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arkers to quality markers: an
integrated approach of UPLC/Q-TOF, NIRS, and
chemometrics for the quality assessment of
honeysuckle buds†

Guoyu Ding,a Yanshuai Wang,a Aina Liu,a Yuanyuan Hou,a Tiejun Zhang,b

Gang Bai *a and Changxiao Liu*c

Because of the poor discovery rate of relatively effective components and elusive component-effect

correlation, formulating a quality control system for Chinese herbal medicines (CHMs) has been a great

challenge for quality management. In this paper, the concept of the quality marker (Q-marker) was used,

and a set of integrated strategies to improve the chemical markers of the Q-markers was introduced.

Two often confused CHMs, Lonicera japonica flos (LJF) and Lonicera flos (LF), which are of the same

genus but different species, are illustrated to quickly evaluate their potency. Ultra-performance liquid

chromatography-quadrupole/time-of-flight (UPLC/Q-TOF) with partial least squares-discriminant

analysis (PLS-DA) was used to screen the chemical markers for their herbal origin identification; then,

a bioactive-guided evaluation method was performed to detect the Q-markers. As a result, four NF-kB

inhibitors were proposed to be representative Q-markers for the anti-inflammatories: 3-O-caffeoylquinic

acid (CA), 3,5-O-dicaffeoylquinic acid (3,5-diCQA), `iamarin, and vogeloside. After the chemometrics

study, near-infrared spectroscopy (NIRS) based on the distinctive wavenumber points from the

Q-markers was developed for its distinction and determination capabilities by optimum siPLS-CARS

analysis (OPSC). Then, the back propagating-artificial neutral network (BP-ANN) algorithm was used to

clarify the non-linear relationship between the Q-markers and their integral anti-inflammation effect.

Finally, convenient and reliable fast quantitative analysis and holistic bioactivity assessment patterns were

established by NIRS for the quality management of honeysuckle buds. The integrated Q-marker screen

and NIRS assessment strategy was suitable for a fast quality evaluation of herbal medicines and was

applied to the quality control of botanical functional foods.
1. Introduction

Because of the challenge of the increasing costs in drug
research and the lack of new effective drugs to alleviate chronic
illnesses, traditional Chinese medicines (TCMs) are increas-
ingly being used with conventional medical practices in the
treatment of today's complex diseases that may not be
addressed by only one medical system.1 To facilitate the stan-
dard improvement of Chinese herbal medicines (CHMs), in the
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last few decades, many systematic studies on TCMs have
centered on identifying the chemical components, pharma-
ceutical activities, processing methods, and quality controls.2 As
we know, TCMs are commonly used as the combinations of
several CHMs, which contain several hundreds of components,
whereby their synergistic effects contribute to their function in
the clinical application. However, in earlier years, researchers
oen selected one or several chemical markers to access the
quality of CHMs. For a long time, the poor discovery rate of the
relative effective components and their elusive component-
effect correlation have been the bottleneck in TCM research.3

In 2016, Liu et al.4 introduced the new concept of a quality
marker (Q-marker) of CHMs. The meaning of the Q-marker is
dened as the inherent chemical compound from the herb
medicine or generated compounds during the processing
preparation, whose biological activity is closely related to their
safety and therapeutic effects. According to the guidance, in this
study, an integrated approach to transform chemical markers
into Q-markers is presented. Two oen confused CHMs,
This journal is © The Royal Society of Chemistry 2017
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Lonicera japonica os (LJF) and Lonicera os (LF), which are of
the same genus but different species, were used as a model to
illustrate the conrmation process of Q-marker selection and
application.

In the Chinese Pharmacopoeia (2015 edition), LJF was
documented as the unique origin of Lonicera japonica Thunb.
Although some results show that LJF and LF are pharmacolog-
ically similar, they differ signicantly in certain aspects.5

Traditionally, the chemical proling and comparing of LJF and
LF has been performed by UPLC-UV and UPLC-QQQ-MS.6,7

Recently, some studies utilizing Fourier transform infrared
spectroscopy with two-dimensional correlation analysis (2D-IR)
were conducted to rapidly identify LJF and LF.8 In the 2D-IR
study, a tri-step identication approach was developed to
discriminate the LJF and LF samples, whereby wave peaks
related to the saponins in LF were found. Quantitative methods
based on near-infrared spectroscopy (NIRS) have also been
established,9 whereby the So Independent Modeling of Class
Analogy (SIMCA) model was established to identify LJF from the
genuine producing area, and six organic acids were used to
develop the NIRS quantitative calibration models for quantity
control. Regrettably, these methods did not provide the quali-
tative and quantitative analysis results associated with the
traditional effects, and also the chemical markers behind the
satisfactory discrimination were not provided. Therefore, how
to nd the distinguishing chemical markers and identify them
as the Q-markers for the quality control of LJF would be
meaningful.

