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ic dissipation in single layer MoS2
resonators

Subhadeep De, K. Kunal and N. R. Aluru*

Using dissipationmodels based on Akhiezer theory, we analyze themicroscopic origin of nonlinearity in intrinsic

loss of a single layerMoS2.We study the intrinsic dissipation of single layerMoS2 under axial and flexuralmode of

deformation using molecular dynamics (MD) simulation. We compare the amplitude scaling of intrinsic

dissipation for both the cases with our proposed model. In the axial deformation case, we found a higher

(4th) order dependence of dissipation on the strain amplitude. This nonlinearity is shown to stem from the

strain dependence of the phonon mode Grüneisen parameter (PMGP) and is accounted for in our

dissipation model. In the flexural deformation case, dissipation is found to have a stronger dependence ($4)

on the amplitude of the transverse motion. This nonlinearity can be explained by considering the coupling

between out-of-plane motion and in-plane stretching. The proposed model for the flexure deformation

case, which accounts for both kinds of nonlinearity, provides a good estimate of dissipation.
I. Introduction

Nanomechanical resonators, based on atomically thin two-
dimensional (2D) structures, like graphene and MoS2, have
shown intriguing prospects1 in measurement and sensing of
fundamental quantities like position, mass, charge2–9 to the
level of individual quanta. Extraordinary material proper-
ties,10–12 such as high mechanical stiffness and low mass,
combined with large surface to volume ratio, have enabled
these 2D structures to be potential candidates for high sensi-
tivity measurements. The performance of these nanoresonators
is limited by different dissipative mechanisms associated with
the vibration mode of operation during the detection
process.13,14 For instance, in the case of detection of foreign
mass by the shi in resonant frequency of the nanoresonator,
a low dissipation ensures better resolution of frequency
shi.15,16 Out of different mechanisms that contribute to the
dissipation process,17 phonon mediated dissipation dominates
at very high frequencies.18 One interesting aspect of damping in
2D structures is its nonlinearity. In the case of graphene reso-
nators, damping is found to be strongly dependent on the
amplitude of motion.19 This is explained by introducing
a nonlinear damping term (hx2dx/dt) in the Newton's equation
of motion for a harmonic oscillator where h is a constant, x is
position and t is time. A theoretical treatment reveals that the
nonlinearity emerges from the coupling between exural modes
and the in-plane modes.20 The coupling is due to the geometric
effect associated with the exural motion.21–23 This geometric
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nonlinearity can manifest itself in phonon interaction and
Akhiezer dissipation.24 The effect can be particularly signicant
when the operational frequency of the exural motion is of the
order of a few gigahertz.

Akhiezer damping is a dominant intrinsic loss mechanism
for nanoscale resonators operating at gigahertz frequencies.25

This takes place as a result of interaction of mechanical
deformation with the modes of thermal vibration, called
phonons. An applied strain eld can couple with the phonon
modes, and thus modulate their frequencies.26,27 The frac-
tional change in phonon frequencies is proportional to the
strain. In the case of exural deformation with xed bound-
aries, the out of plane motion may accompany in-plane
stretching due to the geometric effect. Consequently, the
strain at each section may have a second and higher order
dependence on the amplitude of transverse motion. Hence,
the coupling between the out-of-plane motion and phonon
modes is effectively nonlinear. Though this is a common
scenario in the case of exural deformation of clamped 2D
structures like graphene and MoS2, its effect on intrinsic
dissipation has not yet been explored. Previous studies have
shown that, in the case of graphene, which is one atomic layer
thick, the unstable out of plane modes28 and the edge atoms29

