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lonic salt (4-ethoxybenzyl)-triphenylphosphonium
bromide as a green corrosion inhibitor on mild steel
in acidic medium: experimental and theoretical
evaluation
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A new phosphonium salt (4-ethoxybenzyl)-triphenylphosphonium bromide (EBTPPB), having different
substituents attached to phosphorous and having different anions, is investigated as an inhibitor for mild
steel (MS) corrosion in 0.5 M H,SO,4 solutions via electrochemical polarization and electrochemical
impedance (El) spectroscopy. Electrochemical results show that EBTPPB compound has practically good
inhibiting features for MS corrosion in the corrosive medium with efficiencies of approximately 98% at an
optimum 1072 M concentration. The inhibition is of a mixed cathodic—anodic type. Passive potential
(Epp) Of the modified steel specimen is in the inactive region and thus inhibits the corrosion process.
Langmuir Adsorption (LA) isotherm was performed to provide precise information on the adsorption
behavior of the ionic salt. It exhibits both physisorption and predominantly chemisorption mechanism on
MS surface. Scanning Electron Microscopy (SEM) associated with Energy Dispersion X-ray (EDX) and
Atomic Force Microscopy (AFM) assessment of the electrode surface is consistent with the existence of
adsorbing screen of EBTPPB molecules. An apparent connection was ascertained between the
experimental corrosion inhibition efficiency (IE%) and the theoretical parameters using quantum
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1. Introduction

Corrosion inhibitors reduce the corrosion rate of metallic
substances in acidic medium and have been universally applied
in case of corrosive attack in crude oil purifier and chemical
scratching.’” There are several classes of inhibitors, e.g. mixed,
cathodic and anodic, passivated, precipitators, vapour phase,
film forming type and absorbents.*® There are two processes
involved in the action of the corrosion inhibitors: (i) the transfer
of the inhibitor to the face of metal and (ii) the chemical
interactions of the protector and the metal surface. The
adsorption is influenced by the occurrence of a polar group in
the inhibitor structure by which the molecules may connect
themselves to the surface of the metal.”**> Free electron pairs on

“Department of Chemistry, Hindu College University of Delhi, Delhi-110007, India.
E-mail: sudershankumar@hindu.duw.ac.in; Tel: +91-9717952342

*Department of Chemistry, University of Delhi, Delhi-110007, India

‘Department of Chemistry, Kirori Mal College, University of Delhi, Delhi-110007, India
“Department of Environmental Science, Deen Dayal Upadhayaya College, University of
Delhi, Delhi-110078, India

“Department of Chemistry, School of Mathematical and Physical Sciences, Materials
Science Innovation & Modelling Research Focus Area, Faculty of Agriculture, Science
and Technology, North-West University (Mafikeng Campus), Private Bag X2046,
Mmabatho 2735, South Africa. E-mail: bahadur.indra@nwu.ac.za

This journal is © The Royal Society of Chemistry 2017

heteroatoms or w electrons and polar groups containing
nitrogen, oxygen, phosphorus and/or sulphur in the molecular
structure are fundamental characteristics of good inhibi-
tors.”** The structure and coverage of the inhibitory molecules
both determine their inhibiting ability.*”**

The phosphonium compounds belong to the class of ionic
salts.’*?* The study of various compounds as inhibitors,
including ammonium compounds, has been extensively carried
out, but the structurally similar group of phosphonium-based
ionic salts has not been fully explored. Quaternary
phosphonium-based ionic salts are more thermally stable than
ammonium and imidazolium-based ionic salts and therefore
suitable for high-temperature reactions (up to 200 °C). High
tunability is the most desirable property of ionic salts whereby
on replacing the halide ion with the anionic functional group,
several multifunctional ionic salts with numerous useful prop-
erties can be generated.'®*?® Quaternary Phosphonium addi-
tives show biological properties against macro and micro-
organisms and have the significant advantage of being
“environment-friendly inhibitors”. Their benefits include low
toxicity, less hazardousness, a rapid breakdown in the envi-
ronment through biodegradation and hydrolysis, and no or
little bioaccumulation.””*® G. Singh et al, synthesized and
worked on the anti-corrosion properties of various
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phosphonium compounds such as benzyl triphenyl phospho-
nium bromide (BTPPB)”** and butyl triphenyl phosphonium
bromide (BTPB)* for the corrosion of MS in acidic solutions.
They also reported possible application of these compounds as
green, eco-friendly compounds, which can be used in hydraulic
oils and drilling fluids to provide corrosion protection. They
improve the corrosion resistance of metals and can be applied
to the substrate by immersion or be incorporated in a polymer
coating. At the engineering level, their use is not only attribut-
able to their efficiency but also to their safety.?®*»?”-*' Phos-
phonium salts are considered as excellent corrosion inhibitors,
particularly in acidic media. Khaled* evaluated the inhibiting
action of (chloromethyl)triphenyl phosphonium chloride, tri-
phenyl(phenylmethyl)phosphonium chloride and tetraphenyl
phosphonium chloride on the corrosion of iron in 1 M HCI
solution. Other authors® tested tetraphenyl phosphonium
bromide as nickel corrosion inhibitor in sulfuric acid medium
and also evaluated the effect of R, X~ (R" = (CgH;,)Ph;P" or K',
X~ =1 orBr or Cl ) salts’ addition on the corrosion of nickel
in 1 M H,SO, medium.** The results achieved showed that
phosphonium iodide addition modifies the interface behaviour
due to the interaction between the molecule and the material
surface. Tetrahydroxymethyl phosphonium sulfate is a well-
known phosphonium salt that shows biocidal properties
against sulfate-reducing bacteria (SRB), which produce sulfuric
acid in oil industry. The major drawback of this compound is
that it shows very low inhibition efficiency and therefore does
not act as good protector against corrosion in the same envi-
ronment. Therefore, a new phosphonium salt (4-ethoxybenzyl)-
triphenylphosphonium bromide (EBTPPB), having different
substituents attached to phosphorous and having different
anions, was investigated as an inhibitor for mild steel (MS)
corrosion in 0.5 M H,SO, solutions via a variety of techniques
such as galvanostatic polarization (GP), potentiostatic polari-
zation (PP), temperature kinetics (TK) and electrochemical
impedance (EI) studies. The facade morphology of the MS
samples in the absence and presence of EBTPPB was investi-
gated using SEM and AFM techniques. The theoretical consid-
eration using quantum chemical calculation was used to
corroborate the experimental results obtained.

