivities of UHMWPE and DUHMWPE
composites. The composites were prepared via the solvent
blending method using acetone, where GO was first dispersed
in water followed by ultrasonication and simultaneously, poly-
mer was dispersed in acetone and mixed with stirring. The
resultant UHMWPE/GO composites were reduced at different
temperatures of 160, 180, 200 and 230 °C with hot pressing to
restore the electrical conductivity of graphene, and finally the
rheological responses of the two different composites were
compared. Li et al® reported the synthesis of the UHMWPE/
graphene nanosheet (GNS) composite using water/ethanol
solvent assisted dispersion of GNS, followed by compression
moulding at 200 °C. They found a very low percolation
threshold concentration of 0.07 vol% (i.e. ~0.15 wt%) of GNS
due to the formation of a 2D network with electrical
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conductivity value od 107 '® S em " and max conductivity of
107 S em ™" at 1.5 wt% GNS. Zhao et al.®* have also reported
a similar type of study, which involves a two-step process for the
UHMWPE graphene composite. First, graphene oxide was
coated on UHMWPE then reduction of GO was carried out in
situ. The resultant composite was moulded into a sheet by hot
pressing at 200 °C to obtain composites with segregated struc-
ture, which exhibited a very low percolation threshold of 0.028
vol% (~0.06 wt%) with max conductivity value of 10~ * Scm ™ * at
1.0 wt% RGO. Bhattacharyya et al.®* synthesized UHMWPE/RGO
nanocomposites using the solution blending method. The
solvents used were dimethyl formamide (DMF) and ortho-
dichlorobenzene (ODCB). Two methods were used to prepare
the composite film: in one method, GO was dispersed and
simultaneously reduced to RGO before the addition of polymer,
whereas in the second method GO was reduced after the addi-
tion of polymer. Only 1 wt% of GO was used to compare the
tensile strength and creep resistance of the UHMWPE
composite in both processes.

There are more reports available on the preparation of
UHMWPE/graphene and LLDPE/graphene composites to
improve some of the properties, as given by Agarwal et al.** for
the nanotribological behaviour of graphene/UHMWPE
composites, Wang et al.** for electrically conductive material
using the electrostatic absorption method, Puértolas et al.®* for
mechanical properties, chemical stability, wear resistance and
biocompatibility (Table 2).

To overcome the challenge of the homogeneous dispersion
of graphene in the polymer matrix, Fang et al.*® reported an eco-

Table 2 Polyolefin/graphene composites by solution blending

View Article Online

Review

friendly approach to synthesize PP/graphene composites. They
coated graphene with PP latex and subsequently, melt blending
was carried out for graphene coated PP latex. Improved
mechanical and thermal properties were observed at 1 wt% of
graphene concentration. Guo et al.*” reported a solution (xylene)
blending method for the preparation of PP/graphene nano-
platelets composites with improved thermal and electrical
properties (conductivity and permittivity). They were able to
incorporate 20 wt% of graphene nanoplatelets in the PP matrix
with electrical percolation at 12 wt%.

5.3 Melt blending

Melt processing is the preferred choice for the industrial
applications, because of its low cost and simplicity, which
facilitate large scale production for commercial applications.
Melt processing basically involves melting of polymer pellets to
form a viscous liquid and then the use of high shear force to
disperse the nanofillers. Hence, it does not require any solvent
for the dispersion of polymer and fillers. Melt processing is
known to be environmental friendly because it uses commercial
polymer and conventional blending techniques such as twin
screw extrusion. Almost all the polyolefins are processed using
the melt blending technique, except UHMWPE due to their high
molecular weight and high viscosity (Table 3).

Kim et al.** have prepared the LLDPE/TRG nanocomposite by
melt blending of LLDPE and its functionalized analogue
(amine, isocyanate and nitrile) produced by the ring opening
polymerization technique with varying amounts of TRG. They

Graphene loading (wt%)

Polymer matrix Type Min. Max Solvent Ref. Remarks

LLDPE DA-f-G 0.5 8.0 Xylene 73 LLDPE/DA-f-G nanocomposites for O,
and N, permeability of composite

HDPE Graphene 1.0 8.0 Toluene 74 Improved mechanical, thermal,

nanoflakes electrical, and surface hydrophobic
properties

UHMWPE RGO 1.0 1.0 DMF : ODCB 82 Two methods were used: pre-reduction

(1:4vv) and in situ reduction method in DME/
ODCB for improved mechanical
properties

UHMWPE GNS 0.14 1.5 Water : ethanol 80 For improved electrical conductivity and
percolation threshold conc.

