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Design of boron vacancy enhanced spin filtering
graphene/BN zigzag nanoribbon heterojunctions

Xiaohui Jiang,®® Dongqing Zou,© Bin Cui,® Changfeng Fang,” Wen Liu,®
Xiangmu Kong*® and Desheng Liu*"®

The spin-polarized electronic transport properties of zigzag graphene nanoribbons (ZGNRs) and boron
nitride nanoribbons (ZBNNRs) heterojunctions with a boron vacancy are investigated by using non-
equilibrium Green's function and density functional theory, especially under an external electric field. The
model we used in this paper is chosen from the last essay we researched, the /-V curves in the
ferromagnetic states for (ZBNNR)s—(ZGNR)s—B, devices are investigated, and the results show that with
an external electric field, the heterojunctions are promising multifunctional devices in molecular
spintronics due to their nearly perfect spin-filter effect, high rectification ratio and spin negative
differential resistance properties at low biases. Mechanisms for such phenomena are proposed and these
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Introduction

Graphene, a versatile material for its outstanding electronic
properties, has proved useful in many devices applications."™
Recently, spin injection into graphene, low intrinsic spin orbital
interaction, the observation of long spin lifetimes and lengths all
suggests that graphene could play a good role in “spintronic”
devices.”” Particularly, the ZGNRs are one of these systems and
intensely studied due to the presence of magnetic states at their
edges, and these states can be either antiparallel or parallel to
each other (antiferromagnetic state AFM and ferromagnetic state
FM), both the AFM and FM configurations' total energy are lower
than the non-magnetic states’, indicating that spin polarization
is a stabilisation mechanism.? However, for a ZGNR, the zero
band gap limits its applications in electronics. In recent years,
a number of theoretical and experimental feasible approaches
are researched to open the band gap.®™ Different isolated
atomic crystals are assembled into designing heterostructures
layer by layer via van del waals force between some 2D materials
to open the energy gap, and these new materials show novel
properties and phenomena.'*® Recently, in-plane lateral heter-
ostructures between graphene and hexagonal boron nitride
(hBN) have been fabricated by controlling sizes and shapes to
open the band gap.**?* A monolayer of hBN is an insulator with
a wide band gap of 5.9 eV whereas graphene is gapless semi-
metal. Both of them may coexist within a continuous atomically
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findings suggest a new opportunity for developing molecular spintronic devices.

thin film, which might be experimentally accessible by many
well-developed techniques in graphene.”*** This kind of two-
dimensional heterostructure could provide great opportunities
towards the thin integrated circuit, and with properly designing
the interface between graphene/hBN, the band gap and spin
electronic property could be precisely engineered.

As a promising candidate for applications in spintronics,
recently, tremendous efforts have been devoted to manipulate
the spin configuration. Son* et al. have shown that with the
applied of an electric field, the system was driven into a half-
metallic state that one spin exhibits a metallic behavior, while
the opposite spin experiences an increase in the energy gap.
Simultaneously, chemical decorations of the ribbon edges can
also enhance the effect and achieve effective robust spin
filtering devices.>*** Some other researchers have also suggested
some other methods to get various spin-dependent properties,
such as introducing quantum dots with the zigzag edges,*®
functionalizing edges of GNRs*” and boron nitrogen doped for
designated carbon atoms.***

In this work, we propose a series of ZBNNR/ZGNR hetero-
junction with a 100% SFE which can be tuned by the electric
field and a boron vacancy (B,) design. (ZBNNR);—(ZGNR);-B,
device has been researched in my last essay.** From that paper,
we know the magnitude current of (ZBNNR)s—(ZGNR);-B, device
is very small, and there is no NDR phenomenon occurred. In
this paper, we do further improvement of this model. The device
of (ZBNNR);—(ZGNR);-B, has semi-conducting electronic prop-
erties, and the semiconducting heterojunctions are well suited
for a nano-electronic device application, because their electrical
resistance can be easily controlled by the gate voltage. On the
other hand, the metallic nano-materials have electrical resis-
tance which is not sensitive to the gate voltage and this
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insensitivity has discouraged device applications, and led to
designing the (ZBNNR);—(ZGNR);-B, junctions.

