Open Access Article. Published on 07 February 2017. Downloaded on 11/8/2025 1:38:53 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

RSC Advances

CrossMark
& click for updates

Cite this: RSC Adv., 2017, 7, 10454

AA"?
| ROYAL SOCIETY
OF CHEMISTRY

Coupling of anhydro-aldose tosylhydrazones
with hydroxy compounds and carboxylic
acids: a new route for the synthesis of

C-B-p-glycopyranosylmethyl ethers and estersy

Timea Kaszas, Marietta Téth, Sandor Kun and Laszld Somsak™

Cross couplings of O-peracylated 2,6-anhydro-aldose tosylhydrazones

(C-(B-p-glycopyranosyl)
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thermic or photolytic conditions in the presence of KzsPO,4 or LiOtBu. The reactions failed with EtOH,

BnOH, or tBuOH, however, (CF3),CHOH, electron poor phenols and carboxylic acids gave the
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Introduction

Metal-catalysed and metal-free cross coupling reactions have
profoundly changed the way how complex organic molecules
are assembled nowadays.* Metal-free coupling reactions can be
a good choice to avoid the use of expensive and toxic metals and
ligands. In the last decade tosylhydrazones emerged as reac-
tants in both metal-catalysed and uncatalysed coupling reac-
tions®>* for example with alcohols and phenols,*® carboxylic
acids,”® amines,®™* thiols,””™* arylboronic acids,” aryl tri-
flates,'® aryl halides,"” and benzyl halides.*®

Despite the use of a large variety of aliphatic and aromatic
tosylhydrazones in cross couplings, analogous reactions with
anhydro-aldose tosylhydrazones have not yet been investigated.
While tosylhydrazones can easily be obtained from aldehydes or
ketones, anhydro-aldose tosylhydrazones are not readily avail-
able, and their preparation needs special methods. Thus, the
reduction of glycosyl cyanides by RANEY®-nickel in the pres-
ence of NaH, PO, with in situ trapping of the intermediate imine
with tosylhydrazine yields anhydro-aldose tosylhydrazones.**
Synthetic utility of these compounds as carbene precursors was
also examined to result in exo-glycals in aprotic Bamford-Ste-
vens-reactions.>***??

Insertion of carbenes into O-H bonds is a long known
transformation.>* Carbenes generated from tosylhydrazones
were inserted into alcohols and phenols®>***?° as well as into
carboxylic acids™® to give the corresponding ethers and esters,
respectively.
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to these glycomimetic compounds.

corresponding C-B-b-glycopyranosylmethyl ethers and esters, respectively, representing a new access

Only a few methods can be found in the literature for the
synthesis of C-glycopyranosylmethyl ether and ester deriva-
tives G (Scheme 1). Such compounds are most frequently
prepared by etherification/esterification of C-glycopyranosyl
methanols F obtained by ozonolysis-reduction reaction
sequences (routes a and b) from C-a-p-glycopyranosyl allenes
B,*"** C-glycopyranosyl ethenes C of both o-p**** and B-0**
configurations, reduction of methyl (C-B-p-glycopyranosyl)
formate D (route c),*® or ring opening of glycal epoxides E by
the Grignard-reagent (iPrO)Me,SiCH,MgCl followed by
Tamao-Kumada oxidation (route d) to give B-p-configured
C-glycopyranosyl methanol derivatives G.*” By using this
methodology, ether-linked glycoside mimics were synthesized
from bioactive compounds such as ezetimibe®® and 4’-deme-
thylepipodophyllotoxin®*  derivatives. C-B-p-Glycopyranosyl
siloxymethanes H were obtained from variously protected 1-O-
acetates of mono and disaccharides in Co,(CO)s catalyzed
reactions with hydrosilane in the presence of carbon monoxide
(route e).**** Replacement of the siloxy moiety by an acetoxy
group furnished C-B-b-glycopyranosylmethyl acetates®** G
and such compounds were also prepared by nucleophilic
substitution of epimeric mixtures of C-p-glycopyranosylmethyl
iodides I by nBu,NOAc (route f).** Scheme 1 allows one to
estimate the number of synthetic steps necessary to get the
target compounds G from a common precursor, a suitably
protected 1-O-acetyl glycose derivative A.