UHMWPE RGO 0.1 4.0 Acetone 79 DUHMPE and commercial UHMWPE
composites with graphene were
compared for electrical conductivity and
rheology

UHMWPE GNP 0.1 1.0 Acetone 62 Tribological and nano-scratch behaviour
of the composite

UHMWPE RGO 0.05 1.0 Water : ethanol 81 Improved electrical conductivity and very

(50:1) low electrical percolation threshold
concentration

PP latex RGO 0.02 0.5 Water 86 PP/RGO composites by latex technology
with an ultralow electrical percolation
threshold conc.

PP GNP 5.0 20.0 Xylene 87 Improved rheological, thermal, and

23622 | RSC Adv., 2017, 7, 23615-23632
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Table 3 Polyolefin/graphene composites by melt blending
Graphene type/loading (wt%)

Polymer matrix Type Min. Max. Ref. Remarks

f-LLDPE TRG 1.0 5.0 85 Functionalization of f-LLDPE with
different groups (-NH,, -CH, NHEt, -CN,
-NCO) for compatibility with TRG

XLPE f-GO 0.5 3.0 88 GO was functionalized by a hyper-
branched flame retardant material and
incorporated into the XLPE matrix for
improved flame retardancy

LLDPE-f-Py TRG 0.5 3.0 89 LLDPE-g-amino methyl pyridine reacted
with LLDPE-g-MA (0.5-1.0 wt% graft) in
the melt mixer before compounding with
TRG

HDPE PE-g-G 0.1 0.6 75 Improved mechanical properties

iPP FG 0.1 5.0 90 GO was functionalised with 4,4’-
diphenylmethane diisocyanate (MDI)
and then stearic acid to form the FGs, for
the improved dispersion of FG

PP GNS 0.1 3.0 91 Homogeneous dispersion with improved
mechanical, rheological and thermal
properties

PP xGnP 10 50 92 Prepared using a twin-screw extruder for

found TRG well dispersed in functionalized LLDPE, compared
to unmodified LLDPE showing phase separation morphology.
Wang et al® prepared a cross-linked polyethylene (XLPE)
nanocomposite based on GO functionalization with hyper-
branched flame retardant materials (N-aminoethyl piperazine
and di(acryloyloxyethyl)methylphosphonate) to enhance the
flame retardancy as well as thermal stability of the resultant
composites. They were able to incorporate up to 3 wt% of the f-
GO into the XLPE matrix. Kontopoulou et al.** have reported
a non-covalent compatibilization approach for the synthesis of
LLDPE/TRG composites. Firstly, LLDPE-g-amino methyl pyri-
dine reacted with LLDPE-g-MA (0.5-1.0 wt% graft) in a melt
mixer followed by compounding with 3 wt% TRG in micro-
compounder to improve the filler dispersion and mechanical/
thermal properties.

Song et al.”® reported the preparation of HDPE/graphene
composites by melt blending. In their approach, first they
prepared polyethylene grafted on the surface of graphene (PE-g-
G) by in situ polymerisation followed by melt blending with
HDPE in a twin screw microcompounder for improved
compatibility between polymer and graphene, which resulted in
improved mechanical properties. Bai and Wei”” synthesized
a highly exfoliated HDPE/graphene composite using a solid
state shear milling technique and melt mixing of composite
powder in a micro-compounder to get highly dispersed HDPE/
graphene composite with high mechanical performance.

Wang et al.*® studied the effect of functionalized graphene on
the iPP matrix using the melt blending method. They used
functionalized GO with 4,4'-diphenylethane diisocyanate and
stearic acid to form functionalized graphene and then melt
blending was carried out in a twin screw microcompounder to get

This journal is © The Royal Society of Chemistry 2017

improved thermal, rheological and
barrier properties as a function of XxGnP
loadings

the iPP/FG nanocomposite. FGs achieved good dispersion and
strong interfacial adhesion with the iPP matrix, which enhanced
the thermal and mechanical properties at low FGs loadings.