Models and computational methods

The models of (ZBNNR)s-(ZGNR);-B, heterojunctions are
shown in Fig. 1. The heterojunction surface vectors are parallel
with the x-axis and y-axis, respectively, and its transport direc-
tion is set along the z-axis. The two-probe device is divided into
three parts, namely, the left electrode, the right electrode and
the channel region. The left and right electrodes are made of
ZGNRs, and the channel region is constructed by the (ZBNNR);-
(ZGNR); heterojunctions with a boron vacancy. Simultaneously,
three-terminal FETs are constructed by adding a gate electrode
under the channel region of the two-probe devices and the
dielectric layer is used to insulate the channel from the gate.
The quantum electronic transport properties of (ZBNNR)s-
(ZGNR);-B, heterojunctions are calculated by applying the
non-equilibrium Green's function (NEGF) combined with the
density functional theory (DFT) by the software package Atom-
istix ToolKit (ATK). The electronic structures of left and right
electrodes are obtained with periodic boundary conditions in all
directions. Double-zeta polarized basis sets (DZP) are used as
the local atomic numerical orbitals and the spin generalized
gradient approximations (SGGA) are used as the exchange
correlation function. The convergence criteria of energy and
force of all atoms in the channel region are set to be 1 x 10> eV
and 0.05 eV A~ respectively. A 1 x 1 x 100 Monkhorst
sampling in the Brillouin zone is utilized and cut-off energy for
the electrostatic potentials is 75 hartree. The electronic
temperature is set at 300 K. The spin-dependent current under
the bias voltage through the channel region is calculated by
Landauer-Bittiker formula:**

PO OO UL OLUOCH(O OV UHLUEUE

source gate

Fig. 1 Schematics of (ZBNNR)s—(ZGNR)z—B, three-terminal FET. The
gate electrode is denoted by the gray box with a thickness of 0.5 A and
the purple box represents the dielectric layer with a dielectric constant
of 4.
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the spin index (1,), respectively.

Results and discussion

In order to understand the changes in the spin-dependent
electronic transport properties by applying an external electric
field, the zero bias transmission spectra of (ZBNNR)s—(ZGNR);-
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Fig. 2 (a)-(e) shows the spin-dependent transmission spectra of

(ZBNNR)5—(ZGNR)3-B, FET deviceat Vg =0V, =2V, =4V, 2V, 4V with
V, =0V, respectively.
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B, FET devices are plotted in Fig. 2 under several gate voltages of
—4V,—-2V,0V,2Vand 4V, respectively, and the transmission
coefficients near Ey vary significantly. From Fig. 2(a), while V, =
0 V, we can see distinct spin polarized transmission peaks
appear below the E¢, and with the increase of V,s (V, = -2V, —4
V), the transmission spectra move to a higher energy, which
means negative gate voltages can raise the orbital energy.
Simultaneously, the migration of spin down spectra is larger
than spin up spectra, which result in a giant spin splitting of the
transmission spectra at Ef, indicating that this device can be
used as a spin filter. Conversely, in Fig. 2(d) and (e), with the
increase of the positive gate voltages (V, = 2V, 4 V), large energy
gaps are observed and the transmission spectra shift to the
lower energy, and there are no peaks around the E¢ which
means the positive gate voltages have great influence on the
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electronic transport properties, but the
phenomena decreased.

