First-principles study of Zr–N crystalline phases: phase stability, electronic and mechanical properties†

Shuyin Yu,ab Qingfeng Zeng,ab Artem R. Oganov,bcde Gilles Frapper,f Bowen Huang,f Haiyang Niu,c and Litong Zhang*a

Using a variable-composition ab initio evolutionary algorithm, we investigate stability of various Zr–N compounds. Besides the known ZrN and Zr3N4, new candidate structures with Zr:N ratios of 2:1, 4:3, 6:5, 8:7, 15:16, 7:8 and 4:5 are found to be ground-state configurations, while Zr2N2 has a very slightly higher energy. Besides Zr2N, the newly discovered Zr2N2 compounds adopt rocksalt structures with ordered nitrogen or zirconium vacancies. The electronic and mechanical properties of the zirconium nitrides are further studied in order to understand their composition–structure–property relationships. Our results show that bulk and shear moduli monotonically increase with decreasing vacancy content. The mechanical enhancement can be attributed to the occurrence of more Zr–N covalent bonds and weakening of the ductile Zr–Zr metallic bonds. These simulations could provide additional insight into the vacancy-ordered rocksalt phases that are not readily apparent from experiments.

Unlike carbides, not only nonmetal vacancies exist, but structure can also tolerate metal atom vacancies since metal atom oxidation state can reach +4.6 Experimental investigations of nonstoichiometric TM nitrides (TM = Ti, Zr, Hf, V, Nb and Ta) have been conducted intensely for more than thirty years.7–10 About twenty ordered carbides and nitrides have been found.1 However, it has not yet been possible to construct a single phase diagram of TM–C or TM–N systems at low temperatures (most of the available phase diagrams have been constructed above 1300–1500 K). In this paper, we explore stable compounds in the Zr–N system at ambient pressure and finite temperatures. To date, there is no comprehensive and inclusive computational investigation of phase stability in the Zr–N system.

Zirconium nitrides represent a rich family of phases where the stability and microstructures are still not completely understood. According to the phase diagram provided by Ghibaudo et al.,11 ZrN and Zr3N4 can be stable at ambient conditions. In 2003, c-Zr2N4 with a Th3P4 structure was synthesized by Zerr et al. using diamond-anvil cell experiments at 16 GPa and 2500 K.12 This compound was expected to exhibit a very high Vickers hardness around 30 GPa, similar to that of γ-Si3N4. However, Kroll showed that hardness is just slightly harder than 14 GPa.13 Besides c-Zr2N4, an orthorhombic Pnma modification of Zr3N4 has been proposed.14 First-principles calculations show that o-Zr3N4 is energetically more stable than c-Zr3N4.15 However, both structures are metastable considering decomposition into ZrN and N2.16 Besides, two nitrogen-rich phases ZrN6 (1.06 < x < 1.23) with NaCl-type structures have been claimed by Juza et al. in 1964.17 However, precise stoichiometries and crystal structures are not known for their synthesized samples.
Here, we apply recently developed evolutionary algorithm USPEX to extensively explore the crystal structures and stoichiometries in the Zr-N system at ambient conditions, and then their phase stability at finite temperatures are evaluated. Furthermore, the electronic and mechanical properties of stable Zr\textsubscript{x}N\textsubscript{y} compounds are studied using density functional theory. Our work should provide guidance for experimental groups aiming to synthesize these new technologically useful materials.

2 Computational details

Searches for low-energy crystalline Zr–N structures were performed using evolutionary algorithm (EA) methodology implemented in the USPEX code17–19 in its variable-composition mode.20 The energies and structural optimizations (including lattice shape, volume and atomic positions) were calculated by VASP package based on density-functional theory.21 The first generation contained 80 randomly produced candidate structures, which were produced under the following constraints: (1) all possible stoichiometries were allowed, (2) the maximum number of atoms is 30 in the primitive cell. In the subsequent generations, each generation contained 60 structures, which were produced by applying heredity (50%), atom transmutation (20%), lattice mutation (15%) operators, while some structures were still randomly (15%). These are typical parameters for USPEX calculations, with which efficiency is known to be very high. Besides, we also performed a fixed-composition search for Zr\textsubscript{15}N\textsubscript{16} which has 31 atoms in its primitive cell.