Achaby et al®' reported the fabrication of PP/graphene
nanosheet (GNS) nanocomposites by the melt blending
method in a twin screw microcompounder. The GNS used here
was prepared by chemical reduction of GO using hydrazine
hydrate. They found that increasing the GNS content in the PP
matrix enhanced the mechanical as well as thermal properties
of the overall composite materials. Kalaitzidou et al.**> reported
the preparation of PP nanocomposites based on exfoliated
graphite nanoplatelets (xGnP) as a reinforcement nanofiller
using melt blending in the twin screw extruder, followed by
injection moulding to generate samples of ASTM standards for
testing. The PP/xGnP composite samples were investigated for
their thermal, rheological and barrier properties as a function
of xGnP loadings and the obtained properties were compared
with the properties of polyacrylonitrile (PAN) composites based
on carbon fibers, carbon black and nanoclay. Several other
reports are also available on similar kind of studies on
polypropylene/graphene nanocomposites®~** using a twin screw
extruder or micro-compounder for the improved physical
properties (such as thermal, mechanical, rheological and elec-
trical properties) of the PP matrix.

6. Properties of polyolefin/graphene
composites

Incorporation of graphene into polymer matrices will signifi-
cantly enhance the mechanical, electrical and thermal

RSC Adv., 2017, 7, 23615-23632 | 23623
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properties, which depend on various factors like processing
techniques, type of graphene, aspect ratio and loading of gra-
phene. Some processing conditions or methods that are good
for one property may not be good for another, e.g. surface
functionalized graphene generally enhances the mechanical
properties but deteriorates the electrical properties of the
nanocomposites such as GO/polymer composites. Thus, it is
very important to optimize the various conditions to obtain the
nanocomposites with desired properties. Since the discovery of
graphene, many studies have been done to evaluate the
mechanical, electrical and thermal properties of polymer/
graphene nanocomposites at different filler loadings and
conditions.

6.1 Mechanical properties of polyolefin/graphene
composites

With Young's modulus of 1 TPa and intrinsic strength of 130
GPa, defect free graphene is the strongest and stiffest material
ever discovered,* which suggests that the incorporation of gra-
phene into the polymer matrices can lead to significant
enhancement in their mechanical properties. Some studies
have reported significant improvement in the mechanical
properties of polymers by the incorporation of a very small
amount of graphene. Incorporation of carbon nanomaterials in
polyolefins is expected to improve the mechanical properties as
well as other physical properties of these matrices, which can be
considered for many applications including interior and exte-
rior automobile parts.

Kuila et al.” studied the effect of dodecyl amine function-
alized graphene (DA-G) on the mechanical properties of the
LLDPE matrix by the solvent blending method. They found that
an increase of 118% in storage modulus of nanocomposites at 8
wt% of DA-G (from 134 MPa to 293 MPa at 50 °C) is because
graphene acts as a reinforcing filler, which significantly
decreases the chain mobility of the LLDPE matrix. Asmatulu
et al”’* reported the improved mechanical properties of the
HDPE/graphene composite. The ultimate tensile strength
increased by 56% (at 4 wt% graphene) and >100% in tensile
modulus (from 200 to 450 MPa) at 1 wt% graphene loading,
which could be attributed to the thickness of the graphene
sheet (0.35-1 nm) leading to high surface area and increased
load transfer sites between the polymer matrix and filler.
Achaby and Qaiss”® compared the mechanical properties of
HDPE/GNs and HDPE/MWCNTs nanocomposites prepared by
melt blending. The tensile strength of the HDPE/graphene
nanocomposite was 77% higher than the pure polymer at 3
wt% of graphene, whereas an increase of 58% was found in the
case of the corresponding nanotube nanocomposites at the
same filler concentration. The tensile modulus of HDPE/
graphene and HDPE/MWCNT nanocomposites was enhanced
by 87 and 57%, respectively, as compared to virgin HDPE
matrix. Yan et al.*® reported the UHMWPE/GO composite with
enhanced mechanical properties with good biocompatibility for
application as artificial joints in the human body. They found
that the composite with 0.5 wt% GO had the best tensile
properties and good biocompatibility.