Fig. 3(a)-(e) shows the projected density of states of
(ZBNNR)s—(ZGNR);-B, FET device on the carbon atoms (PDOS-
C), boron and nitrogen atoms (PDOS-BN) and total density of
states (TDOS) under V, =0V, -2V, —4V, 2V, and 4 V with bias
= 0V, respectively. Compared with Fig. 3(a) and (c), we can see
different phenomena at E. While V, = 0 V, there are no peaks at
E; for both spin up and spin down channels. As the gate voltage
increases to —4 V, a large peak appears at E; for the spin down
channel, and the PDOS-C and PDOS-BN indicate that the TDOS
at Er mainly derives from the PDOS-BN. The magnitude of
PDOS-C nearly to zero, which means the ZBNNRs to contribute
to the spin dependent transport properties. It is in accordance
with the transmission eigenstates in Fig. 3(f). While V; = -4V,
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Fig. 3 (a)—(e) shows the spin-dependent total and projected density of states of (ZBNNR)s—(ZGNR)3;-B, FET deviceat Vg =0V, =2V, -4V, 2V,
4V with V, = 0V, respectively; (f) shows the spin up and spin down transmission eigenstates at £¢ with V, = —4 V and 4 V, respectively.
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the transmission eigenstates in the spin up channel are almost
localized on the left side, however, the transmission eigenstates
delocalized through the whole scattering region in the spin
down channel, and the eigenstates are almost localized on the
nitrogen and boron atoms. We also can see the eigenstates on
the nitrogen and boron atoms around the vacancy are delo-
calized, and work as a scattering center for the electrons prop-
agating along the nanoribbons, which prove the vacancy does
great contributions to the spin dependent electronic transport
properties. While applying the positive gate voltages, from
Fig. 3(d) and (e), we can see the peaks of TDOS mainly derive
from the PDOS-C, which means carbon atoms play an impor-
tant role in the transport channels. The corresponding trans-
mission eigenstates (Fig. 3(f)) show both in spin up and spin
down channels, the eigenstates are predominantly localized on
the left carbon atoms, which leads to a relatively small current,
so in our following paper we only discuss the effect of the
negative gate voltages.

Previous studies have shown that the effects of spin polari-
zation of the ZGNR edges can be different under external elec-
tric field and the current polarization can also be found.*® Here,
we also examine the effects of an external electric field on
(ZBNNR)s—(ZGNR);-B, device. In Fig. 4(a), we show the spin-
dependent currents under zero and two negative gate voltages
of V=0V, -2 Vand —4V, respectively. From the inset graph of
Fig. 4(a), at V,; = 0 V, both the spin up and spin down currents
are small and display semiconductor behaviors, therefore these
heterojunctions can be manipulated by the gate voltages. With
the increase of negative gate voltages, the currents of both spin
channels rise at the same time, especially at V, = —2Vand -4V,
and spin negative differential resistance (SNDR) phenomena
can also be observed except for the spin up channel of V, =
—2 V. As the negative gate voltage increases to —4 V, both spin
channels have obvious NDR properties but start at different
biases, i.e., 0.8 V for the spin up channel and —0.9 V, —0.2 V,
0.5V, 0.8 V for the spin down channel. The magnitude of the
current in the spin down channel is larger than that in the spin
up channel in the whole bias range with the increase of the
negative gate voltages, which is different from V, = 0 V. The
negative gate voltages suppress the transport of the spin up
channel and promote the transport of the spin down channel,
thus leading to sharp contrast forms the mechanism of
electrical-field-tuned spin filter effects for ZGNRs.

Fig. 4(b) shows the spin filter effects (SFE) under different
negative gate voltages. We define the SFE at finite bias as:

L (W) = L(W)]

SFE= —“+~ 2
11, (Vo) + 11 (V)]

where I|(V,) and I;(V}) represent the magnitude of the spin
down and spin up current at bias V;,. At zero bias, the SFE is
defined as:

_|Tu(E) - T (E))

SFE = {11
|70 (Er) + T (Er))|

where T (E¢) and T; (Ey) represent the transmission coefficient of
the spin down and spin up channel at the Fermi level,
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Fig. 4 (a) shows the calculated spin-dependent current—voltage

characteristics for the (ZBNNR)s—(ZGNR)s-B, device under different
Vgs (Vg=—4V, =2V, 0V), respectively. Inset: the amplified /-V curve
of (ZBNNR)s—(ZGNR)3z-B, device under V4 = 0 V. (b) shows the spin-
filter efficiency (SFE) as a function of the electric field intensity and bias
for (ZBNNR)s—(ZGNR)3-B, device, Vg = -4V, =2V, 0V, respectively.