Given the above interest in C-glycopyranosylmethyl ethers
and esters G we envisaged that cross coupling reactions of
anhydro-aldose tosylhydrazones J (easily obtained from glycosyl
cyanides K on route g) with alcohols, phenols or carboxylic acids
may directly lead to these types of glycomimetics. Herein we
disclose our trials in this field which can provide new, alterna-
tive, and shorter reaction pathways to the above compounds,

This journal is © The Royal Society of Chemistry 2017
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Scheme 1 Synthetic routes toward C-glycosylmethyl ethers and esters.
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Table 1 Test of solvents and bases for the generation of C-glucosylmethylene carbene
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L]
) OBz OBz OBz OBz (0]
BzO TNTUS dry solvent, z z ="~CHO z OB o
OBz [o o) z
reflux OBz
1 2 3 4
Yield” (%)

Entry Solvent Base (equiv.) 2 3 4
1 1,4-Dioxane NaH (10) 72° - -
2 1,4-Dioxane K,CO; (1.5) 21 5 16
3 1,4-Dioxane K,CO; (5) 26 6 9
4 1,4-Dioxane K,CO; (10) 25 9 5
5 1,4-Dioxane LiOtBu (5) 24 - -
6 1,4-Dioxane LiOtBu (5) 50° - -
7 1,4-Dioxane Bu,NF (5) 44° + 14
8 1,4-Dioxane K;PO, (3) 46 - -
9 1,4-Dioxane K;PO, (5) 70 - -
10 PhF K5PO, (5) 10 - -
11 PhF K;PO, (5) 294 - -

“ Isolated yields from a complex mixture which do not reflect the actual product ratios. ? Literature experiment.?*?' ¢ Performed in a sealed tube,
reaction temp. 110 °C. ¢ Performed in a sealed tube, reaction temp. 100 °C.
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and also represent the first cross couplings with anhydro-aldose
tosylhydrazones.

Results and discussion

In our previous studies,?”* carbene generation from anhydro-
aldose tosylhydrazones was effected by using NaH (Table 1,
entry 1). To find more easily operable bases several salts were
screened with O-perbenzoylated 2,6-anhydro-p-glycero-p-gulo-
heptose tosylhydrazonel (C-(B-p-glucopyranosyl)formaldehyde
tosylhydrazone)**** (1) in the absence of any trapping agent to
give the corresponding exo-glucal 2. The bases K,COj3, LiOtBu,
and Bu,NF were not efficient enough for the reaction (Table 1,
entries 2-7) since the yields of 2 were low and/or 2 was
accompanied by side-products such as 3 and 4. The formation
of 3 can be explained by hydrolysis of the tosylhydrazone moiety
due to traces of water in the reaction mixtures followed by
elimination of benzoic acid from the 1-2 positions. The liber-
ated benzoic acid may be a partner in an insertion reaction of
the carbene® derived from 1 to give benzoate ester 4. On the
other hand, the use of K;PO, resulted in 2 as the only product in
acceptable yield (entry 8), and its application in a 5-fold excess
(entry 9) proved equipotent with the use of NaH (entry 1). In
coupling reactions of tosylhydrazones with OH-compounds
fluorobenzene was reported to be an efficient solvent,®
however, in the above reactions it did not perform better but
even worse than 1,4-dioxane (entries 10 and 11). Therefore, in
the further transformations mainly K;PO, and in some cases
LiOfBu in 1,4-dioxane were employed as the base.

Tosylhydrazone 1, when reacted with EtOH as the solvent
at reflux temperature in the presence of K;PO, (5 equiv.), led
only to decomposition whereupon no discrete product could
be isolated from the reaction mixture (Table 2, entry 1).
Similar experiments with ¢tBuOH (either 20 equiv. in 1,4-
dioxane shown in entry 2 or as the solvent, 10 equiv. of K3PO,)
allowed exo-glucal 2 or ester 4 to be isolated in less than 30%
yields, respectively. In order to avoid the possibility of failure
or incompleteness of the deprotonation of 1, its Li-salt 5 was
prepared (Scheme 2), and subjected to carbene generation in
the presence of both EtOH or tBuOH (neat or 100-160 equiv.
in 1,4-dioxane under irradiation by a 250 W mercury-vapour
lamp at Aymax = 365 nm at rt or under thermic conditions at
reflux temperature), however, only decomposition or traces of
2 or 4 could be detected in these reaction mixtures. To check
the effect of PhF,* the reactions of 1 with tBuOH or BnOH
(both 20 equiv., entries 3 and 4, respectively) in the presence
of LiO?Bu (1.2 equiv.) were carried out in this solvent under
MW heating, however, only the formation of 2 could be
observed.

From the reaction of 1 with (CF;),CHOH in the presence of
LiOtBu the coupled product 6a could be isolated beside some
exo-glucal 2 (Table 2, entries 5 and 6). The use of PhF as the

i This is the systematic name according to IUPAC carbohydrate nomenclature,
however, the one in parenthesis reflects the parent sugar configuration in
a more easily followable way, therefore, both names will be applied throughout
this text.

This journal is © The Royal Society of Chemistry 2017
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Scheme 2
drazone 1.