23624 | RSC Adv., 2017, 7, 23615-23632
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Milani et al.* also investigated the mechanical performance
of isotactic polypropylene/graphene composites prepared by in
situ metallocene polymerization. It was found that graphene
nanosheets were uniformly dispersed in the polymer matrix and
the modulus was enhanced from 1280 MPa in the case of the
neat polymer, to 1920 MPa for iPP/graphene nanocomposites at
a higher loading of graphene, ie. 17.4 wt%. Table 4 is the
summary of other polyolefin/graphene composites. Achaby
et al.*>* reported an ~37% increase in Young's modulus (from
1156 MPa to 1577 MPa) and ~15% increase in tensile strength
at 0.5 wt% of graphene in PP/GNS composites prepared via melt
compounding. Song et al.*® reported an ~75% increase in yield
strength (from 22 to 37 MPa) and an ~74% increase in Young's
modulus (1002 MPa to 1760 MPa) for PP/graphene composites
prepared by first coating graphene using PP latex and then melt-
blending the coated graphene with PP matrix at 1.0 wt% of
graphene, due to the effective external load transfer.

6.2 Thermal properties of polyolefin/graphene composite

Incorporation of graphene can significantly enhance the
thermal transport properties of polymer/graphene nano-
composites, which extend their applications in printed circuit
boards, connectors, thermal interface materials, heat sinks,
power electronics, electric motors, generator, heat exchangers
etc. Thermal properties of a composite are a very important
factor in selecting processing conditions and the application
area of the composite material. As discussed above, the thermal
conductivity (TC) of monolayer graphene is in the range of
5000 Wm ™ K™, Veca et al.”” and Yu et al.*® have independently
reported up to 30-fold increase (0.2 Wm ' K ' to 6.44 Wm™*
K™ ") in thermal conductivity for the epoxy matrix by the incor-
poration of 60 wt% and 50 wt% of ~2 nm thick graphite
nanoplatelets via in situ polymerization, respectively. However,
Asmatulu et al.” found a 65% increase in thermal conductivity
(0.42 to 0.64 W m~ " K™ ') for recycled high density polyethylene
(HDPE) composites prepared by melt processing at a similar
loading of graphene nanoplatelets (8.0 wt%), which shows that
the orientation of graphene, the degree of exfoliation and
interfacial interaction of the host polymer with the graphene
surface have an influence on the thermal conductivity of the
composites. Kontopoulou et al® prepared functionalized
LLDPE/TRG composites and found >150% increase in thermal
conductivity (0.20 to 0.52 W m™~* K™ ') at 3.0 wt% TRG, which
could be attributed to the better exfoliation and formation of
the TRG network inside the polymer matrix (Table 5).

Along with TC, the improvement in thermal stability and
melting temperature of the host polymer matrix is another
benefit expected from graphene reinforcement. Achaby et al.**
reported a 6 °C increase in melting temperature (from 164 to
170 °C) and 9 °C increase in crystalline temperature (116 to 125
°C) of the PP matrix at 3 wt% of graphene loading in PP/
graphene nanocomposites. Guo et al.®* have reported the
increased thermal stability of the PP/graphene composite with
the increase in degradation temperature from 259 to 295 °C at
15 wt% graphene loading. Qiu et al®® compared the thermal
stability of iPP nanocomposites based on stearic acid

This journal is © The Royal Society of Chemistry 2017


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6ra28392f

Open Access Article. Published on 28 April 2017. Downloaded on 10/29/2025 7:16:14 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online

Review RSC Advances
Table 4 Mechanical properties of polyolefin/graphene composites

Tensile modulus (MPa)
Polymer Graphene® Method of Virgin Composite Tensile strength Strain at
matrix (Wt%) preparation polymer (% increase) (MPa) % increase break (%) Ref.
LLDPE DA--G (8.0) Solution 1046° 1582° (51) NA NA 73
LLDPE-g-Py TRG (3.0) Melt 90 155 (72) NA ~20 85
HDPE GNS (1.0) Solution 200 450 (125) NA NA 74
UHMWPE GNS (10.0) In situ 420 991 (135) 39 NA 88
UHMWPE GNS (0.5) Solution 401 550 (37) No change NA 83
iPP GNS (17.4) In situ 1280 1920 (50) No change 30 70
PP EGP-PP latex (1.0) Melt 1002 1760 (75) 75 NA 86
PP GNS (3.0) Melt 1155 2315 (100) 81 NA 91
iPP TRG (10.0) Melt 980 1500 (53) NA -99 93

“ Graphene wt% at which maximum mechanical property achieved. ? Obtained from dynamic mechanical analysis.