First-principles electronic structure calculations were carried out within the generalized gradient approximation (GGA) in the Perdew–Burke–Ernzerhof form.22 The interactions between ions and electrons were described by the projector-augmented wave method23 with a cutoff energy of 600 eV. Uniform \(k \)-centered \(k \)-points meshes with a resolution of \(2\pi \times 0.03 \) Å\(^{-1} \) and Methfessel–Paxton electronic smearing24 were adopted for the integration in the Brillouin zone. These settings ensure convergence of the total energies to within 1 meV per atom. Structure relaxation proceeded until all forces on atoms were less than 1 meV Å\(^{-1} \) and the total stress tensor was within 0.01 GPa of the target value.

Theoretical phonon spectra were calculated with the supercell method using the PHONOPY package.25 Hellmann–Feynman forces exerted on all atoms in supercells (2 \(\times \) 2 of the unit cell) were calculated by finite atomic displacements of each symmetrically nonequivalent atom. Phonon dispersion relations were then obtained by the diagonalization of the dynamical matrix. We used the quasiharmonic approximation to calculate the free energy of zirconium nitrides at finite temperatures. Free energy of a crystal was obtained as a sum of the static total energy, vibrational energy and configurational energy. Computational details are described in ESI.†

3 Results and discussion

3.1 Phase stability of the Zr–N system at finite temperatures

Thermodynamic stability of zirconium nitrides in the temperature range of 0–2000 K was quantified by constructing the thermodynamic convex hull, which is defined as the Gibbs free energy of formation of the most stable phases at each composition:

\[
\Delta G(Zr,N) = [G(Zr,N) - xG(Zr) - yG(N)]/(x + y) \tag{1}
\]

Any phase located on the convex hull is considered to be thermodynamically stable (at \(T = 0 \) K, \(G = H \)) and at least in principle synthesizable.26 In the case of zirconium nitrides, a series of stable compounds at various Zr : N ratios, \textit{i.e.} 2 : 1, 4 : 3, 6 : 5, 8 : 7, 1 : 1, 15 : 16, 7 : 8, 4 : 5 have been discovered by our evolutionary searches at 0 K, shown in Fig. 1. The rocksalt ZrN with space group (SG) \textit{Fm\textsubscript{3}m} was found to have the lowest enthalpy of formation. Besides ZrN, substoichiometric Zr\textsubscript{x}N\textsubscript{y} (SG: \textit{P4\textsubscript{1}2\textsubscript{1}c\textsubscript{1}}/mm\textsubscript{m}), Zr\textsubscript{x}N\textsubscript{y} (SG: \textit{C2/m}), Zr\textsubscript{x}N\textsubscript{y} (SG: \textit{C2/m}) and Zr\textsubscript{x}N\textsubscript{y} (SG: \textit{C2/m}) have also been found to be thermodynamically stable. For the missing composition Zr\textsubscript{3}N\textsubscript{2}, the lowest-energy structure is \textit{Immm} with the enthalpy of formation lying very close to the convex hull at only 0.005 eV per atom, \textit{i.e.} Zr\textsubscript{3}N\textsubscript{2} is a metastable phase at 0 K.

Additionally, Juza \textit{et al.} in 1964 have discovered two nitrogen-rich phases Zr\textsubscript{x}N\textsubscript{y} \((1.06 < x < 1.23)\) with rocksalt structures.27 The synthesized sample had a dark blue color and turned into metallic ZrN upon heating. Unfortunately, detailed stoichiometries and crystallographic information were not determined. Subsequent studies even questioned the existence of these two compounds.11 From our evolutionary searches, we found these two compounds could be Zr\textsubscript{15}N\textsubscript{16} \((x = 1.07, \text{SG: } \textit{P1})\) and Zr\textsubscript{2}N\textsubscript{y} \((x = 1.25, \text{SG: } \textit{C2/m})\). Their structures are composed of edge-sharing Zr\textsubscript{n} and \(\square \)N\textsubscript{n} \((\square \text{ means Zr vacancy})\) octahedra, similar to the rocksalt ZrN structure. To the best of our knowledge, such nitrogen-rich nitrides have never been reported in other TM–N systems. For Zr\textsubscript{x}N\textsubscript{y}, the most stable structure has the orthorhombic \textit{Pnma} symmetry,27 which is

![Convex Hulls of Zr–N system](image-url)

Fig. 1 Convex hulls of the Zr–N system in the temperature range of 0–2000 K at ambient pressure. The solid squares represent stable structures, while open ones denote metastable structures. The solid \textit{P6\textsubscript{3}/mmc} phase of Zr, \(\alpha \)-N\textsubscript{2} \((T = 0 \text{ K})\) and N\textsubscript{2} gas \((T \geq 300 \text{ K})\) were adopted as reference states.
energetically more favorable than the Th₂P₄-type structure by ~0.019 eV per atom at 0 GPa and 0 K. We found it is thermodynamic metastable considering decomposition into ZrN and N₂ at ambient conditions. First-principles calculation shows that o-Zr₃N₄ will transform into c-Zr₃N₄ at ~2 GPa (Fig. S2†).