2. Experimental

2.1. Material test

Mild steel (MS) rod coupons having composition (wt%) C =
1.92, Mn = 0.60, P = 0.17, Si = 0.15, and remainder Fe, having
dimension 1 cm X 1 cm x 3 cm (L x B x H), were employed
the as working electrode (WE) for electrochemical measure-
ments. These coupons were accumulated in Araldite glue to
facilitate merely 1 cm® surface region to get in touch with the
aggressive media. Before immersing the MS coupon in the
respective solutions, it was mechanically polished to obtain
a clean and smooth surface through emery papers of different
marks i.e. 100, 320, 600, 1000 and 1500. It was mopped up with
acetone and swabbed with condensed water to get rid of any
particles from the surface.
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2.2. Inhibitor structure and test solution

The chemical structure of the investigating inhibitor (4-
ethoxybenzyl)-triphenylphosphonium bromide (EBTPPB) is
shown in Fig. 1. It was obtained from Sigma-Aldrich Lab
product and equipment, India. The corrosive solution was
arranged by the strength of methodical H,SO, (AR grade, 98%)
with purified water. The different concentrations of EBTPPB (1
X 107> M to 1 x 10~> M) employed were prepared in 0.5 M
H,S0,. Before each experiment, a freshly arranged solution was
prepared in the research laboratory.

2.3. Electrochemical measurements

For corrosion inhibition testing, electrochemical measure-
ments were accomplished using galvanostatic, potentiostatic
and AC impedance techniques utilizing CHI 760C electro-
chemical workspace (CH computer instruments, Austin, USA). A
three-electrode system was used. MS served as the WE. A plat-
inum foil was exercised the same as an auxiliary electrode (AE).
The saturated calomel electrode (SCE) was paired to a luggin
capillary pipe whose tilt was placed amid the WE and AE. This
three-electrode cell assembly was then kept in a water bath so
that the reaction attained a steady-state and/or the open circuit
potential (OCP) turned out to be constant. AC impedance
results were executed by an AC signal with an amplitude of
10 mV at OCP in the frequency sequence from 10° Hz to 0.1 Hz.
The EIS variants, such as charge transfer resistance (R.) and
double layer capacitance (Cg), were received from Nyquist
spectra. Due to the AC impedance of MS in the presence of
a mitigator, the data is made to fit with the corresponding
impedance values of an equivalent circuit (EC). The process is
performed using the software ZSimpWin Version 3.21. Tafel
plots were executed from 298 K to 328 K for galvanostatic and at
298 K for the potentiostatic polarization. The potential range
was scanned from —0.9 V to +0.0 V for galvanostatic and +0.0 V
to +2.0 V for the potentiostatic polarization at the scan rate

0.001 Vst

2.4. Surface morphological studies

Freshly polished MS samples were immersed in 0.5 M H,SO,
alone and with the addition of 10> M and 10> M of EBTPPB
for 24 h at a temperature of 25 & 2 °C. These were retrieved after
24 h, desiccated and subjected to SEM and AFM analyses. SEM

?{%‘;

=)
Br

Fig. 1 The molecular structure of (4-ethoxybenzyl)-triphenylphos-
phonium bromide EBTPPB.

This journal is © The Royal Society of Chemistry 2017
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and AFM measurements were performed using JEOL - JSM 6610
at the accelerating voltage of 20 kV at 5000 x magnification and
NAIO AFM Nano-surf easy scan model no. BT-02218 in high
vacuum mode, respectively. SEM was correlated with EDX
spectroscopy to make clear the nature of MS surface.