play a major role in intrinsic dissipation. But very few studies
have been directed towards investigating dissipation in
a single layer MoS2.30–32 This work focuses on studying the
underlying physics behind intrinsic dissipation of single layer
MoS2 using MD simulation. A simplied dissipation model is
introduced which is based on the physical mechanism.
Using this model, the effect of nonlinearity on intrinsic
dissipation is investigated and compared under different
modes of deformation.
RSC Adv., 2017, 7, 6403–6410 | 6403
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Fig. 1 (a) A single layer MoS2 under axial deformation. Ax is the
amplitude of displacement of the edge atoms along the x axis. (b) A
single layer MoS2 under flexural deformation. A uniformly distributed
load with amplitude f0 is applied in the z direction. In both the cases,
the clamped edges (frozen atoms) are shown in black. The shaded area
shows a section along the length of the MoS2 sheet with the
displacement field.
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MD simulations have been previously employed to study
intrinsic dissipation in nano-structures.25 Axial deformation of
beams at gigahertz frequencies is characterized by a homoge-
neous strain eld. In this case, intrinsic dissipation is explained
using Akhiezer theory.33 On the other hand, exural deforma-
tion of thin beams involves a linearly varying strain along the
transverse (thickness) direction. This results in thermoelastic
damping,34,35 in addition to Akhiezer damping. Flexural defor-
mation of thin 2D structures with xed boundaries induces
a strain eld that is different from that in beams. In the
membrane limit, the 2D structure provides negligible resistance
to bending forces and undergoes stretching along its plane.36 A
single layer MoS2 exhibits this behavior and will be an inter-
esting candidate for study of intrinsic dissipation. In this work,
we employ MD simulation to study intrinsic dissipation in
a single layer MoS2. We rst show that the intrinsic dissipation
during in-plane straining of a single layer MoS2 can be
explained using Akhiezer theory. A simplied dissipation model
is developed. This model shows good agreement with frequency
and amplitude scaling of dissipation in MoS2 under in-plane
deformation. Then, we extend this framework for dissipation
under exural deformation by incorporating the geometric
effect. A closed form expression for dissipation under exural
deformation is derived. It has atleast fourth and higher order
dependence on the amplitude of transverse motion, which
shows that the dissipation is indeed nonlinear. Using this
expression, the net intrinsic dissipation during exure defor-
mation can be accurately estimated.
II. Theory

We consider a single layer MoS2 sheet stretched in the x–y
plane. The MoS2 sheet is pre-stretched biaxially such that it has
a uniform initial tensile stress s0. For simplicity, the sheet is
assumed to be innitely long along the y direction by imposing
periodic boundary condition. The edges of the two-dimensional
(2D) sheet along the x direction are clamped as shown in Fig. 1.
The length L0 of the sheet between the two clamped edges
undergoes deformation. The dynamics of single layer MoS2
resonators can be described by the continuum theory of 2D
membranes.10,12 With this knowledge, we rst obtain the
displacement and the strain eld produced in the MoS2 sheet
under axial and exural excitation. The strain eld thus ob-
tained is subsequently used to formulate the dissipation in the
structure.
A. Response to periodic excitation

The MoS2 sheet is axially deformed by moving the clamped
edges in a periodic manner. The right and the le edge is dis-
placed simultaneously as Ax sin(Ut) in the positive and negative
x direction respectively, as shown in Fig. 1a. Here Ax is the
amplitude of oscillation and U is the deformation frequency.
Using the results from continuum mechanics, the in-plane
displacement eld generated in the 2D sheet can be expressed

as36 uðx; tÞ ¼ Am sin
�
px
Lc

�
sinðUtÞ. Lc denotes a length scale25
6404 | RSC Adv., 2017, 7, 6403–6410
given by Lc ¼ p

U

ffiffiffi
E
r

r
and Am is the amplitude of axial motion

which depends on Ax. The angular frequency of oscillation of
the fundamental longitudinal mode of the resonator of given

length L0 is uc ¼ p

L0

ffiffiffi
E
r

r
. Considering a deformation frequency

much smaller than the fundamental frequency (U � uc) of the
resonator would imply Lc [ L0. Under this condition, the
displacement eld along the length of the resonator is approx-

imately linear in x
�
jxj# L0

2

�
given by uðx; tÞz x

pAm
Lc

sinðUtÞ.
Further, using the boundary conditions at L0, we can write,

uðx; tÞ ¼ x
Ax
L0

sinðUtÞ. The linearity in the displacement eld

results in a spatially uniform strain eld in the structure. The
periodic strain eld can be represented as 3 ¼ 3a sin(Ut), with

the strain amplitude 3a ¼ Ax
L0
.