Formation of Li-salt 5 from anhydro-aldose tosylhy-

solvent (entry 6) was inferior to 1,4-dioxane (entry 5) in these
reactions, as well.

Next, we turned to analogous transformations with phenols
(Table 2). Reaction of 1 with phenol gave a complex mixture in
the presence of K;PO, (Table 2, entry 7), but resulted in ether 6b
in moderate and low yields with LiO¢Bu under thermic or
photolytic conditions, respectively (entries 8 and 9). From the
reaction of p-cresol (entries 10 and 11) exo-glucal 2 was isolated
as the main product regardless of base. However, trans-
formations with p-chloro- (entries 12-15) and p-nitro-phenol
(entries 20 and 21) provided the desired ethers 6d and 6e,
respectively, in moderate yields both with K;PO, and LiOtBu. In
the case of p-chloro-phenol PhF was again tried as the solvent
(entries 16-19) with both bases and under conventional or MW
heating, however, only a slight increase of the yield was
observed with oil bath heating in a sealed tube (entry 15).

Coupling reactions of anhydro-aldose tosylhydrazones
with carboxylic acids in the presence of K;PO, were also
examined (Table 3). Reactions with aliphatic carboxylic acids
resulted in the desired esters 7a-e as the sole products with
moderate and good yields (Table 3, entries 1-6). Coupling
reactions with benzoic, 2-naphtoic, and substituted benzoic
acids gave compounds 7f-1, respectively, in moderate yields
(entries 7-15). Application of higher excess of carboxylic acids
and the base generally increased the yields (compare entries
3-4, 9-10). Adapting the applied reaction conditions to sugar
derived carboxylic acids (O-peracetylated p-galactonic acid,*®
O-perbenzoylated C-(B-p-glucopyranosyl)formic acid,*” O-per-
acetylated C-(B-p-galactopyranosyl)formic acid,*® 1,2-O-iso-
propylidene-3,5-O-benzylidene-p-glucofuranuronic acid*’) the
expected 7m-p, respectively, were isolated in good yields
(entries 16-19).

The examinations were extended to the p-galacto config-
ured tosylhydrazone 8 (Table 4). The corresponding esters 9a-
¢ derived from aliphatic carboxylic acids were isolated in
moderate yields (entries 1-3), while 9d was obtained from
O-perbenzoylated C-(B-p-glucopyranosyl)formic acid in good
yield (entry 4).

A comparison of the investigated reactions allows one to
conclude that the acidity of the OH-bond of the coupling part-
ners seems to be essential in terms of the yields (Table 5). While
alcohols (entries 1-3), and the electron rich (and thereby less
acidic) p-cresol (entry 4) did not give the expected ethers,

RSC Adv., 2017, 7, 10454-10462 | 10457
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Table 3 Reactions of tosylhydrazone 1 with carboxylic acids
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BzO N7 OS] KsPO, BzO (@) R
OBz ‘o e} - OBz
dry 1,4-dioxane
1 reflux 7
Yield (%)
Entry R RCOOH equiv. K;PO, equiv. 7
1 a CH;- 20 10 31
2 b CH,CH,~ 20 10 49
><
3 c 2 2 39
4 20 10 58
5 d M/\/\ 5 5 39
S-S
O
6 e N~>< 5 5 28
H
7 f‘ @\— 40 20 22
9 h HoO\— 5 7 23
10 20 20 43
11 i H3coO\— 20 25 29
12 j OZN@\— 5 9 33
13 20 25 51
14 k HZNO\— 3 8 36
NH»
15 1 \ 20 15 51
OAc OAc
16 m AcO - : >< 5 5 48
OAc OAc
OBz
BzO Q P
17 n 220 \ 5 4 60
OBz
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Table 3 (Contd.)
OBz H H OBz (e
BzO N 83 KsPO, BzO (@) R
OBz o O dry 1,4-dioxane OBz
1 reflux 7
Yield (%)
Entry R RCOOH equiv. K3;PO, equiv. 7
AcO OAc
0]
18 o _ 5 3 58
AcO \
OAc
e
o1 -°
)]
19 5 5 66
P 63 CH;
CHj;
% 7f = 4 in Table 1.
Table 4 Coupling of tosylhydrazone 8 with carboxylic acids
AcO OAcC AcO OAcC 10
0 E H RCOOH 0 )k
Ac0§§v NS, K3PO, AcO 0" 'R
OAc 0”0 dry 1,4-dioxane OAc
8 reflux 9
Yield (%)
Entry R RCOOH equiv. K;PO, equiv. 9
1 a CH;- 20 10 51
2 b CH;CH,- 5 4 30
><
3 c 2 2 25
OBz
0]
4 d BZB(;O X 5 3 75