The strategy for Q-marker screening and application is pre-
sented and charted in Fig. 1. In principle, chemical markers
were rst selected by ultra-performance liquid chromatography-
quadrupole/time-of-ight (UPLC/Q-TOF) with partial least
squares-discriminant analysis (PLS-DA). Then, bioactive-based
HPLC was introduced to screen the Q-markers. In detail, to
identify the anti-inammatory markers to discriminate the LJF
and LF, NF-kB, which is involved in the early immune response
and synthesis of cytokines and chemokines, was selected as
a bioactive index.10 The variable importance parameters (VIP)
plot guided us to nd the potential Q-markers for the quality
classication. Compared with traditional HPLC analysis
Fig. 1 Flow chart of the strategy for Q-marker screening and
application.

This journal is © The Royal Society of Chemistry 2017
methods, NIRS can record the spectra for solid and liquid
samples without the need for troublesome pretreatment and
this enabled the development of portable equipment to quan-
tify multiple components in the CHMs.11 Hence, accurate NIRS
methods were selected to integrate the Q-marker information
and were used for the LJF identication and fast quality
assessment in this paper.

Aer systematic chemometrics optimization, a new algorithm
to select the wavenumber points, named the optimum siPLS-
CARS analysis (OPSC), was proposed based on the merit of
synergy interval partial least squares (siPLS) and competitive
adaptive reweighted sampling (CARS) to quantify those repre-
sentative Q-markers.12,13 To clarify the quantitative composition-
activity relationship (QCAR), a back propagating-articial
neutral network (BP-ANN) was used to build the complicated
non-linear relationship between these Q-markers and their inte-
gral bioactivity.14–16 Then an integrated NIRS and Q-marker
strategy was established for the fast assessment of LJF.
2. Experimental
2.1. Chemicals, reagents, and materials

Reference standards of 3-O-caffeoylquinic acid (CA), 3,5-O-
dicaffeoylquinic acid (3,5-diCQA), and swertiamarin were
purchased from the Chinese Institute for the Control of Phar-
maceutical and Biological Products (Beijing, China). The
purities of all the standards were greater than or equal to 98%.
Acetonitrile, phosphoric acid, and formic acid of HPLC grade
were purchased from Merck (Darmstadt, Germany). Ultrapure
water was prepared with a Milli-Q purication system (Milli-
pore, Bedford, MA, USA). All the other reagents were of analyt-
ical grade and purchased from Yifang S&T (Tianjin, China).

Five cultivars, including 98 samples of honeysuckle buds
(LJF, including Lonicera japonica Thunb.; and LF, including
Lonicera hypoglauca Miq., Lonicera fulvotomentosa Hsu er S. C.
Cheng, Lonicera confusa DC., and Lonicera macranthoides Hand.
Mazz), were collected from 11 different provinces in China.
Detailed information on these samples is listed in Table S1.†
Every species was authenticated by Professor Tiejun Zhang from
the Tianjin Institute of Pharmaceutical Research.
2.2. Sample preparation

All the honeysuckle buds were nely pulverized and ltered
through a 100-mesh sieve. The dried powders were directly used
for the NIRS scans. For the sample extraction, each dried
powder (1 g) was extracted with 100 mL of a methanol–water
(25 : 75, v/v) solution using ultrasonic extraction apparatus (40
kHz, 500 W, Ningbo, China) for 30 min at room temperature.
The same solution was used to replenish the extraction system
upon solvent loss because of volatilization. The extracts were
centrifuged at 12 000 rpm for 10 min, and the supernatant of 58
samples, including 29 LJF and 29 LF, was used for the UPLC/Q-
TOF identication. The extraction method was identical to the
above description, except the supernatant was used for the
HPLC analysis and NF-kB inhibition assay. Primary stock
solutions of three reference compounds (CA, 3,5-O-diCQA, and
RSC Adv., 2017, 7, 22034–22044 | 22035
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swertiamarin) at nal concentrations of 598, 320, and 994 mg
mL�1 were prepared by dissolving the accurately weighed
reference compounds in a methanol–water (25 : 75, v/v) solu-
tion. Then, the stock solutions were serially diluted to the
required concentrations to prepare the calibration curves. All
the solutions were stored at 4 �C and brought to room
temperature before use.
2.3. UPLC/Q-TOF-MS analysis

A Waters Acquity UPLC system (Waters Co., Milford, MA, USA)
with a Photo-Diode Array detector (PDA) and a Waters Q-TOF
Premier Mass Spectrometer with an electrospray ionization
system (Water MS Technologies, Manchester, UK) were used for
the sample analysis. Data acquisition was performed using the
MassLynx V4.1 soware (Waters Co., USA). Separations were
performed using a Waters ACQUITY UPLC BEH C18 column
(100 mm � 2.1 mm, 1.7 mm) at 25 �C. The mobile phase con-
sisted of acetonitrile (A) and water with 1% formic acid (B) at
a ow rate of 0.4 mLmin�1. The gradient elution was completed
as follows: 0–5 min, isocratic 2% (v/v) A; 5–9 min, 2–8% (v/v) A;
9–12 min, isocratic 8% (v/v) A; 12–15 min, 8–10% (v/v) A; 15–
18 min, 10–17.5% (v/v) A; 18–22 min, 17.5–40% (v/v) A; 22–
27 min, 40–100% (v/v) A; 27–28 min, isocratic 100% (v/v) A; 28–
32 min, 100–40% (v/v) A; 32–35 min, 40–2% (v/v) A; 35–40 min,
isocratic 2% (v/v) A. The sample injection volume was 5 mL. The
ESI-MS spectra were acquired in both positive and negative ion
modes. The conditions for the ESI-MS analysis were as follows:
the capillary voltage was set to 3.0 kV and 2.5 kV for the positive
and negative modes, respectively; the sample cone voltage was
set to 30 V; the desolvation gas ow was set to 600 L h�1 at
350 �C; the cone gas was set to 50 L h�1; the source temperature
was 110 �C. The Q-TOF Premier acquisition rate was 0.1 s with
a 0.02 s inter-scan delay. TheMS spectra were acquired from 100
to 1000 Da. Leucine enkephalinamide acetate was used as the
lock mass (m/z 555.2931 in ESI+; m/z 553.2775 in the ESI�) at
a concentration of 200 ng mL�1 and a ow rate of 0.2 mL min�1.
The MS/MS analyses were used to obtain the mass fractions of
the target ions.
2.4. NIRS collection