respectively. Obviously, as can be seen from Fig. 4(b), SFE are
extremely sensitive to the negative gate voltages and bias volt-
ages, and the capability of spin-filter at V, = —2 Vand —4 V is
larger than that at V; = 0 V. Nearly 100% SFE can be observed in
the bias range of —0.3 V to 0.2 V. Therefore, we are able to
design a spin filter based on (ZBNNR);—(ZGNR); hetero-
junctions with a boron vacancy under negative gate voltages.
In order to understand the origin of SFE behavior, the elec-
tronic density of states (DOS) and molecular energy levels in the
scattering region are plotted on the transmission spectra in
Fig. 5(a) and (b), at Vy; = —4 V, with V}, = —0.3 V, 0.6 V,
respectively. Simultaneously, the dashed blue lines represent
the position of the first four frontier molecular orbitals are
marked with HOMO—1, HOMO (the highest occupied molec-
ular orbital), LUMO (the lowest unoccupied molecular orbital)
and LUMO+1 of the spin up and spin down channels. It can be
found that one molecular orbital appears in the bias window
(marked by the two purple lines) at —0.3 V for the spin up

RSC Aadv., 2017, 7, 7368-7374 | 7371
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Fig. 5 (a)—(b) shows the spin-dependent transmission spectra and the
electronic density of states of (ZBNNR)s—(ZGNR)3-B, device at Vg =
—4 V with Vp, = —0.3 'V, 0.6 V, respectively. The vertical solid purple
lines stand for bias window, and the dashed blue lines represent the
spin-polarized Frontier molecular orbitals. (c)—(d) shows the MPSH of
the corresponding spin-dependent HOMO-1, HOMO, LUMO and
LUMO+1 under bias of —0.3 V and 0.6 V, respectively.

channel, whereas no transmission peak appears. Obviously the
transmission and the DOS spectra are strongly correlated with
each other in Fig. 5(a), while the transmission coefficients are
determined by the delocalization of the frontier molecular
orbitals and the molecular projected self-consistent Hamilto-
nian (MPSH) for each frontier orbital is drawn in Fig. 5(c). For
the spin up channel, the MPSHs of HOMO, LUMO and LUMO+1
are all localized on one end of the device, which means an
electron is hard to tunnel through the junction and the trans-
port paths are closed, thus the transmission coefficients are
extremely small. Oppositely, for the spin down channel, there
are three molecular orbitals and a big transmission peak
appearing in the bias window. All the HOMO—1, HOMO, LUMO
and LUMO+1 are delocalized, which means the electronic
transport paths for the spin down channel are open, and large
electronic current can be obtained, which results in the SFE
phenomena occurred. In Fig. 5(b), as the bias increases to 0.6 V,
for the spin up channel, it is clear that a wide big peak moves
into the bias window, and HOMO-—1 orbital also moves into the
bias window. The HOMO—1 and HOMO orbitals are delo-
calized, then the electronic transmission capability for the spin
up channel increases to a certain extent. Moreover, for the spin
down channel, HOMO—1 orbital moves into the bias window,
and there are four orbitals in the bias window, thus the elec-
tronic transmission capability for the spin down channel is also
larger than the spin up channel. Compared with Fig. 5(a), for
the spin up is improved, resulting in a reduced SFE, as shown in
Fig. 4(b).

Another attractive result is the NDR behaviors. Especially at
Vg = —4V, a notable NDR phenomenon can be observed at both
spin up and spin down channels. In Fig. 6, we show the trans-
mission spectra and electronic density of states for spin down
channel at ¥, = 0.1V, 0.5 Vand 1.0 Vunder V; = —4Vand V, =
0.0 V, respectively. Compared with the Fig. 6(d)-6(f), we can see
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Fig. 6 Transmission spectra and electronic density of states of
(ZBNNR)s—(ZGNR)s—B,, device for spin down channel. (a)—(c) repre-
sents Vp, = 0.1V, 0.5V and 1.0 V at V, = —4 V, respectively. (d)-(f)
represents V, = 0.1V, 0.5Vand 1.0 V at V5 = 0.0 V, respectively. Their
LDOS are shown in the corresponding insets with an isovalue of 0.03.
The region between the vertical purple lines is the bias window.