In case of exural deformation, the sheet is subjected to
a uniformly distributed load f(t) ¼ f0 sin(Ut), in the z direction
as shown in Fig. 1b. The resulting displacement eld along the x
and z direction is denoted by u(x) and w(x) respectively. From
continuum theory, the dominant mode shape of deformation
due to forcing under the assumed boundary condition is given
by36 w(x,t) � Az sin(px/L0)sin(Ut) and u(x,t) � 0. Here, Az is the
amplitude of exural motion which depends on f0. Under this
mode of deformation, each section along the length of the MoS2
sheet undergoes stretching. The corresponding strain eld in

the structure is 3ðx; tÞ ¼
�
vu
vx

�2

þ 1
2

�
vw
vx

�2

z 3fðaðxÞsinðUtÞÞ2,

where 3f ¼ 1
2

�
Az

p

L0

�2

and a(x) ¼ cos(px/L0). Unlike the axial

case, the strain eld in the exure case is non-uniform along the
length of the MoS2 sheet. These strain elds serve as an input to
This journal is © The Royal Society of Chemistry 2017
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calculate the net intrinsic dissipation in the MoS2 sheet under
each case of deformation.

B. Formulation of dissipation

The dissipation due to interaction of the time-varying strain
eld in a structure with its thermal phonons can be formulated
using Akhiezer theory.24 The thermal phonons in the structure
share equal energy at thermodynamic equilibrium. On appli-
cation of strain, the system of phonons is driven out of equi-
librium due to the modulation of phonon frequencies. These
phonons try to relax back to equilibrium by exchanging energy,
which leads to energy loss. We rst try to write the equation for
evolution of the phonon energies. The energy of each phonon
mode at thermodynamic equilibrium, is given by kBT, where kB
is the Boltzmann constant and T is the temperature. Any strain,
3 can couple with the energy of the phonon mode, Em by

changing its frequency, um. The coupling factor, gm ¼ � 1
um

vum

v3

(ref. 37) is dened as the phonon mode Grüneisen parameter
(PMGP). For a time varying strain eld with frequency U, if U�
um, the ratio Em/um is constant.38 Using this and the coupling

relation, we can write
vEm

vt

����
strain

¼ �gmEm _3ðtÞ, where ($) denotes

derivative with respect to t. Again, the phonon modes can
exchange energy due to anharmonic coupling. This coupling
governs the relaxation of perturbed energy of the phonon
system towards a new equilibrium. Usually each phonon has its
own time scale of relaxation,27 sm. The phonon relaxation

mechanism can be approximated as
vEm

vt

����
relax

¼ �ðEm � EÞ=sm,
where �E is the mean energy of the phonon system at that
instant. Thus, the modulation of phonon energies due to
straining and relaxation process can be written as

vEm

vt
þ Em � E

sm
¼ �gmEm _3ðtÞ (1)

To simplify the system of phonon modes, we employ the
phonon grouping technique39 and derive an expression for
dissipation. The mean Grüneisen parameter of the ensemble of

phonons is dened as g ¼
X
m

gm=N, where N is the total

number of phonon modes. The phonon modes with gm < �g

constitute the ‘hot’ phonon group and the rest with gm $ �g

constitute the ‘cold’ phonon group. The average Grüneisen
parameter of the ‘hot’ phonon group is denoted as gh and that
of the ‘cold’ phonon group as gc. During the relaxation process,
the energy exchange takes place between the ‘hot’ and ‘cold’
phonon group with a collective relaxation time sph. For a space
dependent strain eld, 3(x,t), the set of equations governing the
energy evolution of the phonon groups at any section of the
MoS2 can be expressed as

v

vt
eiðx; tÞ þ 1

sph
½eiðx; tÞ � eðx; tÞ� ¼ �gieiðx; tÞ_3ðx; tÞ (2)

where ei(x,t) is the energy of the phonon group at any x and is
related to the total energy of the phonon group as
This journal is © The Royal Society of Chemistry 2017
ðL0
0
eiðx; tÞdx ¼ EiðtÞ. Here i denotes the ‘hot’ (h) and ‘cold’ (c)