Table 5 Thermal conductivity (TC) of polyolefin/graphene
composites
TC (Wm 'K

Polymer Graphene® Method of  Virgin Composite

matrix (Wt%) preparation  polymer (% increase) Ref.
HDPE GNP (8.0)  Melt 0.42 0.64 (52%) 74
LLDPE  TRG (3.0)  Melt 0.20 0.52 (160%) 89
PP GNP (50.0) Melt 0.22 1.20 (>400) 92

“ Graphene wt% at which maximum thermal conductivity is achieved.

functionalized graphene (FG) and without modified graphene
prepared by the melt blending method. The initial degradation
temperature and maximum degradation temperature increased
by 12 °C (388 to 400 °C) and 66 °C (from 407 to 473 °C)
respectively for iPP/FG nanocomposites, even at very low
loading (0.1 wt%) of FG as compared to iPP/graphene
composites. They also observed that the crystallization
temperature (7.), in the case of both iPP/graphene and the iPP/
FG nanocomposites, increased with increasing filler content.
The crystallization temperature (7..) of iPP/FG nanocomposites
increased from 109.5 °C (for virgin iPP) to 119.5 °C (for iPP/FG
composites at 0.2 wt% FG).

6.3 Electrical conductivity of polyolefin/graphene
composites

In addition to the exceptional thermal and mechanical prop-
erties, graphene also possesses very high intrinsic electrical
conductivity. Thus, the incorporation of small amounts of gra-
phene can lead to a significant increase in the electrical
conductivity in the host of polymer matrices. It was observed
that the electrical conductivity of the insulating polymer can be
increased by several orders of magnitude by the addition of
avery small amount of graphene in the polymer matrices, which
will help in preserving other performance properties of poly-
mers such as thermal and mechanical properties, low melt flow
viscosities, etc. Particularly, the use of graphene as a conductive
additive to polyolefin is emerging as a major applications in

This journal is © The Royal Society of Chemistry 2017

sensors, antistatic materials in electrostatic discharge (ESD),
electromagnetic interference (EMI) shielding materials and
conductive coatings. The increase in electrical conductivity of
the polymer matrix upon incorporation of graphene depends on
many factors including the type of dispersion of graphene,
aspect ratio, surface functionalization and the amount of
loading. It is known that the electrical conductivity of the
nanocomposites increased with increasing filler loading till
a critical filler concentration value, where a dramatic increase in
conductivity is observed after that the conductivity value is
saturated. This critical filler concentration is called the elec-
trical percolation threshold concentration, where the filler
forms a three-dimensional conductive network within the
matrix. Several studies have been carried out on the electrical
conductivity of graphene based polyolefin composites (Table 3).
In particular, Du et al® prepared an electrically conducting
UHMWPE/graphene composite by the solvent assisted method;
they found the electrical percolation threshold concentration
(PTC) at ~0.17 wt% graphene and maximum conductivity of
~10"* § em ™" at 1.5 wt% of graphene loading. Following the
same procedure, Zhao et al.® reported a very low percolation
threshold concentration of 0.028 vol% (~0.05 wt%) graphene in
the case of the graphene/UHMWPE composite with segregated
structure prepared by solution processing with maximum
conductivity value of ~107> S ecm ' at 1 wt% of graphene
loading. However, in the case of polypropylene/graphene
composites, Guo et al.® reported a very high percolation
threshold concentration of 12 wt% graphene loading. In
another report, Dong et al.® found the maximum electrical
conductivity of 3 x 107° S em ™" at 4.9 wt% of GO in the PP/GO
composite prepared via in situ Ziegler-Natta polymerization.
Some other results on polyolefin composites are summarized in
Table 6.