2.5. Temperature kinetic study

The outcome of temperatures on the decay activities of MS in
0.5 M H,SO, with the various concentrations from 1072 to
10> M of EBTPPB was deliberated in the temperature variation
of 298-328 K at a difference of 10 K with the Langmuir
adsorption (LA) isotherm. The noticeable activation energy
(Eact) of the corrosion reaction was determined. Thermody-
namic adsorption descriptors such as the equilibrium constant
(Kags), entropy change (AS.,,), enthalpy change (AH,, ), and
free energy change (AG,,,) for adsorption were evaluated to
clarify the adsorption behavior of the MS surface.

2.6. Computational quantum chemical study

Quantum chemical (QC) calculations were performed via semi-
empirical AM1 technique since it has proven to be decidedly
authentic for computing the physical features of compounds
from the software Hyper-Chem 8.0. Computational aspects such
as the binding energy, the lowest unoccupied and highest
occupied molecular orbital energy (Erumo, and Exomo respec-
tively), energy gap (AE.u = Erumo — Enomo), Mulliken's
charges, activation hardness (vinn) and softness (oinn = 1/¥inn),
the portion of electrons transferred (ANj,p) and dipole moment
(u) were calculated by the geometry optimization of the inhib-
itor and correlated with protective efficiency.

3. Results and discussion

3.1. Galvanostatic polarization (GP) study

Tafel polarization lines were recorded for four different
concentrations of  (4-ethoxybenzyl)-triphenylphosphonium
bromide (EBTPPB) viz., (...107° M), (...10~* M), (...10> M)
and (...107> M) at four temperatures from 298 K to 328 K at
a difference of 10 K. The solutions were prepared in 0.5 M
H,S0,. Fig. 2(a-d) illustrates the plots of E vs. logI. These
significances along with the data of the corrosion current (1),
anodic and cathodic Tafel slopes (8, & 8., respectively), surface
coverage (®) and inhibition efficiency (IEgp%) are tabulated in
Table 1.

Inhibition efficiency (IE%) was calculated using the
expression®

Icorr - Icorr(inh)

IE% = x 100 (1)

corr
where Ioor and Ieon(inn Signify the corrosion current density
unprotected and protected by EBTPPB inhibitor, respectively.
Surface coverage (#) was calculated using

Icorr in
g=1— =comlind) )

ICO[T
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At all four temperatures and for all four concentrations of
EBTPPB, it was observed that the I, decreased compared to
that of 0.5 M H,SO, alone. The IEgp (%), as given in Table 1, rose
with the increase in the concentration of EBTPPB but decreased
with a move up in temperature. It signifies that EBTPPB mole-
cules are adsorbed on the surface of MS at higher concentra-
tions, leading to greater 6. A comparison of IEgp (%) values of
EBTPPB with BTPPB®*® revealed that EBTPPB exhibits better
corrosion inhibition potentials than BTPPB over the concen-
tration and temperature ranges considered in this study. This
higher inhibition and adsorption are attributed to the existence
of aromatic rings and conjugated m electrons and ethoxy
(-OCH,CH3) as electron donating group, which serve as
adsorption positions for their interaction with the MS surface.

The lopsided values of cathodic and anodic Tafel slopes
indicate that two different types of mechanisms are involved in
the inhibitory action of EBTPPB on the corrosion of MS surface.
This could be (a) adsorption of EBTPPB molecules on the MS
surface, thereby creating a boundary on the MS surface which
separates it from the surroundings and (b) the synergistic effect
offered by some other anions like bromide (Br~) ions present in
the solution. Since, the inhibition efficiency is observed to be
higher at higher concentrations of EBTPPB, it can be construed
that molecules of EBTPPB get adsorbed on the surface of MS
almost entirely.*”

The corrosion potential values (E.or;) do not swing much
from the corresponding value of MS in 0.5 M H,SO,. When the
change in E . > 85 mV/SCE compared to E,.q, the mitigator
may be judged to be anodic or cathodic in nature. When the
shift in E..r < £85 mV/SCE, the corrosion mitigator can be
observed the same as a mixed model. However, in the present
case, the potential displacement is less than 50 mV/SCE, which
authenticates that EBTPPB performs as a mixed nature of
inhibitor.?**

3.2. Electrochemical impedance spectroscopy (EIS)

From the characterization of simple electrode processes for
analysis of very complex interfaces, a method that has gained
much relevance and popularity in recent times is now known as
Electrochemical Impedance Spectroscopy (EIS). The most crit-
ical applications that can be studied using EIS are for testing
corrosion, researching batteries and numerous other surface
treatments, e.g., coating, etc.*>*' An attempt is made to investi-
gate the performance of an ionic salt EBTPPB compound as an
inhibitor of corrosion for MS using impedance spectra. Nyquist
and Bode spectra of MS in sulfuric acid with and without
various concentrations of EBTPPB are specified in Fig. 3(a) and
(b), respectively, and data observed from these spectra are
tabulated in Table 2.