phonon group. eðx; tÞ ¼ ehðx; tÞ þ ecðx; tÞ
2

denotes the mean

energy of the phonon system at x. Eqn (2) leads to two equa-
tions. Adding and subtracting them, we get a set of equations,

v

vt
eðx; tÞ ¼ �½g eðx; tÞ þ DgDeðx; tÞ�_3ðx; tÞ (3a)

v

vt
Deðx; tÞ þ 1

sph
Deðx; tÞ ¼ �½Dgeðx; tÞ þ gDeðx; tÞ�_3ðx; tÞ (3b)

where, g ¼ gh þ gc

2
; Dg ¼ gh � gc

2
. Deðx; tÞ ¼ ehðx; tÞ � ecðx; tÞ

2
denotes the energy difference between the phonon groups at x.

Eqn (3a) and (b) denotes the rate of change of mean energy of
the phonon system and the rate of energy exchange between the
phonon groups respectively, at any position x. The treatment of
energy relaxation in our formulation accounts for the spectral
ow energy i.e. ow of energy between different modes. In the
case of a spatially inhomogeneous strain eld, there also exists

a spatial energy gradient given by
v

vx
eiðx; tÞ ¼ �gieiðx; tÞ30ðx; tÞ,

where (0) denotes derivative with respect to x. The time scale of
energy relaxation due to the spatial ow of energy corresponds
to the thermal diffusion time34 std. In our case, this relaxation
mechanism is weak because std [ 1/U and can be ignored.
Thus, the energy modulation and redistribution in the structure
is microscopically governed by the set of eqn (3a) and (b).

In case of axial deformation, the strain eld is found to be
spatially uniform i.e. 3(x,t) ¼ 3a sin(Ut). The PMGP can be strain
dependent if the material behaves nonlinearly.40 Assuming
a linear dependence on strain (discussed further in Section IV
A), gi can be expressed as gi ¼ g0

i + g1
i 3, where g

0
i and g1

i are the
material constants. Initially, before imparting any deformation,
the mean energy of the phonon system satisesðL0
0
eðx; 0Þdx ¼ kBT and the energy difference between the

phonon groups satisfy
ðL0
0
Deðx; 0Þdx ¼ 0. Considering De(x,t)�

kBT during the deformation process, e�(x,t) can be approximately
solved using the set of eqn (3a) and (b). At steady state, the
energy dissipated over the nth period of deformation is given by

D ¼ �e(x,Tn+1) � �e(x,Tn), where T ¼ 2p
U

and Tn ¼ nT. The closed

form expression of dissipation, in the axial case, thus obtained,
is, Da(x,q) ¼ pkBT(D

a
00(q)3a

2 + Da
11(q)3a

4)/L0. Here, q ¼ Usph is
a metric that determines the strength of the Akhiezer mecha-
nism and

Da
00ðqÞ ¼

�
Dg0

�2� q

1þ q2

�

Da
11ðqÞ ¼

1

4

�
Dg1

�2� q

1þ 4q2

�

Also, Dg0 ¼ g0
h � g0

c

2
and Dg1 ¼ g1

h � g1
c

2
. Integrating over the

length L0, we get the total dissipation in the structure as
RSC Adv., 2017, 7, 6403–6410 | 6405
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Ea
diss ¼ pkBT(D

a
00(q)3a

2 + Da
11(q)3a

4) (4)

The 4th order dependence of dissipation on strain ampli-
tude, as shown in eqn (4), is due to strain dependence of the
PMGPs. Later in this study, eqn (4) will be used to compare the
frequency and amplitude scaling obtained from MD results.