that, at V, = 0.0 V, the transmission spectra are almost the same
in the bias window and no peaks appeared. However, with the
increase of the negative gate voltages, the transmission peaks
move into the bias window, and NDR phenomenon occurred. In
Fig. 6(a), we can see the bias window is narrow, and contains

This journal is © The Royal Society of Chemistry 2017
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a little transmission peaks. As V,, increases to 0.5 V, the bias
window expands and more transmission peaks move into it,
resulting in the current increased. Due to increasing the Vj
further, the bias window becomes larger accordingly, however,
the transmission peaks in the bias window become localized
into two narrow peaks, and the magnitude of DOS peaks in the
bias window decreased largely. For this reason, at V;, = 1.0 V,
although there are two narrow localized transmission peaks in
the bias window, the current decreases and NDR appears. From
Fig. 6(d) and (e), we can see a large DOS peak above the Fermi
level, however, the transmission coefficients are almost zero. To
illuminate this phenomena, local density of states (LDOS) at
0.49 eV, 0.59 eV and 0.69 eV are calculated and given in the
insets of Fig. 6. From the image of the LDOS, we can see the
electron states at the DOS peaks localized at the boundaries,
and the transport paths are closed, thus the transmission
coefficients are almost zero. For the above illustration, it is
concluded that the applied gate electrodes can change the
coupling between the molecular orbitals and the electrodes,
which resulting in an obvious NDR behavior.

In order to understand the RR behavior, we show the elec-
tronic transport properties of (ZBNNR);—(ZGNR);-B, device
for spin up channel under the applied gate V, = —4 V in Fig. 7.
The rectification ratio (RR) is defined as

(V)

RR = 7755

The ratio of the current under the positive and negative
biases with the same voltage magnitude. As shown in Fig. 7(e),
at bias 0.3 V, RR = 44 for the spin up channel. Fig. 7(a) shows
the transmission spectrum at bias 0.3 Vand —0.3 V. In the bias
window, one peak appears at bias 0.3 V and no peaks appear at
bias —0.3 V, indicating the conductance at 0.3 V is larger than
that at —0.3 V, which is in accordance with the DOS in Fig. 7(b).
The corresponding transmission eigenstates at Ef in the spin
up channel at bias 0.3 V are delocalized through the whole
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Fig.7 (a) Transmission spectrum, (b) projected density of states (black
line for 0.3V, red line for —0.3 V) of (ZBNNR)s—(ZGNR)s—B, devices for
spin up channel under the applied gate Vy; = —4 V. (c) and (d) repre-
sents the corresponding transmission eigenstates at the Fermi level. (e)
RR for the spin up channel, and the solid purple lines indicate the bias
window.
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scattering region, however, at bias —0.3 V, the transmission
eigenstates at E¢ are almost localized on the left side, as shown
in Fig. 7(c) and (d). As a result, we can see that the RR at bias
0.3 V is very high.

Conclusions

In summary, based on first-principle quantum transport
calculations, we have shown the spin dependent electronic
transport properties of (ZBNNR);—(ZGNR);-B, device under
external electric field. Compared to the results of the
(ZBNNR)5-(ZGNR);-B, device without electric field, a nearly
perfect SFE, high RR and SNDR behaviors can be obtained
under the electric field in the ferromagnetic states. The
mechanism on the phenomena is illustrated by the spin pop-
ulation analysis in details. The spin filter effects can be easily
tuned and improved by the applied gate voltages, especially for
the negative gate voltages. The reason is the negative gate
voltages can tune the spin down channel obviously, and have
little influence for the spin up channel. With the high RR and
SNDR behaviors, a logic gates are potential to be designed and
these findings suggest new possibilities for developing nano-
meter spintronic devices.
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