We have carefully calculated the temperature contribution to the phase stability of the new discovered zirconium nitrides from 0 K to 2000 K within the quasiharmonic approximation, as shown in Fig. 1. Note that for each stoichiometry, the space group/structure found at 0 K is kept for higher temperatures. The free energies of formation increase with increasing temperatures for all phases but at different rates, yielding a convex hull which changes with temperature. Our results show that Zr₂N, Zr₅N₇, ZrN and Zr₁₇N₁₆ will not lose their stability in the whole studied temperature range. The unstable Zr₂N₂ at 0 K will become stable at temperatures higher than ~900 K, while for Zr₃N₁₀, Zr₆N₁₅, Zr₇N₁₈ and Zr₈N₂₆, the temperature contributions have negative effect on their structural stability. For example, the formation enthalpy of reaction 2Zr₃N₂(s) → 8ZrN(s) + N₂(g) will become negative above 300 K, which means Zr₃N₂ should decompose into ZrN and N₂ gas at roughly room temperature if associated kinetic barrier allows it.

The free energies of formation increase with increasing temperatures for all phases but at different rates, yielding a convex hull which changes with temperature. Our results show that Zr₂N, Zr₅N₇, ZrN and Zr₁₇N₁₆ will not lose their stability in the whole studied temperature range. The unstable Zr₂N₂ at 0 K will become stable at temperatures higher than ~900 K, while for Zr₃N₁₀, Zr₆N₁₅, Zr₇N₁₈ and Zr₈N₂₆, the temperature contributions have negative effect on their structural stability. For example, the formation enthalpy of reaction 2Zr₃N₂(s) → 8ZrN(s) + N₂(g) will become negative above 300 K, which means Zr₃N₂ should decompose into ZrN and N₂ gas at roughly room temperature if associated kinetic barrier allows it.

In the structures of Zr-rich phases, the metal atoms form hexagonal close-packed (hcp) sublattices with N atoms filled in the octahedral voids, thus each N atom is coordinated by six Zr atoms, forming NZr₆ octahedra. However, the concentration of filled octahedral voids in various Zrₙ₋₄N₄ structures is different. Two thirds of them are filled in Zr₇N₁₈ while seven eighths in Zr₉N₁₂. Similar nitrogen vacancy-ordered structures were also reported earlier to be stable for transition metal carbides Mₙ₋₄Cₖ (M = Hf and n = 2, 5; M = Zr and n = 1, 2, 3, 6; M = Ti and n = 1, 2, 5) and nitrides Mₙ₋₄Nₘ (M = Ti and n = 1, 2, 3, 5). For N-rich phases, one eighth of the metal atoms are replaced with vacancies in Zr₇N₁₈, while one fifth in Zr₉N₁₂.

The formation of such N-rich phases could be attributed to the enhanced stability of the +4 oxidation state of Zr and Hf compared to Ti due to the relativistic effects, leading to the coexistence of +3 in MN and +4 in MₙNₘ, while in the Ti-N system, TiN has the highest nitrogen content under normal conditions. In the structures of ZrₙNₘ, the hcp metal framework of the rocksalt structure is significantly distorted. For o-ZrₙNₘ there are three nonequivalent types of Zr atoms, one of them is octahedrally coordinated to six N atoms, one resides at the center of a trigonal prism, and the last one is located inside of a heavily distorted octahedron (Fig. S3†). Thus the second and third nonequivalent Zr atoms are sevenfold coordinated, while in c-ZrₙNₘ, each Zr atom is coordinated to eight N atoms.

3.2 Electronic properties and chemical bonding

We calculated the electronic properties (density of states, DOS, see Fig. 3) of zirconium nitrides at ambient conditions in order to study their chemical bonding. Let us start first with Zr₃N₄ and then discuss the effect of zirconium or nitrogen vacancies on the electronic properties of rocksalt based-structures. In DOS of

Fig. 2 Crystal structures of the representative (a) Zr₆N₅ and (b) Zr₂N₅ compounds.