The inhibition efficiency was obtained using the following
expression (eqn (3)):

Rc inh) — Rc aci
ms(0h) = (R ) 100 ®)

where Rcyinn) denotes the charge transfer inhibited resistance
and Reacia) specifies the charge transfer resistance in the

RSC Adv., 2017, 7, 31907-31920 | 31909
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Fig.2 Tafel polarisation curves for MSin 0.5 M H,SO,4 containing different concentrations of EBTPPB at temperatures (a) 298 K, (b) 308 K, (c) 318

K, and (d) 328 K.

Table 1 Corrosion parameters of MS in 0.5 M H,SO, in the presence of EBTPPB

Temp. (K) Conc. (M) —Ecorr (MV) Be (mV dec™) Ba (mV dec™) Lorr (MA cm™?) IE (%) €]

298 H,SO, 465 164.2 141.6 8.8050 — —
107° 501 120.7 108.3 1.8601 78.87 0.7887
1074 491 118.5 111.7 0.9750 88.92 0.8892
1073 487 110.1 96.99 0.6881 92.18 0.9218
1072 483 114.2 138.2 0.1619 98.16 0.9816

308 H,SO, 475 189.3 168.8 14.990 — —
107° 487 142.2 116.3 4.3981 70.66 0.7066
107* 438 107.5 95.53 1.9350 87.09 0.8709
1073 486 122.9 111.7 1.2031 91.97 0.9197
102 501 150.8 129.6 0.0206 98.62 0.9862

318 H,SO, 481 208.1 196.4 16.390 — —
107° 495 175.6 145.0 7.5831 53.73 0.5373
1074 484 153.6 114.1 5.0210 69.36 0.6936
1073 460 130.5 98.25 1.4470 91.17 0.9117
1072 455 133.1 94.90 0.7994 95.12 0.9512

328 H,S0, 490 212.5 172.4 18.23 — —
107° 497 180.6 148.6 10.580 41.96 0.4196
10°* 498 171.7 166.9 7.1180 60.95 0.6095
1073 494 157.9 149.5 5.0231 72.44 0.7244
1072 478 153.6 105.6 2.5380 86.07 0.8607
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Fig. 3 Impedance plots for MS in 0.5 M H,SO,4 and in the presence of

various concentrations of EBTPPB at 298 K. (a) Nyquist plot, and (b)
Bode plot.

Table 2 EIS data for MS in 0.5 M H,SO4 in the absence and presence
of different concentrations of inhibitor EBTPPB

Concentration
Solutions (M) Ret (Q cm®) Cyq (WF em™)  fioax IE (%)
H,S0,4 0.5 4.954 15935 2.017 —
EBTPPB 10°° 28.26 554.5 10.16  82.47
107* 103.2 37.87 40.74 95.19
1073 173.4 20.17 45.52 97.14
1072 221.8 10.88 66.02 97.77

existence of acid solution alone. The value of R.; was estimated
by subtracting the value of solution resistance (Ry) from the
polarization resistance (Rp,) for MS in each solution. The values
of the latter quantities were obtained from the Nyquist plots.
The intercept on the x-axis (real impedance (Re(Imp))) gives the
value of Ry, and the end point on the same axis gives the value of
R,,. The value of charge transfer resistance is then calculated
using eqn (4):

Ry =R, — R, (4)

The double layer capacitance, Cq is also calculated using the
following relation (eqn (5)):*>

This journal is © The Royal Society of Chemistry 2017
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where, fi,.x represents the frequency where the imaginary frac-
tion of the impedance, i.e., Z’ has upper limit magnitude.

Impedance spectra in the Nyquist plot have a semicircle loop
and the span of the semicircle is enhanced with improving the
inhibitor concentrations of EBTPPB. The single capacitive loop
indicates that a charge transfer process principally controls the
rust of MS. Moreover, the AC impedance spectrum contains
a depressed semicircle, which indicates the surface heteroge-
neity due to roughness, fractal structures, inhibitor's adsorp-
tion and distribution of activity centers. The EIS results for
EBTPPB on MS surface are simulated by an equivalent circuit
(EC) revealed in Fig. 4(c) obtained in accordance with the data
fitting curve illustrated in Fig. 4(a and b) with a x> value of 3.15
x 107* The superiority of fitting to EC was reviewed by chi-
square value. The small value of x> indicates a better fit.>*434

As seen from Table 2, it is apparent that the R, data are
enhanced by enhancing the concentration (0.00001 to 0.01 M)
of EBTPPB, signifying that the corrosion rate declines. Cy;
values reduce with the accumulation of EBTPPB, resulting in
a reduction in the dielectric constant (&) and a rise in the
wideness of the electrical double shield layer, recommending
the creation of the shielding layer on the Fe surface.*