The spectra were collected in the diffuse reectance mode using
an integrating sphere module over the 12 000–4000 cm�1

spectral range and a Brucker TENSOR 37 FT-NIR spectrometer
(Bruker Optik, Ettlingen, Germany) with an InGaAs detector.
The spectra were collected with the OPUS spectral acquisition
soware (Bruker Optik, Ettlingen, Germany) at a resolution of 8
cm�1 per spectrum by averaging 64 scans.
2.5. Multivariate statistical analysis

2.5.1. UPLC/Q-TOF with PLS-DA analysis and NIRS with
principal component analysis (PCA). To identify the dis-
tinguishing marker components from these honeysuckle buds,
UPLC/Q-TOF coupled with PLS-DA was performed to screen the
characteristic components and provide helpful chemical infor-
mation to distinguish the two different cultivars: LJF and LF.
22036 | RSC Adv., 2017, 7, 22034–22044
The UPLC/Q-TOF data were imported into Markerlynx XS (V4.1
SCN884, copyright by 2012 Waters Inc.) for the PLS-DA analysis.

OPUS spectral acquisition soware (Bruker Optik, Ettlingen,
Germany) was used for the NIR spectral data acquisition. In
total, 98 samples (66 LJF samples and 32 LF samples) were used
for the PCA analysis with Unscrambler soware version 9.7
(CAMO Soware, OSLO, Norway).

2.5.2. HotMap analysis. A semi-quantitative HotMap was
used to display the clustering effect using the chemical markers
from Section 2.5.1. The hierarchical cluster analysis of the
quantitative HotMap was generated using Matlab 2013b in
Windows 8.1. The process was conducted as follows: aer the
vector normalization of these marker components in the UPLC/
Q-TOF data from 58 batches of honeysuckle bud samples,
a hierarchical cluster tree of the peak areas was created by
dening the linkage function using the Ward method, while the
distance among the samples was computed using the Euclidean
distance formula.

2.6. Dual-luciferase reporter assay system for the NF-kB
inhibitor

The human embryonic kidney 293 (HEK 293) cell line was
purchased from the American Type Culture Collection (Rock-
ville, MD) and cultured in Dulbecco's modied Eagle's medium,
which contained 10% (v/v) fetal bovine serum, for 24 h before
the experiments. Then, the cells were co-transfected with the
NF-kB luciferase reporter plasmid (Promega WI, USA) pGL4.32
at 100 ng per well and the Renilla luciferase reporter vector
plasmid pGL-TK at 9.6 ng per well for 24 h. Aer the trans-
fection, the cells were stimulated with 10 ng mL�1 TNF-a for 6 h
under the protection of the herbal samples. Subsequently, the
luciferase activity was assayed using a Luciferase Reporter Assay
System (Promega, WI, USA). The luminescence was assessed
with a Modulus luminometer from Turner Biosystems (Turner
Design, CA, USA).

2.7. HPLC quantitative analysis

To analyze CA, 3,5-diCQA, and swertiamarin, HPLC analysis was
performed using a Shimadzu 20A HPLC system (Shimadzu Co.,
Japan) with an auto sampler, column oven, and a UV detector.
The chromatographic separations were conducted using an
Agilent Eclipse Plus C18 column (100 mm � 4.6 mm, 3.5 mm) at
25 �C. The mobile phase system was acetonitrile (A) and water
with 0.1% formic acid (B) at a ow rate of 1.0 mL min�1. The
gradient elution was completed as follows: 0–10 min, 2–8% (v/v)
A; 10–15 min, isocratic 8% (v/v) A; 15–20 min, 8–10% (v/v) A; 20–
25 min, 10–15% (v/v) A; 25–35 min, 15–20% (v/v) A; 35–50 min,
20–100% (v/v) A; 50–55 min, isocratic 100% (v/v) A; 55–60 min,
100–2% (v/v) A; 60–67 min, isocratic 2% (v/v) A. The compounds
were detected by UV at 240 nm. The sample injection volume
was 10 mL.

