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Fabrication and behaviors of CdS on Bi-MoOg thin
film photoanodes

Hao Yang,? Zhiliang Jin,** Hongyan Hu,*® Gongxuan Lu® and Yingpu Bi®

Most Bi-based photoelectrodes have suitable band gaps and can effectively promote hydrogen evolution
from water splitting, but there are few studies up to now for simple preparation methods for Bi-based
binary metal oxides as photoanodes. Here, we prepared a novel Bi,MoOg thin film photo-anode without
a template; our preparation methods of Bi-based binary metal oxides with controlled morphologies were
conducted by growing the Bi,MoOg directly on an electrical substrate via an in situ growth process. The
photoanodes show well-shaped thin film morphologies and exhibit impressive photoelectrochemical
properties compared to the Bi-based photoanodes synthesized by conventional methods. A 2x
enhanced photocurrent was obtained when the Bi,MoOg thin film photoanodes were modified with CdS
in comparison with the primary BiMoOg (about 0.85 mA cm~2) under identical conditions. The
enhanced photoelectrochemical properties were studied using several techniques including SEM, XRD,
XPS, UV-vis diffuse reflectance, etc. and the results were in good agreement with each other. Moreover,
the Bi;MoOg thin film photoanodes possess long-term stability under solar irradiation and show

rsc.li/rsc-advances a considerable photocurrent.

1. Introduction

Photoelectrochemical (PEC) water splitting, as a promising
strategy for a renewable energy supplement and environmental
protection, has attracted worldwide attention. The deter-
mining factor for efficient water splitting is development of
a semiconductor photoanode which has rapid charge transfer,
a wide absorption spectrum, and excellent stability.*>*
However, the traditional way of synthesizing photoanodes
limits widespread application due to small specific surface area,
low visible light responses, and serious charge recombination
problems.” ™ Therefore, developing a new material with high
efficiency, durability, easy preparation, and low cost of
manufacturing is extremely urgent. Cheng et al. developed
various methods of preparing TiO, photoelectrodes and ob-
tained excellent results.*>*> Recently, Yu et al. synthesized a new
type of TiO, photoelectrode which directly grows on fluorine-
doped tin oxide (FTO) using TiCl; mediated surface treatment
of TiO, nanorods that were designed and fabricated.'**
Furthermore, TiO, thin film electrodes were successfully
synthesized by Zhang et al.** using a sol-gel method and the
maximum photocurrent value was only 0.5 mA cm > We
prepared well-aligned ZnO nanowire arrays, by adding other
semiconductors, such as BiMoOg and Au, which significantly
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enhanced the photoelectrochemical properties.’>'¢ Attaching
substrates increased surface area that was conducive to
improved photocurrent due to better transportation of charge
carriers and more reactive sites.

Compared with single metal oxides, very few simple and
effective preparation methods of binary metal oxides have been
developed. Binary metal oxides containing Bi(m) have been
identified as promising semiconductor electrodes in solar
energy conversion. For example, perovskite bismuth ferrite
(BiFeO;) with a direct band-gap of approximately 2.2 eV is
a promising multifunctional material that also exhibits photo-
catalytic properties.””'® Phase-pure BiFeO; films were grown
directly via dual-source low-pressure from ligand-matched
precursors and exhibited high activities." In particular,
Bi,WO, BiVO,, and Bi,MoOg raised great concern due to their
suitable band gaps that absorb visible light.>** T. W. Kim and
K. S. Choi synthesized nanoporous BiVO, electrodes which
achieved a photocurrent density of 1.04 mA cm™* at 1.23 V
versus RHE; the ZnFe,0, layer increased the photocurrent
significantly with 2.84 mA cm™> and uniform conditions as
well.** We fabricated a nanoporous BiVO, photoanode using
a facile method for rational controlled pore-size and obtained
the highest photocurrent density (3.5 mA cm ™) at a potential of
0.7 V vs. RHE for sulfite oxidation.”” Correspondingly, using
traditional methods such as spin-coating, dip-coating, or elec-
trostatic self-assembly deposition, our synthesized Bi,WOg thin
films are reported. As far as we know, Bi;MoOg as a thin film-
type of electrode applied for photoelectrochemical purposes
has rarely been reported.”®** Zhu et al. prepared Bi;MoOs thin