OBz

phenol, p-Cl- and p-NO,-phenols of higher acidity (entries 5, 6,
and 8) as well as carboxylic acids (entries 9-24) gave the ex-
pected coupling products. This assumption is supported by the
reaction of 1 with hexafluoro-isopropanol (entry 7) which also
gave the expected coupled product. It is noteworthy that 4-
hydroxybenzoic acid (entry 12) reacted only at the COOH group,

This journal is © The Royal Society of Chemistry 2017

a finding also corroborating the role of acidity of the coupling
partner. Interestingly, sugar derived carboxylic acids (entries
21-24) gave the highest yield of the products. Based on these
experiences, it can be assumed that from the possible mecha-
nistic pathways> (Scheme 3) protonation of either the inter-
mediate diazo compound (path a) or the carbene (path b) is

RSC Adv., 2017, 7, 10454-10462 | 10459
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Table 5 Comparison of the acidity (pK,) of the investigated alcohols, phenols and carboxylic acids and its influence on the yields

Entry Reagent Reagent equiv. Yield of the coupled product pKa Ref.
1 (CH,);COH 20 None 17.0 51
CH,CH,OH 20 None 15.5 50

20 None 14.4¢

20 25 (6b) 9.9 50

©/\OH
4 H3C—@OH 20 Trace 10.3 50
L)

6 20 39 (6d) 9.4 50
7 (CF5),CHOH 20 35 (6a) 9.3 51
8 ozNOOH 20 34 (6e) 7.2 50
9 CH;CH,COOH 20 (with 1) 49 (7b) 4.9 50
5 (with 8) 30 (9b)
10 CH;COOH 20 (with 1) 31 (7a) 4.8 50
20 (with 8) 51 (9a)
COOH
11 5 39 (7d) 4.8
S-S

12 HOOCOOH 20 43 (7h) 1.6 50
13 H3CO@COOH 20 29 (7i) 45 50

20 (with 1) 58 (7¢)
14 ©/\COOH 2 (with 8) 25 (9¢) 43 50
15 @—COOH 20 22 (7) 4.2 50
COOH
16 20 37 (78) 42 50
(@]

17 yHACOOH 5 28 (7€) 3.6 50

18 QZNO—CQOH 20 51 (7)) 3.4 50

19 HoN
NH
20 20 51 (71) 2.2 50
COOH

10460 | RSC Adv., 2017, 7, 10454-10462 This journal is © The Royal Society of Chemistry 2017
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Table 5 (Contd.)
Entry Reagent Reagent equiv. Yield of the coupled product pKa Ref.
OAc OAc
21 /\/YKCOOH 5 48 (7m) 2.3-2.6°
OAc OAc
OBZ 5 (with 1) 60 (7n)

BzO 5 (with 8) 75 (9d)

22 870 COOH
AcO OAc
o

23 5 58 (70)

AcO COOH

OAc
HOOC
o O
O
24 o) 5 66 (7p)
oy
CHs,

% Taken from SciFinder (https://scifinder.cas. org/sc1ﬁnder/v1ew/sc1ﬁnder/s01ﬁnderExploreJsf) predicted propertles calculated using Advanced

Chemistry Development (ACD/Labs) Software V11.02 (© 1994-2017 ACD/Labs). ?

The predicted data were in the given range.

H
H . L
Cs ,ﬁo/©/ e o Ho_ROH | \ (B
/\ \'N ,/S\\ -TS@ XC—N—N _N2 XC. path ¢ (I)R
o o0 !
less
® path a more path b probable
base| -H R'OH probable R'OH
RO, <o), M H H RO, <OR H
O b N C ﬁ N co Q & m
RO \\N/ :S\ X I /\| e RO eod
R =Acor Bz

Scheme 3 Mechanistic possibilities of the transformations.

more probable than the direct insertion of the carbene in the
OH bond (path c).

Conclusion

This study on the coupling reactions of C-(B-p-glycopyranosyl)
formaldehyde (2,6-anhydro-aldose) tosylhydrazones with OH-
compounds revealed that perfluoroalkanols, electron poor
phenols and carboxylic acids gave moderate to good yields of
the expected glycopyranosylmethyl ethers and esters, respec-
tively, while normal alcohols and electron rich phenols fur-
nished no coupled products. The method seems especially

This journal is © The Royal Society of Chemistry 2017

suitable to form glycopyranosylmethyl esters of sugar derived
carboxylic acids, thereby opening a new possibility to get such
kinds of disaccharide mimetics. In addition, the scope of
tolerable functionalities in tosylhydrazone couplings was also
extended to amino, carboxamide, and disulfide groups.
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