6.4 Gas barrier properties of polyolefin/graphene
composites

The barrier properties of a polymer are very important for many
packaging and protective applications such as in the food
industry, pharmaceuticals and electronic devices (e.g. flexible
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Table 6 Electrical conductivity of polyolefin/graphene composites
Polymer Graphene® Method of PTC Electrical conductivity
matrix (Wt%) preparation (Wt%) (Sem™) Ref.
LLDPE-g-Py TRG (4.0) Melt 1.3-2.2 ~107* 89
HDPE GNS (7.0) Solution 2.2 ~107° 100
UHMWPE RGO (4.0) Solution 0.3 7.1 x 1072 82
UHMWPE GNS (2.0) Solution ~0.25 ~107* 83
UHMWPE GNS (10.0) In situ 2.5 1073 61
UHMWPE GNS (7.0) Electrostatic 0.25 1072 99
adsorption
UHMWPE GNS (1.5) Solution 0.17 ~107° 63
UHMWPE RGO (1.0) Solution 0.06 ~1072 81
PP GO (4.9) In situ 1.52 3x107° 69
PP ODA-f-G (1.25) Melt 0.63 ~107° 94
PP GnP (15.0) Solution 12 ~107 87
iPP TRG (10.0) Melt <5 ~107° 93

“ Graphene wt% at which maximum electrical conductivity is achieved.

displays). It is worth mentioning that for packaging applica-
tions, the polymer should have extremely low gas and vapour
permeabilities in various environments.'” A number of
methods are available for improving the barrier properties of
polymeric materials along with some drawbacks due to high
cost, opacity, humidity sensitivity and low mechanical
strength.' Polymeric materials such as PE,'” PP,’** and other
matrices'*>'°® have been extensively used to coat thin film layers
for low gas permeability. However, their applications are limited
because of the high gas permeability, as compared to high
demands for the modern packaging application. For the
improvement of gas barrier properties of polymers, various
nanomaterials have been used to fabricate polymer nano-
composites, where these nanomaterials will block the gas or
vapour diffusion to increase the tortuosity, resulting in an
extended travelling pathway of diffused gas through polymer
nanocomposites. Layered nano-silicates have been extensively
investigated during the last decade because of their excellent
barrier properties.'”*® However, due to their hydrophilic
nature, silicate clays tend to aggregate easily because of van der
Waals and electrostatic interactions during mixing in solution,
as a result the barrier properties decrease.

POs, especially PE and PP, have had great commercial appli-
cation in the packaging industry, being the most extensively used
of all thermoplastic materials."* For the improvement of barrier
properties, graphene has recently been incorporated into

Table 7 Gas permeability of polyolefin/graphene composites

Polymer Graphene® Method of Gas permeability

matrix  (wt%) preparation Gas (%) in fm Pa~' s™" Ref.

LLDPE DA-f-G (1.0) Solution Nitrogen 11.9 to 5.7 (52) 73
Oxygen 36.8 to 19.5 (47)

PP RGO (1.0)  Melt Oxygen 179.8 to 58.2 (~68) 112

PP GNP (6.5) Melt Oxygen 220 to 202 (~20) 92

“ Graphene wt% at which maximum reduction in gas permeability is
achieved.

23626 | RSC Adv., 2017, 7, 23615-23632

polyolefin matrices as a nanofiller due its remarkable material
properties.”>*>'** It has been reported that defect free, single
crystalline monolayer graphene not only gives excellent
mechanical and electrical properties, but also has good gas
impermeability.* However, the synthesis of defect free monolayer
graphene is still a challenge. One strategy for the use of the gas
barrier properties of graphene in mass production is to use GO or
RGO, which are prepared by oxidation, followed by the exfoliation
and reduction of graphite (Table 7). Kuila et al.” reported the gas
barrier (N, and O,) properties of LLDPE/DA-f-G composites. They
found that the permeability of N, and O, gas was lower,
compared to neat polymer. The oxygen permeability was reduced
from 36.8 to 19.5 fm Pa~' s~!, whereas for nitrogen it was
reduced from 11.9 to 5.7 fm Pa~" s~ " at 1 wt% DA-G and it was
almost constant for the higher graphene loadings up to 5 wt%.

Song et al.'** prepared PP/RGO nanocomposites via melt
blending, which shows reduction in oxygen permeability up to
~68% (179.8 to 58.2 fm Pa ' s ') at 1 wt% of RGO loading,
which is attributed to the high aspect ratio of RGO, resulting in
increased diffusion length of oxygen permeation. Kalaitzidou
et al.” reported only ~20% reduction (220 to 202 fm Pa~ "' s~ ') in
the oxygen permeability of PP/GNP composites at 6.5 wt% GNP
loading. Thus, the incorporation of graphene based fillers can
significantly reduce gas permeation through a polymer
composite, as compared to the neat polymer. A percolating
network of platelets can provide a ‘tortuous path’, which
inhibits molecular diffusion through the matrix, thus resulting
in significantly reduced permeability.