In the case of exural deformation, the space dependent
strain eld, as discussed in Section II A, is given by 3(x,t) ¼ 3f-
a(x)2sin(Ut)2. The strain dependent PMGPs can then be
expressed as gi ¼ g0

i + g1
i 3(x,t). The dissipation, which is

a function of both position and q in this case, is obtained as
Df(x,q) ¼ pkBT(D

f
00(q)a

4(x)3f
2 + Df

01(q)a
6(x)3f

3 + D11(q)a
8(x)3f

4)/L0.
Here, the q dependent terms are

Df
00ðqÞ ¼

�
Dg0

�2� q

1þ 20q2 þ 64q4
þ 16

q3

1þ 20q2 þ 64q4

�

Df
01ðqÞ ¼

�
Dg0Dg1

�� q

1þ 20q2 þ 64q4
þ 16

q3

1þ 20q2 þ 64q4

�

Df
11ðqÞ ¼

�
Dg1

�2� 5

16

q

1þ 20q2 þ 64q4
þ 17

4

q3

1þ 20q2 þ 64q4

�

The total dissipation in the structure Efdiss, is obtained by
integrating Df(x,U) over the length L0. E

f
diss is given by

Ef
diss ¼ pkBT

�
3p4

32L0
4
Df

00ðqÞAz
4 þ 5p6

128L0
6
Df

01ðqÞAz
6

þ 35p8

2048L0
8
Df

11ðqÞAz
8

�
(5)

Eqn (5) shows that due to geometric nonlinearity, dissipation
during exure mode of vibration has atleast 4th and higher
order dependence in the amplitude of transverse motion. This
expression will be used later to estimate dissipation in the
exure case and compare with MD results.
III. Methods
A. Simulation setup

A single layer of MoS2 includes three atomic layers in which
a layer of Mo atoms is sandwiched between two layers of S
atoms. This geometry (Fig. 1) is initialized and MD simulations
are carried out using LAMMPS.41 All visualizations are done
using VMD.42 In our MD simulations, the interactions between
the Mo–Mo, Mo–S and S–S are modeled using the Stillinger–
Weber potential.43 The time step of integration is set to 1 fs for
all the simulations. The plane of MoS2 is considered to be along
the x–y plane with thickness along the z direction.

First, a MoS2 sheet, of dimension 56.16 Å along the x direc-
tion and 64.86 Å along the y direction is considered. The sheet is
subjected to 5% in-plane pre-straining to prevent any warping
or buckling. This is done by scaling the x and the y coordinates
of the atoms in the 2D sheet. The pre-stretched sheet is
6406 | RSC Adv., 2017, 7, 6403–6410
equilibrated to 300 K for 2 ns using Nosé–Hoover thermostat44

with a time constant of 0.1 ps. Aer equilibration, the structure
is further evolved for 2 ns under microcanonical ensemble (with
out any thermostat) and atomic trajectories are dumped every
20 fs. The atomic trajectories are used to calculate the PMGPs
and energy relaxation time of MoS2 at 300 K.

In order to calculate dissipation under axial mode, the
simulation box is deformed along the x direction about its
center-of-mass at a given frequency and strain amplitude
(shown in Fig. 1a). The structure is evolved under micro-
canonical ensemble for 100 periods of deformation. The
average change of internal energy over the periods of defor-
mation gives a measure of intrinsic dissipation. In the current
study, the axial deformation is carried out at frequencies
ranging from 5 GHz to 50 GHz at 2% strain amplitude. Dissi-
pation is calculated for strain amplitudes ranging from 1% to
3.5% at 10 GHz.

For the exural mode of deformation, a MoS2 structure of
length 65.68 Å along x direction and 65.01 Å along y direction is
considered. The total force on the atoms inside a strip of 5.49 Å
at each end along the x direction is set to zero which acts as
clamped boundary condition (shown in Fig. 1b). The rest of the
atoms are subjected to periodic forcing in the z direction. In our
simulations, the forcing frequency is set to 10 GHz and the force
applied on each Mo atom of the MoS2 sheet is varied from
0.035 eV Å�1 to 0.046 eV Å�1. The system is evolved under
microcanonical ensemble for 100 periods of deformation in
order to calculate dissipation.
B. Modal analysis

We perform modal analysis in order to implement the phonon
grouping technique and estimate the timescale of energy
relaxation. Themode shapes for modal analysis can be obtained
using different methods.45 We compute the mode shapes using
the results from continuum theory. We, then, use the atomic
trajectories from equilibrium MD simulations and FFT tech-
nique to calculate the modal frequencies and their dependence
on in-plane straining.