This journal is © The Royal Society of Chemistry 2017


http://crossmark.crossref.org/dialog/?doi=10.1039/c6ra28323c&domain=pdf&date_stamp=2017-02-08
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6ra28323c
https://pubs.rsc.org/en/journals/journal/RA
https://pubs.rsc.org/en/journals/journal/RA?issueid=RA007018

Open Access Article. Published on 09 February 2017. Downloaded on 10/23/2025 4:47:03 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

film electrodes by means of hydrothermal methods.*® Short-
comings of photoanodes with Bi,MoO, powder prepared by the
above methods often caused poor attachment of particles to the
electrical substrate, suppressed the transfer of photo-generated
charge, and lowered the photocurrent. Recently, Gong et al.
synthesized Bi,M0Oe porous nanoflake photoanodes using BiOI
as the template with a Bi source. The maximum photocurrent
density was 120 pA cm > under AM 1.5G irradiation at
a constant applied bias of 1.0 V vs. RHE." Based on the above
study, we attempted to design and synthesize novel Bi,Mo0Og
thin film electrodes with a simple method and high photo-
catalytic activities.

In this work, we exhibit a novel Bi;MoOs thin film photo-
anode prepared by means of a simple method. This preparation
method grows Bi,MoOg on the electrical substrate directly via
an in situ growth process without the aid of any template. We
further raised the photocurrent on Bi,MoOs thin film photo-
anodes and modified with CdS. The photocurrent was improved
by two times in comparison with the primary Bi,MoO¢ (about
0.85 mA cm?) under identical conditions.

2. Experimental section
2.1 Preparation of composite photoanodes

All chemicals were analytical grade and used directly without
any further purification. A precursor solution was prepared in
which (NO3);-5H,0 and MoCls with atomic ratios of 2 : 1 were
dissolved in 8 mL ethylene glycol (EG). Then, 16 mL EG solution
containing 0.544 g polyethylene glycol 600 (PEG-600) was
added, followed by 60 mL ethanol and the solution was
magnetically stirred and equally transferred into two 100 mL
polytetrafluoroethylene stainless autoclaves. The fluorine-
doped tin oxide (FTO) (1 x 5 ¢cm?) substrate was put in the
autoclave after washing with a cleaning agent, acetone solution,
isopropyl alcohol, ethanol, and water, respectively. After that,
the autoclave should be kept at 432 K for 24 h by a hydrothermal
reaction. Finally, the materials were annealed in air at 772 K for
2.5 h after which a yellow-green film was obtained on the FTO.

Herein, the concentrations of Bi** were controlled at 20 mM,
30 mM, and 40 mM, respectively, and the corresponding
products were named as BM-20, BM-30, and BM-40. The CdS
products prepared with a hydrothermal anion exchange method
and 0.1234 g cadmium nitrate tetrahydrate and 0.03 g thio-
acetamide were separately dissolved in 10 mL deionized water.
Then, the two prepared solutions were mixed and reacted in
a water bath at 312 K for 15 min. The Bi,MoO¢ & CdS composite
photoanode was synthesized by dripping with 100 pL of the
above solution and dried at 422 K.

2.2 Characterization of bismuth molybdate films

Morphology was characterized by a field-emission scanning
electron microscope (JSM-6701F.JEOL) at an accelerating
voltage of 5 kV. Transmission electron microscopy (TEM)
measurements were employed using a FEI Tecnai TF20 micro-
scope at 200 kV. The crystalline structure was identified by X-ray
diffraction analysis (XRD, Rigaku RINT-2000) using Cu Ka
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radiation at 40 keV and 40 mA. X-ray diffraction spectra (XRD)
measurements were performed on a Rigaku RINT-2000 instru-
ment utilizing Cu Ko radiation (40 kV). XRD patterns were
recorded from 10° to 90° with a scanning rate of 0.067° s~ *. UV-
vis diffuse reflectance spectra were taken on an UV-2550 (Shi-
madzu) spectrometer using BaSO, as the reference. The element
composition was detected by X-ray photoelectron spectroscope
(XPS, ESCALAB 250Xi).