2.8. OPSC analysis

To avoid sample selection bias, set partitioning based on the
joint x–y distance (SPXY) algorithm17 was used to split the
dataset into calibration and validation sets. Then, the 66 LJF
This journal is © The Royal Society of Chemistry 2017
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samples were divided into 53 calibration samples and 13 test
samples. The NIRS was pretreated to remove irrelevant infor-
mation and noise before the model calibration. Preprocessing
methods, such as auto-scaling (AUTO), standard normal vari-
able transformation (SNV), de-trend (DT), DT + SNV, convolu-
tion smoothing, one-dimensional convolution (one-DC), two-
dimensional convolution (two-DC), one-DC + SNV, and one-
DC + DT were used to process the NIRS data. The siPLS
method was used for variable selection in NIRS.12 All the
possible PLS model combinations of one, two, or three intervals
were used to calculate the root mean square error of cross
validation (RMSECV) and the corresponding correlation coeffi-
cient R (RMSECV). The interval limit of determination (LOD)
theory was used to calculate the detection limit of the siPLS
method. Only the siPLS model with a suitable LOD was used to
execute the next OPSC.18

Aer the siPLS method, some spectral variables that con-
tained irrelevant information or noise remained. In this work,
a modied CARS algorithm, namely OPSC, was used to select
the key wavelengths that had large absolute regression coeffi-
cients in the siPLS model. In the OPSC, enforced wavelength
reduction and adaptive reweighted sampling were used to
retain informative variables. The wavelengths with higher
absolute values of regression coefficients survived bymimicking
the “survival of the ttest” principle. In this step, the runs of the
exponentially decreasing function (EDF) were set as N ¼ 50,
which implies that to nd an optimal variable subset, there are
50 runs to iteratively lter the variables with small absolute
regression coefficients. In the ith run of the EDF, the number of
remaining variables was calculated as follows:

rvi ¼ SIP � e�k�i (1)

where SIP is the total number of variables selected from the
siPLS method, and k is the constant parameter that controls the
EDF curve, which can be computed as:

k ¼ lnðSIP=2Þ
N

(2)

The formula is related to the curvature of the EDF and
positively correlated with the speed of the decreasing curve.
From eqn (1) and (2), when i ¼ 0, all the SIP variables are used
for modeling; when i ¼ N, only 2 variables remain. Finally, the
wavelengths with higher absolute values of regression coeffi-
cients survive to calculate their R (RMSECV) with the Leave-One-
Out (LOO) cross-validation method. The OPSC algorithm is
different from the traditional CARS algorithm because the EDF
is used to select the smallest variables whose R was above 0.9
instead of the entire variables with the highest R. With smaller
variables, it is convenient to build a robust model and resolve
the NIRS. All the algorithms were implemented in Matlab 2013b
(MathWorks, Natick, MA, USA) under Windows 8.1.
2.9. BP-ANN for comprehensive evaluation

The feed-forward BP-ANN is a supervised ANN learning tech-
nique and can be realized using single-layer and multi-layer
This journal is © The Royal Society of Chemistry 2017
networks, which are particularly effective for modeling
complex non-linear systems.14,19 In this paper, the weights and
bias values in the BP-ANN topology were updated with the
resilient back-propagation algorithm (Rprop) using Matlab
2013b. One hidden layer was introduced into the BP-ANN
structure, and then the tan-sigmoid was selected as the activa-
tion function from the input layer to the hidden layer. The tan-
sigmoid was selected because the dose-response relationship of
the LJF anti-inammation activity is similar to the tan-sigmoid
function. A linear function was selected as the activation func-
tion from the hidden layer to the output layer. Overtting to the
training data was prevented by restricting the optimal number
of nodes in the hidden layer, which was 1–10 in this experiment.
A normalization procedure is necessary to train the BP-ANN.
Therefore, the input and target variables were processed by
mapping the minimum and maximum values from �1 to 1.
Simultaneously, the 'early stopping by cross-validation' meth-
odology was applied to prevent overtting with the 13 test
samples, which were selected as shown in Section 2.8.

3. Result and discussion
3.1. PLS-DA analysis and identication of chemical markers
of honeysuckle buds

To nd the distinguishing marker ingredients among the LJF
and LF samples, the negative and positive ion mode data
detected by UPLC/Q-TOF were simultaneously used for a global
analysis. The BPI chromatograms from the honeysuckle bud
samples are shown in Fig. 2A and B. The chromatograms of
these samples had different peak numbers and peak intensities,
which were observed through visual inspection. For further
analysis, a common supervised multivariate statistical analysis
PLS-DA was applied to examine the differences between the LJF
and LF samples. In Fig. 2C and D, the samples were differen-
tiated and categorized into two groups. To identify the repre-
sentative chemical markers, a VIP plot was used to show the
important signals that contributed to the clustering separation
(Fig. 2E and F). Based on the VIP plots, variables with a VIP value
> 5 in both the negative and positive modes were considered as
the potential chemical markers.20

For example, the identication of CA was considered. The
VIP value was 14.17 and 5.41 in the positive and negative modes,
respectively. The [M + H]+ and [M � H]� ion nuclei ratios were
355.1016 and 353.0666, respectively, which resulted in the
structural fragments 377 [M + Na]+, 372 [M + H + H2O]

+, and 163
[caffeic acid + H � H2O]