Fig. 3 The calculated electronic density of states of (a) o-Zr₃N₄, (b) ZrN and (c) Zr₂N. (d) Crystal orbital Hamilton population (−COHP) curves of Zr₃N.
$^{\text{o}}$-Zr$_3$N$_4$ displayed in Fig. 3a, three main regions may be described with three kinds of molecular orbital overlaps: nonbonding, bonding and antibonding.

Firstly, a rather sharp peak at roughly -13 eV appears and it is mainly of N(2s) character although with some Zr(4d) character. This sharp peak reflects the localized character of the nonbonding N(2s)-based levels; secondly, from -6 eV to 4 eV, a very broad structure with two well-defined main peaks originates from mixing of Zr(4d) and N(2p) orbitals. The lower peak corresponds to the bonding states, and the antibonding counterparts appear just above the Fermi level. These bonding and antibonding peaks exhibit a clear mixing of metal 4d and nitrogen 2p states, although the latter has a stronger Zr(4d) character. This sharp peak may see that for Zr bonding and nonbonding (slightly antibonding) levels in substoichiometric Zr$_n$N$_m$ compounds, which indicate the very compressibility along the axis directions. $^{\text{o}}$-Zr$_3$N$_4$ has the smallest C_{11} and C_{44} values. The bulk modulus B, shear modulus G, Young’s modulus E and Poisson’s ratio ν were further obtained using the Voigt–Reuss–Hill averaging, shown in Table 1. The calculated B values of zirconium nitrides are

Table 1. All structures satisfy the Born–Huang stability criteria, confirming their mechanical stability. From the calculated elastic constants, we can find ZrN holds the largest C_{11}, C_{22} and C_{33} values among the Zr$_n$N$_m$ compounds, which indicate the very high compressibility along the axis directions. $^{\text{o}}$-Zr$_3$N$_4$ has the smallest C_{11} and C_{44} values. The bulk modulus B, shear modulus G, Young’s modulus E and Poisson’s ratio ν were further obtained using the Voigt–Reuss–Hill averaging, shown in Table 1. The calculated B values of zirconium nitrides are
Fig. 4 Calculated bulk and shear moduli of the rocksalt structures as a function of vacancy concentration; also rutile-like ZrN is shown (its structure can also be represented as a close-packed metal sublattice with 1/2 octahedral voids occupied by nitrogen atoms).

Fig. 5 Directional dependence of Young's moduli (in GPa) of the ZrN_y compounds.

comparable with many other transition metal carbides, nitrides and borides, such as Fe_3C (224 GPa [ref. 42]), TiN (294 GPa [ref. 31]) and TiB_2 (213 GPa [ref. 43]), but much lower than diamond (437 GPa [ref. 44]). Among these ZrN_y compounds, ZrN has the largest bulk and shear moduli, although ZrN_4 has a practically identical shear modulus (see Table 1).

The effect of vacancy concentration on bulk and shear moduli of the rocksalt Zr_N structures is shown in Fig. 4. It can be seen that bulk and shear moduli monotonically decrease with increasing vacancy concentration. When N vacancies increase in a rocksalt structures, the number of Zr-N bonds obviously decreases. Moreover, the computed Zr-N separations are increasing when N vacancies increase, i.e. from 2.24 to 2.27 Å in ZrN_y and ZrN_2, reflecting the weakening of the Zr-N bonding. Therefore, one may understand our findings, i.e. the loss of B and G is mainly attributed to the disappearance of some strong covalent Zr-N bonds.

For brittle materials, B/G ratio is smaller than 1.75 (ref. 45) (for example, for diamond B/G = 0.8). From Table 1, we can find that B/G values decreases in the following sequence: o-ZrN_4 > ZrN_2 > ZrN_1 > ZrN > ZrN_2 > c-ZrN_4 > ZrN_2 > ZrN_1 > ZrN, which indicates that these are brittle or borderline materials. For the other compounds, B/G values are larger than 1.75, which suggest that they are ductile materials. For ZrN, B/G value is slightly larger than 1.75, making a good compromise between hardness and ductility, which is mainly due to a peculiar interplay between metallicity and covalency. Besides, we can find that B/G values of Zr-rich phases are larger than N-rich ones except Zr_2N and o-ZrN_4. Obviously, the higher metal content, the more ductile the material. Surprisingly, semiconducting o-ZrN_3 has the largest B/G value (2.359) due to the low U/C and U/N, and o-ZrN_4 also possesses remarkable elastic anisotropy. Here, we used the Ranganathan and Ostoja-Starzewski method to estimate anisotropy:

$$A^V = 5 \frac{G^V}{G^R} + \frac{B^V}{B^R} - 6$$

where G^V, B^V, G^R and B^R are the shear and bulk moduli estimated using the Voigt and Reuss methods, respectively.