6.5 Rheological properties of polyolefin/graphene
composites

Polymers have viscoelastic properties by nature and hence, they
have distinct flow behaviour. Rheological properties are very
important factors for analysing the melt flow properties of poly-
mers and nanocomposites. The knowledge and design of the flow
behaviour is essential for its processing and commercial appli-
cations in all forms of production and processing of polymers to

This journal is © The Royal Society of Chemistry 2017
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manufacture either small or larger parts. This is directly related
to the microstructure of the materials, interactions between
polymer chains and nanofillers, aspect ratio of the nanofiller and
most importantly, the dispersion state of the nanofillers. Several
efforts have been made to explore the rheological properties of
the polymer, which is very much responsive to the change in
structure of the filled polymer nanocomposites in the low
frequency range. Various polymer nanocomposites have been
used to study their rheological behaviour based on carbon
nanofillers (MWCNT and graphene) such as poly(methyl meth-
acrylate),""**"” polyesters'®'® and polyolefins.”®”**2**2! Among
the polyolefins/graphene composites, the rheological properties
of polyethylenes/graphene composites are less explored,
compared to polypropylene composites.®**>?

The present study is mainly focused on the rheological
properties of polyolefin (PE and PP)/graphene composites.
Kontopoulou et al.**® studied the rheological behaviour of
LLDPE nanocomposites based on TRG as the nanofiller
prepared by the melt blending technique. LLDPE was grafted
with pyridine for compatibility with TRG and to establish
a non-covalent m-7 interaction between them. They found
a pronounced increase in the viscoelastic properties of the
composites with increased concentration of TRG loading.
Recently, Khanam et al.*** reported the melt blending of LLDPE
with graphene nanoplatelets (GNPs) in a twin screw extruder by
varying the screw speed and GNP loading. It was observed that
with increasing GNPs loading at low speed, the viscosity of the
polymer increased, which indicates that more power is required
for processing, whereas at higher speed there was a reduction in
viscosity. However, they found that the high screw speed
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resulted in good dispersion of GNPs in the matrix and thus an
increase in thermal stability and thermal conductivity, whereas
this effect was not significant for the mechanical and electrical
properties. Rastogi et al.”® studied the unique rheological
properties of UHMWPE nanocomposites based on reduced
graphene oxide nanosheets (rGON). They used commercial
UHMWPE (C_PE) and lab made disentangled UHMWZPE
(Dis_PE) with GO to make composites, followed by compression
moulding at varying temperatures (160 °C for C_PE and 125 °C
for Dis_PE). The rheological analysis of the two sets C_PE/rGON
and Dis_PE/rGON nanocomposites reveals the difference in the
interaction between the polymer chains of Dis_PE and rGON, as
compared to the entangled C_PE. In both cases, minima in the
storage modulus curve at a specific rtGON concentration was
seen (Fig. 7). Thus, it was concluded that strong interactions of
polymer chains with rGON inhibit Dis_PE from achieving
thermodynamic equilibrium in the melt state, whereas in the
C_PE sample, the broader molecular weight distribution and
higher adhesion of the long polymer chains to the rGON surface
lowers the elastic modulus in the polymer melt.

The rheological properties of polypropylene nanocomposites
with nanofillers have been studied more as compared to other
polyolefins. Guo et al® fabricated polypropylene graphene
nanoplatelet (GNP) composites by solvent blending techniques
and studied their rheological properties. The results reveal that at
lower GNP loading (<12 wt%), the modulus and viscosity of the
PP/GNP composites were reduced, whereas at higher loading, they
increased. Achaby et al.** prepared graphene based PP composites
by the melt blending technique. Rheological studies of the PP/
graphene nanocomposites showed a Maxwellian-like behaviour
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Fig. 7 Storage modulus vs. frequency graphs of (a) C_PE/rGON composites. (b) Dis_PE/rGON composites and frequency sweep graphs of (c)
C_PE/rGON composites. (d) Dis_PE composites (reproduced with permission from ref. 79 copyright 2015 American Chemical Society).
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at lower graphene loadings (<0.5 wt%) and a viscoelastic solid-like
behaviour at higher graphene loading exceeding the percolation
threshold limit, which lies between 0.5 to 1.0 wt%.