2.3 Photoelectrochemical measurements

All PEC measurements were conducted on an electrochemical
workstation (CHI760E) in a three-electrode system. The
prepared photoanode was the working electrode, a Pt plate was
the counter electrode, and a saturated calomel electrode (SCE)
was the reference electrode. A 300 W xenon lamp equipped with
an AM 1.5 filter was used as the irradiation source with a light
intensity of about 100 mW em™> estimated with a radiometer
(Newport, Models 1916C and 818-P). A 0.2 M Na,SO, aqueous
solution was employed as the electrolyte. Photocurrent
response tests of the photoanodes with on and off cycles were
carried out at a fixed bias of 0.6 V vs. SCE.

3. Results and discussion
3.1 Crystal structure and morphology

As shown in Fig. 1A-F, the stacking Bi,MoOs nanoparticles of
different precursor's concentration are irregularly grown in
FTO. It can be clearly seen in Fig. 1A that the Bi,M0oO4 nano-
particles have regular nanoflower structures before annealing.
After annealing, the morphology of Bi,MoOs nanoparticles was
changed because the PEG-600 was eliminated. Fig. 1B shows the
morphology of BM-20; here, the precursor Bi(NO3); mole frac-
tion is 20 mM and the Bi;M0Og nanoparticles show reduced
growth in FTO, caused by a decreased illumination utilization
rate. In addition, when precursor Bi(NO;); mole content is
40 mM, the Bi,Mo0Og nanoparticles grew excessively in FTO,
caused by a high combination of photogenerated electron-hole
pairs. When the mole content of Bi,M0Og nanoparticles was
40 mM then it exposed more active crystal surfaces. Further-
more, growing irregular patterns increases specific surfaces and
exposes more active sites, which contributes to absorption of
light, decreases the recombination of photogenerated charge
carriers, and improves photoelectric currents of the photo-
anodes. Fig. 1E and F show the morphologies of pure CdS and
the Bi,M0Og & CdS photoanode. It can be seen that the pure
CdS nanoparticles are regularly spaced and that some CdS was
deposited onto the surface of Bi,M0Os nanoparticles in the
Bi,M0O¢ & CdS composites.

With a view to further investigating CdS nanoparticles
located in the composite, energy-dispersive spectroscopy (EDS)
was employed and the results of different points of Bi,M0O, &
CdS composite are shown in Fig. 2. The different elements and
their contents can be clearly seen in Fig. 2. Because the contents
of O and S were significantly decreased in the upper layer, it can
be inferred that only a portion of CdS was deposited onto the
surface of Bi,M0Os. Correspondingly, in the lower layer, no Bi
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Fig. 1 SEM patterns of: (A) the Bi,MoOg before annealing, (B) BM-20, (C) BM-30, (D) BM-40, (E) CdS, and (F) Bi,MoOg & CdS composites.

and Mo elements were observed and the S and Cd element
signals were significantly high, which clearly indicated that
these were from CdS nanoparticles. The Si elements were from
the FTO glass under high testing energy. As a result, it can be
reasonably speculated that a portion of CdS was deposited onto
the surface of Bi,MoOs and another portion of CdS was
deposited onto the FTO.

The X-ray diffraction (XRD) patterns of the BM-20, BM-30,
BM-40, and Bi,MoO¢ & CdS composite photoanodes are
exhibited in Fig. 3. It is clearly shown that the diffraction peaks
were well indexed to Bi,MOg (JCPDS 21-0102); namely, the
characteristic sharp peaks could be indexed to the (111), (131),
(200), (202), and (133) crystal faces at 23.524, 28.264, 46.707, and
55.538. Furthermore, we observed the exposed (131) crystal
faces were different with the different precursor contents;
particularly, the BM-30 displayed maximal intensity of (131)
crystal faces, exhibiting the best catalytic activity of current
density at 0.38 mA cm 2. The diffraction peaks of CdS were not
observed; because of its low content in the composite, the CdS
diffraction peaks are inconspicuous. In addition, the patterns
have distinct diffraction peaks at 26.5, 37.7, 51.7, 61.7, and 65.7,
which could be indexed to the SnO, structure on the FTO.