3.3. Potentiostatic polarization study (PPS)

Research was executed on the transition of MS rod from active
to the passive region in the corrosive medium. It was observed
that the active-passive transformation was an auto-catalytic
route in which a pre-passive layer develops on the sample
surface. Passive screen functions as a blockade, inhibiting the
oxidation reaction (Fe dissolution) at the anodic regions. This
inhibition mechanism was usually recognized as metal/MS
passivation also noticed in the inhibited system EBTPPB.***

The potentiostatic action of the anodic dissolution of MS in
the acidic standard in the occurrence of various concentrations
(1072 to 10> M) of EBTPPB was investigated, and the anodic
dissolution parameters such as critical current (I.), passive
potential (Ey,), passive current (I,) were obtained from Fig. 5
and reported in Table 3. I. was seen to decrease with increasing
concentrations of EBTPPB. The values of I, were also inferior
compared with dissolution in EBTPPB alone. The passivation
range is the highest at 558-1652 mV for the lower concentration
of EBTPPB, which suggests that EBTPPB molecules get adsor-
bed at a lower concentration (10~° M) on the MS surface. The
mechanism followed is that of adsorption of (M-Ln),qs mole-
cules as well as the synergistic effect offered by the bromide ion.
EBTPPB works as an excellent passivator on MS surface in 0.5 M
H,SO0,.

3.4. Scanning electron microscopy (SEM)

To examine the surface morphology and acquire an apparent
understanding of the nature of adsorptions, scanning electron
micrographs were recorded. Fig. 6(a) shows SEM images of
polished bare MS surface, which is free from any pits and

RSC Aadv., 2017, 7, 31907-31920 | 31911
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(a) Nyquist fitting, (b) Bode fitting and (c) equivalent circuit corresponding to experimental data (MS in 0.5 M H,SOy4 in the presence of

Fig. 4
1072 M of EBTPPB).

cracks. Fig. 6(b) displays the damaged surface and the forma-
tion of corrosion products i.e. FeO, on the MS surface in the
corrosive medium. Fig. 6(c and d) illustrates the morphology of
the MS surface after corrosion in the presence of the EBTPPB.
This is evident from the micrographs that the corrosion of MS
in the acid media was inhibited substantially in comparison
with those in the absence of EBTPPB.

31912 | RSC Adv., 2017, 7, 31907-31920
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SEM reveals that less corrosion occurred on the MS surface at
the time the concentration of additive was 1 x 107> M for
EBTPPB. This may happen due to the involvement of m-elec-
trons present due to conjugation in the phenyl rings. The benzyl
group and the phenyl rings seem to blanket the facade of MS in
the presence of EBTPPB as an inhibitor as the percentage of
carbon is more on the surface. More corrosion is viewed on the

This journal is © The Royal Society of Chemistry 2017
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Fig. 5 Potentiostatic polarisation curves for MS in 0.5 M H,SO,4 con-
taining different concentrations of EBTPPB at 298 K.

Table 3 Polarisation parameters for anodic dissolution of MSin 0.5 M
H,SO,4 in the presence of EBTPPB

Concentration
Solutions (M) I (mAcm™) I, (mAcm™?) E,, (mV)
H,S0, 0.5 376.0 35.1 1377-1552
EBTPPB  10°° 235.4 9.04 558-1652
10°* 269.6 21.5 607-1611
1073 356.3 29.2 1098-1547
1072 — — —

sample surface when the concentration of the additive is trim-
med down to 1 x 10~ ° M. Its scrutiny also reports the high
inhibition efficiency values achieved during the polarization
studies of the EBTPPB inhibitory system.***

3.5. Energy dispersive X-ray spectroscopy (EDX)

EDX spectroscopy presents the significance of the intensity and
composition of the areas on the MS coupons regarding atomic
percent.*>** EBTPPB has been investigated as the inhibitor of
corrosion of MS. As a shred of evidence for its potential to
inhibit corrosion of MS in acidic medium, the energy dispersive
spectra of MS surface is recorded in 107> M and 10> M of
EBTPPB. The EDX spectra demonstrated in Fig. 7(a-d) corre-
spond to the SEM in Fig. 6(a-d), and the related information in
terms of atomic percent is reported in Table 4.

The spectra in Fig. 7(b) show the peak for iron (Fe) and
oxygen (0), signifying the formation of iron oxide/hydroxide on
the surface of the MS sample. The spectra of inhibited speci-
mens {Fig. 7(c and d)} that facilitated the Fe lines were notice-
ably suppressed when judged against the polished (Fig. 7(a))
and uninhibited (Fig. 7(b)) spectra of MS surface. Inhibition of
Fe lines was because of the inhibitory shield that existed on the
MS surface. The (%) atomic content of Fe for MS in 0.5 M H,SO,
solution is 54.91% and those for MS dipped in an optimum

This journal is © The Royal Society of Chemistry 2017
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10> M (higher) and 10> M (lower) concentration of EBTPPB
are 77.13% and 68.64%, respectively. These results specified
that the MS surface was coated with the protective shape of
EBTPPB molecules. The composition of the MS surface
explained that the adsorption of EBTPPB protected the corro-
sion through m-electron conjugated in aromatic phenyl rings
and benzyl group attached with electron donating group. EDX
with SEM analysis offered a powerful indication for the exis-
tence of EBTPPB protective coating over the MS surface.