7. Future perspectives and
applications

The versatility of graphene/polyolefin nanocomposites indi-
cates their potential for application in the automotive, aero-
space, electronics and packaging industries. However, there are
several challenges:

e Micromechanically produced monolayer and bilayer gra-
phene, which are supported on SiO, substrate, are sold at 0.5-3
British pound per pm®>** Graphene can be produced more
economically via the reduction of GO, but it will not see prac-
tical applications until the commercial scale production of
graphene is available at a lower cost.

e Another barrier to practical application is the dispersion of
graphene in the polyolefin matrix and also the handling of
graphene during processing. To date, the most commonly used
route to produce graphene is vie GO by the oxidation of
graphite* i.e. the modified Hummers' method.

e Another important factor is the adhesion between gra-
phene and polyolefin, which is considered in designing the
composite materials. We can get superior mechanical proper-
ties when graphene is strongly bonded to polymer matrix
polymers. This can be done by covalently attaching alkyl groups
to the graphene surface, resulting in the compatibility with the
polyolefin matrices.

The outstanding properties of graphene have opened up a new
age of advanced multifunctional materials. Incorporation of gra-
phene into polyolefin matrices provides materials that could be
used for many high performance engineering applications like
conductive paints, EMI shielding and electrostatic discharge
material, and as gas barriers in packaging application.”****** Thin
layers of graphene on plastics might also be used as transparent
conducting composites. The high mechanical strength of
polymer/graphene nanocomposites could be utilized to make
some high-end sporting goods such as tennis rackets, baseball
bats, etc. The superior thermal stability of graphene based poly-
mer composites could be utilized for the production of flame
retarding materials.” In a very recent report You et al.**® fabri-
cated a cost effective PP/graphene nanocomposite that has in-
plane oriented graphene sheets by melt blending in a micro-
compounder, followed by biaxial stretching to make PP/graphene
film. It was found that as a consequence of this in-plane orien-
tation of graphene sheets, the storage modulus and conductivity
of the polypropylene composite was improved as compared to
virgin PP. Therefore, they suggested that this strategy can be
integrated with the commercialized biaxial process to produce
high quality polyolefin/graphene composite films.

8. Conclusions

We have reviewed the current methods of preparation, properties
and potential applications of graphene and polyolefin/graphene
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composites. Although the polyolefin/graphene composite is still
in its early stage of development, the huge potential of this
material has become apparent in different fields of research such
as automotive, electronic application and recently, in barrier
application. The main challenge to fully exploiting graphene/
polyolefin composites is that of achieving the level of homoge-
neous dispersion of graphene so that maximum surface area will
be available for the load transfer between filler and matrix poly-
mer. The functionalization of the graphene surface with organic
modifiers is one of the best routes to improving the dispersion as
well as the stress transfer between graphene and the polyolefin
matrix, which has to be carried out as per the requirements in
order to provide proper bonding. However, the functionalization
of the graphene surface affects the intrinsic properties of gra-
phene; therefore, it is important to focus on different methods
for non-covalent functionalization of graphene and discover
a route that can improve the dispersion and compatibility
without affecting the intrinsic properties.

Three major techniques, solution, melt and in situ polymeri-
zation, are used in the fabrication of graphene/polymer
composites. Although solution blending produces high quality
composites, melt compounding is simple, greener and provides
options for the large scale production of polyolefin/graphene
nanocomposites. Recently, in situ polymerization has also
shown great potential in the manufacture of polyolefin/graphene
nanocomposites, especially graphene based PP, LLDPE and
UHMWPE composites. It is expected that the addition of gra-
phene nanosheets to polymer matrices could act as an excellent
reinforcement, but this has yet to be fully realized.

Abbreviations

GO Graphene oxide

RGO Reduced graphene oxide
CVD Chemical vapour deposition
PO Polyolefin

GNS Graphene nanosheet

GNP Graphene nanoplatelets
GNR Graphene nanoribbons
TRG Thermally reduced graphene oxide
MWCNT Multiwall carbon nanotubes
CB Carbon black

PNC Polymer nanocomposites
PP Polypropylene

PE Polyethylene

DMF N,N-Dimethyl formamide
ODCB Ortho dichlorobenzene
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