10776 | RSC Adv., 2017, 7, 10774-10781

3.2 The element composition of Bi,M0Og & CdS composite
photoanodes sample

To determine chemical composition and identify chemical
states of the elements in the Bi,M0oOg & CdS composite photo-
anode sample, X-ray photoelectron spectroscopy (XPS) spectra
are also presented in Fig. 4. Specifically, Fig. 4A is a survey
spectrum of the Bi,MoOg & CdS composite photoanode, which
demonstrates that elements of Bi, Mo, O, Cd, and S exist in the
Bi,Mo00Og¢ & CdS composite photoanode. In Fig. 4B the binding
energies 157.8 and 163.1 eV correspond to Bi 4f;,, and Bi 4f;5),,
respectively.>* For the XPS spectrum of S 2p in Fig. 4B, the
peak located at 160.5 was assigned to S 2p;/, and another one
located at 162.6 corresponded to S 2p,,,. In Fig. 4C, the binding
energies of around 232.2 eV and 235.3 eV could be ascribed to
Mo 3d.** The two peaks centered at 405.5 eV and 412.2 eV in the
Cd 3d XPS spectrum (Fig. 4D) are ascribed to the Cd 3ds,, and
Cd 3d3,, respectively.®®

3.3 UV-vis absorption spectra

Three samples, namely Bi,Mo0Os, CdS, and Bi,MoOgs & CdS
photoanodes, were employed. The sample of pure Bi,MoOg was

This journal is © The Royal Society of Chemistry 2017
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Fig. 3 XRD patterns of the BM-20, BM-30, BM-40, and Bi,MoOg &
CdS composite photoanodes samples.

prepared with Bi(NO;); as the precursor and the mole content is
30 mM. The Bi,M0O¢ & CdS photoanode agreed with the XPS
sample's data.

UV-vis light absorption spectra of pure Bi,Mo0Og, CdS, and
Bi,Mo0O¢ & CdS photoanodes are shown in Fig. 5A, respectively.
It can be clearly seen that absorption of the pure Bi,Mo0Og
photoelectrode was 450 nm, the pure CdS photoelectrode was
500 nm, and the Bi;MoOg & CdS composite photoelectrode was
490 nm. The UV-vis DRS of the Bi,MoO¢ & CdS composite
photoelectrode has an obviously red shift compared to pure
Bi,M0Og. In addition, the band gap of CdS and Bi,MoOg was
calculated in Fig. 5B. Specifically, the band gap of CdS was
2.46 eV and Bi,MoOg was 2.73, which was beneficial to

This journal is © The Royal Society of Chemistry 2017
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photocatalytic excitation by visible light. This suggested that the
as-fabricated Bi,MoOs & CdS composite photoelectrode had
a suitable band gap. Therefore, good PEC properties of the
Bi,M0O¢ & CdS composite photoelectrode under solar irradia-
tion are presented.

3.4 The photoelectrochemical properties

The photoelectrochemical properties of BM-20, BM-30, BM-40,
and Bi,MoOg & CdS composite photoanode were investigated.
Specifically, an experiment was carried out in 0.2 M Na,SO,
under illumination of 100 mW cm ™2 coupled with an AM 1.5
filter to provide simulated solar irradiation. The linear-sweep
voltammograms under transient illumination are presented in
Fig. 6A, from which it can be seen that the composite electrodes
of Bi,M0Ogs & CdS have a much lower photocurrent onset
potential than the pure Bi,M0Oe. This is mainly because of the
extended absorption edges of the Bi,MoOg photoelectrode
resulting from the loaded CdS. Furthermore, pure CdS pre-
sented an abnormal decline following potential augmenting
because pure CdS has a serious light corrosion. Fig. 6B shows
amperometric I-¢ curves of pure CdS, BM-20, BM-30, BM-40,
and Bi,MO¢ & CdS composite photoanodes. The current
density of pure CdS rapidly descended with irradiation time
while pure Bi,M0Os BM-40 displayed maximum photocurrent
density (0.38 mA cm ™ ?) at a potential of 0.6 V vs. RHE for 0.2 M
Na,SO,4. The Bi,M00Og & CdS composite photoanode exhibited
the highest photocurrent density (0.86 mA cm™?) under the
same conditions. When CdS was added to the pure Bi,MoOg
photoanode, it extended the absorption edges as well as
providing more active sites, which facilitated the photoanode