+. Aer searching for the presumed
molecular formula using ChemSpider (http://www.chemspi-
der.com), MassBank (http://www.massbank.jp/), and SMPD
(http://www.smpdb.ca/), we speculated that the formula was
C16H18O9, whichmatched the characteristics of the CA standard
substance. According to the described identication method,
ten other chemical markers among the thirteen distinguishing
compounds were identied (Table 1): 5-O-caffeoylquinic acid,
CA, loganin, swertiamarin, 4-O-caffeoylquinic acid, sweroside,
7-epi-vogeloside, secoxyloganin, vogeloside, L-phenyl-
alaninosecologanin, 3,5-diCQA, and 3,4-O-dicaffeoylquinic
acid. Interestingly, the chemical markers were consistent with
RSC Adv., 2017, 7, 22034–22044 | 22037
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Fig. 2 BPI chromatograms and PLS-DA analysis of the honeysuckle bud samples. BPI chromatograms of the honeysuckle bud samples in the
negative (A) and positive modes (B). Score plot of the honeysuckle bud samples in the negative (C) and positive modes (D). Potential chemical
markers in the VIP plot of the PLS-DA model among various honeysuckle bud species in the negative (E) and positive modes (F).
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published reports that honeysuckle buds mainly contain iridoid
glycosides and phenolic acids.21
3.2. Semi-quantitative HotMap analysis for chemical
markers

As shown in Fig. 2C and E relating to the negative model, the
cluster pattern mainly resulted from iridoid compounds, espe-
cially compounds 3 (loganin) and 9 (vogeloside). Inversely, in
the positive model (Fig. 2D and F), the clustering effect mainly
came from the phenolic acid components, such as compound 1
Table 1 MS/MS data from ESI-MS and identification of the PLS-DA resu

No. VIP tR MS[M + H]+ MS/MS(m/z)

1 9.85(+) 8.98 355.1003 377, 163
2 14.17(+)/5.41(�) 11.59 355.1016 377, 372, 355, 163
3 7.99(+)/7.04(�) 12.28 391.1222 408, 229, 211, 151
4 7.11(+)/5.40(�) 12.84 375.1258 749, 213, 195
5 6.28(+) 12.88 355.1004 163
6 7.05(+)/5.28(�) 15.58 359.1292 717, 197
7 5.05(�) 17.35 — —
8 9.02(+) 17.84 405.1364 243, 225, 211, 193, 165, 151
9 6.48(+)/6.13(�) 18.14 389.1401 406, 227, 209, 195, 151
10 7.23(+) 18.77 538.2260 —
11 8.18(+) 20.20 517.1301 499, 163
12 5.77(+) 20.47 517.1302 499, 163
13 7.13(+) 23.46 274.2712 —

22038 | RSC Adv., 2017, 7, 22034–22044
(5-O-caffeoylquinic acid) and 2 (3-O-caffeoylquinic acid). To
further display the difference between the LJF and LF samples,
the semi-quantitative HotMap analysis was used to show the
clustering effect using the normalized peak areas of the afore-
mentioned 13 distinguishing chemical markers. As shown in
Fig. 3, these different cultivar samples were obviously clustered
into two categories based on the chemical markers. These
marker components could also be divided into two categories by
the Ward linkage with Euclidean distance. The result shows
that LF is rich in phenolic acid components, but LJF is rich in
iridoid glycosides, and this conclusion is consistent with the
lts

MS[M � H]� MS/MS(m/z) Formula Compound

353.0532 375, 191 C16H17O9 5-O-Caffeoylquinic acid
353.0666 C16H18O9 3-O-Caffeoylquinic acid
389.0927 C17H26O10 Loganin
373.0914 747 C16H22O10 Swertiamarin
353.0565 C16H18O9 4-O-Caffeoylquinic acid
357.0896 403 C16H22O9 Sweroside
419.1364 — — Unknown
403.1129 807 C17H24O11 Secoxyloganin
387.1046 433 C17H24O10 Vogeloside
536.2078 — — L-Phenylalaninosecologanin
515.1158 353 C25H24O12 3,5-O-Dicaffeoylquinic acid
515.1176 353 C25H24O12 3,4-O-Dicaffeoylquinic acid
— — — Unknown

This journal is © The Royal Society of Chemistry 2017
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Fig. 3 HotMap hierarchical clustering analysis and the chemical structures of the chemical markers in the LF (blue) and LJF (red) samples.
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previous report.6 In detail, different types or geographical origin
of the samples of LF can also be distinctive from each other.
3.3. NIRS coupled with PCA for origin identication based
on chemical markers

To induce a more convenient means instead of the complicated
UPLC/Q-TOF cluster task, NIRS was applied for the differenti-
ation of LJF and LF. First, the NIRS data of honeysuckle bud
Fig. 4 PLS-DA analysis by NIRS in the different honeysuckle bud sample
PLS-DA result for the first principal component (the colors represent d
spectra; (D) NIRS of two representative chemical markers (CA and swertia
of the two chemical markers; (F) score plot of the PCA cluster with the

This journal is © The Royal Society of Chemistry 2017
powders were pretreated with one-DC to remove irrelevant
physical information and noise and to reveal the inherent
chemical information22 (Fig. 4A). As for PLS-DA, the rst two
principal components enabled us to explain 87% of the total
variance. Upon examination of the loading plot for the rst
component, we observed that the signals at wavenumbers such
as 4382, 4436, 4914, 5142, 5261, 5354, 5851, 5932, 5998, 7070,
7244, 7356, 7394, and 8826 cm�1 dominated the rst principal
component (Fig. 4B). In Fig. 4C, PC1 accounted for 84% of the
s: (A) NIRS after one-DC pretreatment; (B) regression coefficient of the
ifferent functional groups); (C) score plot of the NIRS with the entire
marin) in deuterated DMSO solutions; (E) loading plot of the PCA result
dominated wavenumber points.