3.6. Atomic force microscopy (AFM)

AFM serves as a potent tool for the examination and charac-
terization of a variety of samples from nanometer to micrometer
length scales.®*** The AFM image of the abraded surface
(Fig. 8(a)) of the MS without any pre-treatment with sulphuric
acid and the inhibitor compound was obtained first. Then,
three other MS samples were prepared by immersing them in
0.5 M sulphuric media uninhibited and inhibited in 1 x 107> M
and 1 x 10~° M concentrations of EBTPPB for 24 hour, and
images were recorded at a temperature of 298 K.

The Fig. 8(b) clearly shows the extent of corrosion in the
presence of sulphuric acid. Deep pits and cracks were seen,
which showed the degree of surface damage. The MS surface
could be quantitatively analyzed by evaluating the roughness of
metal surface (RMS) area. The value of the RMS in sulphuric
acid is 668.2 nm. The higher value of RMS in the presence of
0.5 M H,SO, signifies the greater extent of corrosion. The
Fig. 8(c) indicates that the MS surface was shielded with 10> M
of EBTPPB inhibitor molecules giving it a large extent of
protection in opposition to corrosion, thereby decreasing the
RMS value to 111.1 nm. As the number of inhibitory molecules
decreased in 10> M of EBTPPB solution, the MS surface was
protected to a lesser extent as can be assured from Fig. 8(d), and
the RMS value increased to 188.4 nm in comparison to the value
obtained with 10~> M EBTPPB solutions. RMS values through
the AFM study of the metal surface authenticated the existence
of adsorption barriers of EBTPPB.

3.7. Adsorption isotherm and temperature kinetic effect

The adsorption isotherm confers an insight into the adsorption
mechanism and perception on the metal-inhibitor relations
and can be ascribed from the curve of surface coverage rate
aligned with the inhibitor concentrations. To investigate the
adsorption procedure of EBTPPB on MS, respective adsorption
isotherms were trialled for the explanation of the adsorption
mechanism.* The value of correlation constant (R*) obtained in
the plots of C/6 versus C (Fig. 9) equal to or close to 1 indicates
that Langmuir adsorption (LA) isotherm is followed by
a particular adsorption process at an appropriate temperature.
The following equation (eqn (6)) represents the adsorption
isotherm relationship for Langmuir adsorption isotherm:*
Gin _ 1

I Cin 6
0 Kads * b ( )

where Ci,, denotes the EBTPPB defender concentration of
reaction, ¢ represents the coverage of the treatment on the
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Fig. 6 SEM images of (a) plain MS surface, (b) MS in 0.5 M H,SOy4, (c) MS in 0.5 M H,SO4 + 1072 M EBTPPB, (d) MS in 0.5 M H,SO,4 + 10> M
EBTPPB, after 24 h exposure at the x5000 magnification.

metal surface, which can be obtained from the % IE5p/100 ratio,
where IEgp (%) is obtained from the Tafel polarization method
(see Table 1). K,qgs signifies the equilibrium secure for the
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EBTPPB.
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Table 4 EDX data for MSin 0.5 M H,SO4 in the absence and presence
of different concentrations of inhibitor EBTPPB

Solutions Fe (6] S P Br C

Plain mild surface 86.02 4.470 0.25 0.28 — 8.02
0.5 M H,S0, 54.91 32.01 0.79 0.15 — 11.94
10 ° M EBTPPB 68.64 18.86 1.03 0.22 0.27 11.41
10> M EBTPPB 77.13 10.46 0.63 0.34 0.14 10.12

The K,qs is interrelated to the change in free energy of
adsorption (AG,4,) according to the following relation:

AG,,, = —RT In(55.5K,q;) (7)

where R denotes ideal gas constant (8.314 J mol * K %), T
represents temperature and 55.5 fixed quantity of the concen-
tration of H,O.

View Article Online
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The change in enthalpy of adsorption (AH,,,) was calculated
via the Van't Hoff equation.

i
———24s 1 const. (8)

In Kads RT

Enthalpy values were worked out from the slope (—AH, 4, /R)
of the scheme of the natural logarithm of K, versus 1/T, which
is depicted in Fig. 10 and tabulated in Table 5.