The calculated anisotropy parameters A^V of ZrN_y phases are listed in Table 1. Elastic anisotropy decreases in the following sequence: o-ZrN_4 > ZrN > Zr_15N_16 > Zr_8N_7 > Zr_6N_5 > Zr_4N_3 > Zr_7N_8 > Zr_5N_6 > Zr_3N_4 > ZrN. Fig. 5 shows the directional dependence of Young's moduli for the selected ZrN_y compounds (see eqn (8) in ESI†). For an isotropic system, one would see a spherical shape. The degree of elastic anisotropy can be directly reflected from the degree of deviation in shape from a sphere. From Fig. 5, we can find that Young's modulus is more anisotropic in o-ZrN_4, while ZrN_y and ZrN show more isotropic features. The anisotropy of o-ZrN_4 is due to low C_11, and high C_22, C_33 values, resulting in a flat shape of Young's modulus.

The Vickers hardness of zirconium nitrides was estimated by using Chen's model, as follows:

$$H_C = 2(\kappa^2G)^{0.585} - 3$$

where κ is the Pugh ratio, $\kappa = G/B$. The computed hardness values are given in Table 1. The estimated hardness of ZrN_4 is 13.4 GPa, which is consistent with the experimental value of 16 GPa of Levy et al.6 Among these ZrN_y compounds, ZrN_8 has the highest hardness of 18.2 GPa. Given that Chen’s model is based solely on the computed elastic constants, here we also used the Šimůnek method to estimate their hardness, which is mainly based on bond density and bond strength. The corresponding expression is given as follows:

$$H_S = \frac{C}{\Omega} \left[\prod_{i=1}^{n} b_i s_j \right]^{1/6} e^{-\sigma f_i}$$

where s_{ij} is the bond strength between atom i and j, b_{ij} is the bond number, Ω is the volume of the cell. The semi-empirical constants C and σ equal to 1450 and 2.8, respectively. The calculated hardness values are also given in Table 1. For the substoichiometric phases, the estimated hardness values are around 15 GPa. For Zr_3N_4, we found hardness values of 12.4 and 11.0 GPa for o-Zr_3N_4 and c-Zr_3N_4, respectively, which is consistent with previous theoretical calculations. The reported Vickers hardness of c-Zr_3N_4 film is 36 GPa, making it nearly a superhard film material. It is possible that hardness could be much higher in a thin film compared to a bulk crystal. Certainly, more extensive hardness experiments for the ZrN_y structures should be performed.
4 Conclusions

By using the variable-composition ab initio evolutionary algorithm USPEx, we explored stable and metastable compounds in the Zr–N system at ambient pressure. Our calculations revealed that ZrN, Zr2N3, Zr2N3, Zr2N3, Zr2N5, Zr2N7, Zr2N14, Zr2N5, and Zr2N7 are thermodynamically stable compounds at low temperatures, while Zr2N5 is marginally metastable and could be stable at high temperatures. Particularly, we found the two controversial compounds discovered by Juza et al. could be Zr18N16 and Zr22N16. The newly discovered compounds have defective rocksalt structures with ordered nitrogen or zirconium vacancies. The calculated elastic constants of zirconium nitrides are in good agreement with available experimental values. Our results show that bulk and shear moduli monotonically increase with decreasing vacancy content. This can be attributed to the occurrence of more Zr–N covalent bonds and weakening of the ductile Zr–Zr metallic bonds. Besides, we found hardness of bulk Zr3N4 is below ~15 GPa.

Acknowledgements

We thank the National Natural Science Foundation of China (No. 51372203 and 51332004), the Foreign Talents Introduction and Academic Exchange Program (No. B08040), the GDRI RFCCT CNRS (DNM-evol program) and the Hubert Curien Partnerships PHC XU GUANGQI 2015 (No. 34455PE) part of the Russian Federation (No. 14.A12.31.0003) for financial support. We also acknowledge the High Performance Computing Center of NWPU (China), and TGCC/Curie GENCI (France) under project no. 2016087539 for allocation of computing time on their machines. We would like to thank an anonymous referee to point out Zr18N16 as a potential candidate.

References

This journal is © The Royal Society of Chemistry 2017