RSC Adv., 2017, 7, 22034–22044 | 22039
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Fig. 5 HPLC-UV coupled with the luciferase reporter assay system for
the NF-kB inhibitor analysis. (A) UV chromatograms (240 nm); (B)
bioactivity chromatogram obtained via the luciferase reporter assay
system for NF-kB inhibition. The peak numbers are consistent with
those in Table 1.
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spectral variability, whereas PC2 did not show differences only
for 3%.

To ascribe the wavenumber signals to specic functional
groups in the chemical markers, CA and swertiamarin were,
respectively, selected as the markers of phenolic acids and iri-
doid glycosides. The NIRS of these two chemical marker stan-
dards are shown in Fig. 4D, each of which had three
concentration levels (1, 5, 10 mg mL�1) and were prepared with
the deuterated DMSO solution. Compared with Fig. 4A, the
similar prominent peaks at 4250–4300, 4500–5000, 5000–5500,
5500–6100 and 6600–7200 cm�1 can be observed by deducting
the background from the deuterated DMSO. Among these
wavenumber points (Fig. 4E), the ve dominated wavenumbers
with the highest loading values were at 4382 and 4436 cm�1 (a
combination of CH stretching and CH bending) from different
chemical environments of methylene on swertiamarin and CA;
4914 cm�1 (a combination of OH stretching and OH bending)
from the phenolic hydroxyl in CA or different aliphatic hydroxyl
chemical environments on swertiamarin and CA; 5142 and 5354
cm�1 (CO 2nd overtone region) from different carbonyl chem-
ical environments on iridoid glycosides (lactonic ring) and
phenolic acids (carboxyl). More importantly, these dominated
points from two main chemical markers also appeared in the
regression coefficient plot of the honeysuckle bud samples
(Fig. 4B). In Fig. 4F, with these ve dominated points, two
clusters were also observed: one consisting of LJF samples and
the other including LF samples. The spectral variability
accounting by PC1 and PC2 was increased to 89% and 7%,
respectively. The result illustrates that aer the pretreatment,
chemical information can be extracted from the complex herbal
matrix, and NIRS-based identication can be achieved based on
only the key spectrum characteristics from chemical markers.
3.4. Identication and quantication of NF-kB inhibitors in
LJF samples

To screen and identify the anti-inammatory Q-markers, one of
the LJF extracts (no. 1) was separated by HPLC. The HPLC
fractions were collected at 2 min intervals; each fraction was
concentrated and tested for NF-kB inhibition activity using the
luciferase reporter assay system. From the results in Fig. 5, four
fractions (no. 2, 4, 9, 11) showed signicant NF-kB inhibition.
Compared with the reference substances or UPLC/Q-TOF-MS/
MS information, peaks no. 2, 4, 11, and 9 were identied as
CA, swertiamarin, 3,5-diCQA, and vogeloside, respectively.
Studies have reported that CA can suppress the LPS-induced
COX-2 expression by attenuating the activation of NF-kB-
dependent pathways and JNK/AP-1 signaling pathways.23 3,5-
diCQA inhibits the LPS-induced RAW 264.7 macrophage
inammation by suppressing the nitric oxide/inducible nitric
oxide and prostaglandin E2/cyclooxygenase-2 pathways by
inhibiting the nucleus translocation of p50 and p65.24

Swertiamarin treatment can decrease the release of proin-
ammatory cytokines (IL1, TNF, IL-6) and proangiogenic
enzymes (MMPs, iNOS, PGE2, PPARg, and COX-2) by modu-
lating NF-kB and JAK2/STAT3 signaling.25 Vogeloside showed
the inhibition of nitric oxide production in LPS-induced
22040 | RSC Adv., 2017, 7, 22034–22044
macrophages.26 Therefore, these four NF-kB inhibitors are
responsible for the anti-inammatory bioactivity and can be
presented as the Q-markers for further tests.4,27

The accurate contents of the four Q-markers in 98 batches of
the honeysuckle bud samples were detected using the HPLC
method, and the details are listed in the ESI (Tables S1 and S2†).
3.5. Quantication of the Q-markers in the LJF samples with
the partial least square regression (PLSR) algorithm

In this section, the joint x–y distance (SPXY) algorithm was used
to split the dataset of 66 LJF samples into 53 calibration samples
and 13 test samples. The LOO cross-validation method with 53
LJF calibration samples was used to calculate the RMSEC,
RMSECV, Rcal, and Rval. The remaining 13 test samples were
used to check the robustness of the NIRS model and calculate
the RMSEP and Rpre.