The values of AG, 4, and AH, 4 obtained from eqn (7) and (8),
respectively, can now be substituted in eqn (9) to calculate the
entropy of the adsorption process using the following equation:

AG:.ds = AIi:.ds - TAS;ds (9)

On rearrangement of eqn (9), we get eqn (10) as follows:
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Fig. 8 AFM images of (a) abraded MS surface, (b) MS in 0.5 M H,SOs4, () MS in 0.5 M H,SO,4 + 1072 M EBTPPB (d) MS in 0.5 M H,SO4 + 107> M

EBTPPB.
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Fig. 9 Representative Langmuir's adsorption isotherms for MS at
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Fig. 10 In K,gs versus 1/T plot for corrosion of EBTPPB inhibited MS in
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The thermodynamic parameters achieved from LA isotherm
for EBTPPB are reported in Table 5. The mitigating mechanism
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is customarily clarified with the creation of a physically and/or
chemically type adsorbed shield on the sample. The assess-
ments of (—) AG, 4, signify a spontaneous adsorption practice
and strength of the adsorbed barrier of the protector for the
sample face. Usually, when AG,,, is approximately —20 kJ
mol ', the type of adsorption is considered to be a physical
adsorption, while when AG, 4. is approximately —40 kJ mol " or
lesser, the type of adsorption is considered to be a chemical
adsorption. The AG, 4 values in the current research exist from
—36.4 to —38.9 k] mol !, which indicate that the adsorption of
EBTPPB molecules allows chemisorptions to dominate. The
negative values of AS, ;. for EBTPPB inhibitor indicated that the
activated compound in the rate determining measure charac-
terizes an association more than a dissociation action, indi-
cating that a reduction in chaos takes place from the substrate
through the intermediate to the (Fe/EBTPPB) activated complex.
Generally, for physisorption, AH, 4 is lesser than 40 kJ mol *,
whereas for chemisorption approaches, it is 100 kJ mol™*. The
absolute AH, ,, assessed for adsorption of EBTPPB was 44.78 K]
mol ', which was higher than 40 k] mol " and indicated that
the adsorption of inhibitor employed was exothermic, and
chemisorption took place predominantly.>*->*

3.8. Activation energy

Activation descriptors have a significant role in recognizing the
inhibiting mechanism. The galvanostatic polarization study
(Table 1) was completed in the range of 298-323 K temperature
using several concentrations of EBTPPB ionic salt inhibitor in
0.5 M H,SO, for MS. The activation energy (E..) associated with
current rate can be expressed via the Arrhenius relation®

log (Ieorr) = log A — (—E,/2.303RT) (11)
where I refers to the corrosion rate and A stands for the pre-
exponential Arrhenius constant. Fig. 11(a) characterizes the
Arrhenius plot of log I against 1/T (K) for the oxidization of MS
in 0.5 M H,SO, solutions without or with the presence of
EBTPPB at a level ranging from 10> M to 10~ > M. In Fig. 11(a),
the slope of every linear fit line is specified, and E, is computed
{Eact = 2.303 x R x (slope)}. A graph shown in Fig. 11(b) is
plotted between the activation energy and various concentra-
tions of the inhibitor EBTPPB. Scrutiny of Table 6 reveals that
E. values are not too high except at 10> M concentration for
the inhibited medium (EBTPPB + acid) than uninhibited
medium (acid alone), demonstrating a comprehensive route
(physisorption and chemisorption) of adsorption action. The
active barrier is slighter low, easing the formation of Fe?* ions,

Table 5 Adsorption parameters at different temperatures studied for EBTPPB

Temperature

(X) Kags X 10° M1 —AG, 4 (K mol ™) —AH 4 (k] mol ™) —AS,4 0K mol™)
298 4.4325 36.459 27.92

308 3.3658 36.978 44.78 25.33

318 3.1843 38.032 21.22

328 1.0932 36.312 25.81

31916 | RSC Adv., 2017, 7, 31907-31920
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which act together with the EBTPPB ionic salt to appear as
a protective shape.®

3.9. Quantum chemical calculation (QCC)

Computational chemistry is not only operated as a viewing tool
to examine several chemical compounds but also prominently
to modernize an understanding of the behaviour of the various
coordinations as a function of their structural characteris-
tics.**® The optimized geometry and Mulliken's charges are

Table 6 Activation parameters for the corrosion of MS in the presence
and absence of EBTPPB

Concentration (M) E, (k] mol™)

0.5 M H,S0, 18.93
107° 20.75
104 24.89
1073 21.96
102 48.54

This journal is © The Royal Society of Chemistry 2017
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given in Fig. 12(a) and (b). Fig. 12(c) and (d) give the 3-D iso-
surface map of Eyomo and Eruymo, respectively. The various
optimized AM1 parameters for EBTPPB are reported in Table 7
and associated with their inhibitor effectiveness.