RSC Aadv., 2017, 7, 10774-10781 | 10777
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taking advantage of the wider light irradiation and photo-
generated charges carriers. Meanwhile, Bi,M0Og could carry

corrosion was inhibited. Therefore, the Bi,Mo0O,; & CdS
composite electrode remarkably enhanced the photocurrent

photogenerated charges of CdS away over time so that CdS light property.
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Fig. 6 (A) Linear sweep voltammograms of BM-20, BM-30, BM-40, and Bi,MOg & CdS composite photoanode samples in visible light illumi-
nation (100 MW cm~2); (B) amperometric /-t curves of BM-20, BM-30, BM-40, and Bi,MOg & CdS composite photoanodes samples.
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Fig.8 The incident photon-to-current conversion efficiency (IPCE) of
BM-20, BM-30, BM-40, and Bi,MoOg¢ & CdS.

The interfacial charge transfer on the electrode can be char-
acterized by Electrochemical Impedance Spectroscopy (EIS) shown
in Fig. 7. The interfacial charge transfer resistance (R.) can be
represented by the diameter of the semicircle in a Nyquist plot. It
can be clearly seen that the R under illumination (Fig. 7A) is
lower than that in the dark (Fig. 7B), which suggests a fast inter-
facial charge transfer upon illumination. The diameter of Bi,M00Os
& CdS semicircle is smaller than that of pure Bi,M0Qg, proving
that the decoration of CdS facilitated the charge transfer process
due to a type II band alignment between Bi,MoOg and CdS.

Fig. 8 shows measurements of the incident photon-to-
current conversion efficiency (IPCE) of Z BM-20, BM-30, BM-
40, and Bi,M0Og & CdS.

IPCE was calculated as follows:***”%

1240 x I (mA cm™)
0, —
IPCE (%) = Pligny (MW cm=2) x A (nm)

x 100 (1)

where I is the measured photocurrent density at a specific wave-
length, A is the wavelength of incident light, and P, is the
measured light power density at that wavelength. IPCE analysis of
the photoanodes showed a similar distribution compared with
current-potential characteristics; BM-20 has an exhibited
maximum conversion efficiency of 18% in 350 nm and when CdS
is introduced the maximum conversion efficiency is 40% at
370 nm, which is because CdS extended the absorption edges of
the Bi;MoOg photoelectrode.

This journal is © The Royal Society of Chemistry 2017

4. Conclusion

In summary, since most Bi-based photoelectrodes have suitable
band gaps and can effectively promote hydrogen evolution from
water splitting, a novel Bi;MoOs thin film photoanode was
prepared by growing Bi,MoOg on an electrical substrate directly
via an in situ process. The photoanodes show well-shaped thin
film morphologies and exhibit impressive photoelectrochemical
properties compared to Bi-based photoanodes synthesized by
conventional methods. Particularly, the morphology of our thin
film photoanodes can be controlled by precursor content. Crystal
structure and morphology was carefully studied with SEM, XPS,
UV-vis diffuse reflectance, and PEC performance etc., and the
results are in good agreement with each other.

The Bi,MoO, thin film photoanodes possess long-term
stability under solar irradiation and show a considerable
photocurrent. The results of our photoelectron studies proved
that the precursor Bi(NO3); mole fraction with 30 mM can reach
a maximal photocurrent of 0.38 mA cm > In addition, we
further enhanced the Bi,M0Og thin film photoanodes photo-
current after CdS modifying the thin film electrodes, the
photocurrent of which doubled in comparison with the primary
Bi,M0Og (about 0.85 mA cm ™) under the identical conditions.
We believe that this facile method may be suitable for synthe-
sizing nanostructured Bi,MoOg-based materials for use in solar
energy devices.
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