3.5.1. Interval LODs with the siPLS algorithm. The inherent
characteristics of multiple components and lower concentrations
in the complex herbal matrices created enormous challenges in
the quantitative analysis of the NIRS as this method itself has
a higher detection limit and low sensitivity. In addition, a suit-
able variable selection algorithm could improve the model
performance and detection sensitivity of the NIRS model. Thus,
the siPLS algorithm was used as the variable selection method to
identify the optimum subset combination of spectral frequen-
cies, which produced the smallest RMSECV in the quantitative
determinations and improved the sensitivity. Hence, the siPLS
This journal is © The Royal Society of Chemistry 2017
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Table 2 Most suitable conditions to calibrate and validate the Q-marker components

Compounds Pretreatment methods Interval number LV Rcal RMSEC Rval RMSECV Mean concentration (%)

CA One-DC + SNV 14 19 20 16 0.9976 0.0263 0.9000 0.1652 2.3716
3,5-diCQA One-DC + SNV 15 18 19 9 0.9762 0.0313 0.8638 0.0733 0.8447
Swertiamarin One-DC + DT 16 20 13 0.9863 0.0316 0.8612 0.0981 1.0987
Vogeloside None 14 17 18 15 0.9894 0.1162 0.9019 0.3500 1.1320

Table 3 Predictive effect of the external validation set with the most
suitable NIR model parameters

Compounds Rpre RMSEP RPD
Mean
concentration (%)

CA 0.9451 0.2823 2.9384 1.8895
3,5-diCQA 0.8691 0.1264 2.0286 0.7748
Swertiamarin 0.9321 0.1224 2.4933 1.0671
Vogeloside 0.9373 0.6020 2.6025 1.7427

Fig. 6 Concentration distribution analysis of the four Q-markers in
LJF or LF.
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algorithm has been successfully applied to search and account
for the optimal spectral frequencies in multiple herbal medi-
cines.12,28 Table 2 lists themost suitable conditions with the siPLS
algorithm (including the pretreatment methods, interval
Table 4 LOD values of the five main compounds in the LJFa

CA 3,5-diCQ

Mean con range (%) 2.26(0.25 � 2.99) 0.83(0.2
LV 16 9
Var (x)1/2 0.0247 6.09 � 1
Var (ycal) 0.0110 0.0130
LODmin (%) 0.5022 0.2372
LODmax (%) 0.5719 0.2709
LODref (%) 0.0082 0.0045

a LODref (%) is the LOD from the HPLC results.

This journal is © The Royal Society of Chemistry 2017
number, and LV) to quantify these Q-markers by LOO calibration
with 53 LJF samples. Then, 13 LJF samples were used for the
external validation to evaluate the robustness of the built NIRS
model. The predictive effects of the built model are listed in
Table 3. The LOD is one of the most signicant values to deter-
mine which components are suitable to build the NIRS model.
The interval LOD theory18 was introduced to calculate LODmin

and LODmax. As shown in Fig. 6, although the LOD of HPLC was
more sensitive than the NIRS method, the LODmax of NIRS for all
four Q-markers was lower than their median values, which
indicated that the four components were suitable to build the
NIRS model for the LJF quality management (Table 4). In addi-
tion, due to the low abundance of swertiamarin and vogeloside in
LF, iridoid glycosides are not suitable as Q-markers for quality
control in LF.

3.5.2. Wavenumber point quantication with the OPSC
algorithm. A simple and efficient wavelength model for multi-
index simultaneous determination is notably important for
instrument miniaturization and decreased equipment costs.
Some innovation wavelength selection methods have been
established to search for the key quantitative wavelength
points.29,30 In this study, the siPLS algorithm split the data set of
a full spectrum into 20 intervals. The optimal combined interval
numbers were elaborately selected according to the lowest
RMSECV. However, these large wavelength variable inputs
(including 310 variables for three intervals and 206 variables for
two intervals) make the spectral resolution difficult. Therefore,
the CARS algorithm was used to search for the key wavenumber
points from the selected intervals by siPLS. Unlike siPLS on the
principle of variable selection, the CARS algorithm identies
the wavelengths with large absolute regression coefficients in
the PLSR model. However, the disadvantage of CARS is the
serious overtting when uninformative variables with large
A Swertiamarin Vogeloside

4 � 1.54) 1.08(0.47 � 1.83) 1.03(0.07 � 4.94)
13 15

0�4 0.0316 5.66 � 10�5

0.0240 0.0240
0.3275 0.6904
0.3845 0.8673
0.0053 —
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Table 5 Comparison of four different wavenumber selection strategies

Compounds
Wavenumber selection
method Pretreatment methods nVar LV Rval RMSECV Rpre RMSEP

CA CARS One-DC + SNV 58 11 0.9959 0.0347 0.8613 0.5033
siPLS One-DC + SNV 310 16 0.9000 0.1652 0.9451 0.2823
OPSC One-DC + SNV 10 8 0.9112 0.1553 0.9388 0.3848