As indicated by the Frontier molecular (FM) orbital specu-
lation,**** the pattern of an intermediate position is an outcome
of relations among the FM orbital (LUMO and HOMO) of
reactants. The E;ymo — Enomo (AE) gap is an essential stability
key. A small LUMO — HOMO energy gap leads to high experi-
mental protective efficiency and stability of the protector in
chemical reactions. In the present research, EBTPPB inhibitor
has the lowest AE value 7.3774 eV, which assists its adsorption
on the MS surface.*®

The concepts of activation hardness (y;n,) and softness (gi,n)
have also been defined by the LUMO — HOMO energy space. To
justify this, the following formula was used:*”*®

ELUMO — EHOMO

Yinh = > (12)
1

Oiph = —— 13

" Yinh ( )

where o, and v;,, are the attributes to assess the compound
stability and reactivity. Soft compounds are more reactive than
hard ones since these may attract electron donor to acceptors
promptly. The soft molecule has small energy space and large
space is present in the hard ones. From our current computa-
tional evaluation (Table 7), we find that EBTPPB possesses Yinn
of 3.690 eV and oi,, of 0.2710 eV, which conforms with the
experimental statistics of mitigation efficiency.

The number of transferred electrons (ANj,,) from the
EBTPPB protector to MS sample surface was also computed
using the following relation:*

XrFe — Xinh
ANy = oAb (14)
2(Yinn + Yre)
Erumo + Enomo
o = — im0t Euowo (19

To evaluate the ANj,p, hypothetical data of the electronega-
tivity of Fe, yg. nearly equal to 7 eV mol ™, and yp. = 0 €V mol
and calculated Eyxomo (—7.8164 eV) and Erymo (—0.4340 €eV)
were used for EBTPPB (see Table 7). As stated by Awad's study,”®
when the AN;,j, value was less than 3.6, the mitigation efficiency
improved with enhanced electron-releasing power at the surface
of the sample. The value of AN,y (0.3893) signifies the number
of electrons departing from the donor and going into the
acceptor molecule.” An enhancement in electron donating
capability was evinced by electron donating substituent
(-OCH,CHj; group attaches with benzyl group), which enlarges
the protection efficiency. It may be insisted that EBTPPB has
a high ability to adsorb on the MS surface.

The confined electron densities or charges are necessary for
understanding the physicochemical properties of molecules.
Mulliken charge scrutiny is frequently applied for the compu-
tation of the charge circulation in the structure. From the
Mulliken charge densities and analysis, more negatively

RSC Adv., 2017, 7, 31907-31920 | 31917
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Fig.12 Computed quantum parameters for EBTPPB: (a) ball and stick optimized structure, (b) Mulliken charges, (c) HOMO Frontier orbital energy

distribution, and (d) LUMO Frontier orbital energy distribution.

Table 7 Quantum chemical parameters of EBTPPB using AM; semi-
empirical method, Hyper Chem. 8.0

Total energy (keal mol ) —106 439
Energy of HOMO (eV) —7.8164
Energy of LUMO (eV) —0.4340
Energy gap (AEy p) 7.3824
Binding energy (kcal mol ) —6096.5
Softness (o) eV 0.2710
Global hardness (y) eV 3.6887
Number of transfer electron (ANjnp) 0.3893

charged atoms act as an active focal point, which can be
adsorbed through donor-acceptor type of reaction on the
surface of metal. It is observed from Fig. 12(b) that the charge
on central phosphorous atom 3.39 and negative charges in the
region of the carbons atoms of the aromatic rings, methylene
carbon, oxygen, and bromide are adsorption active centers. The
EBTPPB ionic salt is adsorbed on the MS surface using these
active sites, facilitating the corrosion mitigation action.””*

The smallest the total energy value (—106 439 kcal mol ') is
the ground state energy of the coordination. The binding energy
of the inhibitor EBTPPB was found to be negative (—6096 kcal
mol '), which advocated that the inhibitor was stable and less
prone to divide. There is a possibility of interaction of m-elec-
trons of EBTPPB with the MS surface, thereby retarding the
corrosion rate because EBTPPB is a polar molecule as indicated
by it dipole moment value (7.63u).*

31918 | RSC Adv., 2017, 7, 31907-31920

4. Conclusions

The systematic study of corrosion inhibition of MS was carried
outin 0.5 M H,SO, using various concentrations of an ionic salt
(4-ethoxybenzyl)-triphenylphosphonium bromide (EBTPPB)
from 298 to 328 K temperatures. The outcomes of these studies
can be concluded as follows:

e Inhibition efficiency of green ionic salt enhances on
enhancing the inhibitory concentration (10~ to 10~> M), and
protection takes places with adsorption of the EBTPPB inhibitor
on the MS surface. The adsorption of mitigator is confirmed by
the Langmuir adsorption (LA) isotherm.

e The EIS results demonstrate that R.. values enhance with
increasing the protector concentration, while the values of Cy;
reduce with escalating the protector concentration.

e The best fit of the curves has been found from their cor-
responding equivalent circuits. The small value of x” indicates
better fit curves.

e SEM with EDX investigation of the surface confirmed the
presence of films and adsorption of EBTPPB inhibitor on the
MS surface.

e AFM study revealed that the extent of roughness decreased
when the concentrations of EBTPPB were increased from
10° M to 10 > M.

e QC calculations were accomplished to sustain the
adsorption mechanism with the molecular structure of
EBTPPB.

~
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