3,5-diCQA CARS One-DC + SNV 117 1 0.3008 0.1408 0.3184 0.2403
siPLS One-DC + SNV 310 9 0.8638 0.0733 0.8691 0.1264
OPSC One-DC + SNV 16 7 0.8758 0.0700 0.8997 0.1291

Swertiamarin CARS One-DC + DT 205 3 0.4925 0.1740 0.4113 0.2788
siPLS One-DC + DT 206 13 0.8612 0.0981 0.9321 0.1224
OPSC One-DC + DT 18 10 0.9235 0.0737 0.9137 0.1652

Vogeloside CARS None 58 17 0.9979 0.0526 0.7804 1.2296
siPLS None 310 15 0.9019 0.3500 0.9373 0.6020
OPSC None 13 12 0.9078 0.3376 0.9445 0.5529
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absolute regression coefficients are introduced (Table 5). When
the CARS algorithm is combined with siPLS, siPLS remedies the
disadvantages of CARS because siPLS rst nds the optimal
Fig. 7 Wavenumber point quantification with the OPSC algorithm. Every
regression coefficient trend under different variable numbers; selection
between the NIRS predicted values and the reference values. CA (A); 3,5

22042 | RSC Adv., 2017, 7, 22034–22044
informative quantitative regions, under which CARS searches
for its key wavenumber points. Comparing siPLS with OPSC in
Table 5, we observed that a similar predictive effect (Rpre) was
Q-marker compounds has four parts: wavenumber selection by siPLS;
of wavenumber points by the OPSC algorithm; correlation diagrams
-diCQA (B); swertiamarin (C); vogeloside (D).

This journal is © The Royal Society of Chemistry 2017
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achieved by these two types of algorithms. However, OPSC
requires even fewer points to fulll the task of excellent
prediction.

As can be seen from the coefficient trend in Fig. 7, during
CARS, the regression coefficient (R) increased as the wave-
lengths with more information were retained, whereas other
unimportant ones were eliminated. However, when any key
wavelength was removed, the R value sharply declined. Thus,
the critical points with the least wavenumbers but R value above
0.9 were retained (the green line), which represents the most
valuable and bare-bone spectral information, except for 3,5-
diCQA, whose R value under all wavenumber combinations
could not reach 0.9. Thus, the inexion point aer which the R
value would sharply decrease was selected as the bare-bone
spectral information for 3,5-diCQA. Finally, 10, 16, 18, and 13
wavelengths were selected for CA, 3,5-diCQA, swertiamarin, and
vogeloside, respectively. In the wavenumber analysis, Fig. 7
illustrates the distribution of the selected variables by the OPSC
algorithm. In this way, the t effect of the four Q-markers is
displayed in the t effect part of Fig. 7.
3.6. BP-ANN for the bioactivity comprehensive evaluation of
the LJF

Because we proved that BP-ANN with the resilient back-
propagation algorithm displayed a better non-linear approxi-
mation effect than the random forest regression and nu-support
vector regression at predicting the anti-inammation activity in
the previous study,31 the machine learning methods BP-ANN
were performed to reveal the relationship between NIRS and
the holistic anti-inammation activity via the contents of the
four Q-markers. For the bioactivity comprehensive evaluation,
66 batches of LJF were detected for the anti-inammation
activities assay. The ratio of NF-kB inhibition was used to
calculate their correlation with the content of Q-markers. The
values predicted by the OPSC algorithm were used to build the
BP-ANN model. Finally, a three-layered conguration of 4-9-1
nodes was selected to build the relationship between the Q-
markers and their holistic activity. As shown in Fig. 8A, the
established BP-ANN model displayed an excellent tting effect,
and their corresponding correlation coefficient was 0.95 for the
Fig. 8 Predicted inhibition of NF-kB production versus the experi-
mental values using BP-ANN (A); relative importance of each input in
determining the anti-inflammation activity for the four Q-markers as
estimated using Garson's modified algorithm (B).

This journal is © The Royal Society of Chemistry 2017
training data and 0.90 for the test data. Then, the contributions
for the different Q-markers were determined by systematic
analysis to partition the BP-ANN connection weights using
Garson's modied algorithm.14 Their contributions to the anti-
inammation activity were ranked as follows: vogeloside
(36.1%) > 3,5-diCQA (32.7%) > swertiamarin (18.7%) > CA
(12.4%). The contributions of iridoid glycosides were more than
the phenolic acid components (Fig. 8B). This result illustrates
that the integrated Q-markers and the holistic bioactivity
strategy are capable of and practical for the quality control of
herb medicines and botanical functional foods.

4. Conclusions

In this paper, we described a quality assessment paradigm that
involved a set of integrated strategies to improve the chemical
markers to Q-markers in CHM quality management. Although
the chemical markers could prole the distinguishing infor-
mation for identifying LJF and LF, the satisfactory discrimina-
tion associated with the bioactive effects were not provided. Q-
markers were demonstrated as the key effective and available
ingredients and could be used to clarify the complex non-linear
relationship between the components and their integral effect
in CHMs. The NIRS method based on the key distinctive
wavenumber points of Q-markers was proposed suitable for its
fast determination. The established Q-marker-coupled NIRS
pattern is a convenient and reliable way for quantitative analysis
and holistic potency evaluation in herbal medicines or botan-
ical products.
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