The allowable in-plane wave vectors can be represented as

~k ¼ 2mp

L0
êx þ 2np

B0
êy. Herem and n refer to the mode number or

order which takes positive integral values. L0 and B0 are the
lengths of the MoS2 sheet in the x and y direction
with corresponding unit vectors êx and êy respectively.
Using linearized membrane theory, the mode shape corre-

sponding to a wave vector ~k can be expressed as f(~r) ¼
~P exp(j~k$~r0), where~P is the polarization vector and~r0 ¼ x0êx +
y0êy + z0êz is the mean position vector of the atom.
We denote the velocity of the atoms in x, y and z directions
as vx, vy and vz. The out-of-plane modal velocities are

then given by Vo
m;n ¼ C

X
p

vz p½cosðam;nÞ þ j sinðam;nÞ�,

where am;n ¼ 2mpx0p

L0
þ 2npy0p

B0
and C is the normalizing

factor. p sums over all the atoms in the structure. The
in-plane modal velocities can be approximated as
This journal is © The Royal Society of Chemistry 2017
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Vi-x
m;n ¼ C

X
p

vx p½cosðam;nÞþ j sinðam;nÞ� and Vi-y
m;n ¼ C

X
p

vy p

½cosðam;nÞ þ j sinðam;nÞ�. Using the atomic velocities from MD,
the time series of Vo

m,n(t), Vi-x
m,n(t), Vi-y

m,n(t) can be computed for
different values ofm and n. By taking FFT of the auto-correlation
of these time series data, the frequenciesum,n for differentmodes
can be resolved. If the structure is plane strained along the x
direction, these frequencies are subject to change. The PMGPs

can be estimated46 as gm;n ¼ � 1
D3

uD3
m;n � u0

m;n

u0
m;n

. Here, the

subscript 0 and D3 represent the reference and the strained
conguration, respectively. The frequencies uD3

m,n can be calcu-
lated for different values of D3 in order to obtain strain depen-
dence of the PMGPs. The PMGPs, then, can be used to perform
the phonon grouping.
IV. Results and discussions
A. PMGP and relaxation time

We consider few lower order modes (long wavelength) and
calculate the out-of-plane PMGPs (go) and in-plane PMGPs (gi-x,
gi-y) at different magnitude of uniaxial strain. The plot of
PMGPs versus strain is shown in Fig. 2. The PMGPs are found to
be strain dependent and can be approximated to vary linearly
with strain. Similar behavior has been observed for strained
monolayer graphene using rst principles calculations. It has
been shown that under large uniaxial strain, the shis of the
split G mode frequencies depend signicantly on the magni-
tude of the strain.40 Also, the out-of-plane PMGPs are found to
be negative and of higher magnitude than in-plane PMGPs
(compare Fig. 2c with Fig. 2a and b). This behavior of out-of-
Fig. 2 Variation of phononmodeGrüneisen parameters (PMGPs) with axi
along the y direction and (c) out-of-plane modes. In the legend, (m,n) in

This journal is © The Royal Society of Chemistry 2017
plane phonon modes have been addressed in our previous
study on graphene nanoribbon.47 From the relation of strain
coupling of modal energies (vE/vt � vT/vt � �gE_3), we can say
that the out-of-plane modes will undergo high positive change
in temperature with tensile strain. These modes therefore,
primarily constitute the ‘hot’ phonon group. By similar
reasoning, looking at the in-plane PMGPs in Fig. 2a and b, we
can classify them as the ‘cold’ phonon group. Hence, the
relaxation process will involve energy exchange between out-of-
plane and in-plane modes.

The time scale of relaxation during the non-equilibrium
process can be estimated from the energy uctuations at equi-
librium.48 In this case, uctuations in total energy of all the out-
of-plane modes should be considered. For ease of computation,
we deal with the kinetic part of the total energy. Its auto-
correlation follows the same decaying behavior as the total
energy, but is oscillatory in nature. The total kinetic energy EK of
all the out-of-plane modes can be related to the z component of

the kinetic energy of each atom as
X
p

1
2
mpvzp

2
, where p sums

over all the atoms. EK(t) is calculated using the atomic trajec-
tories from equilibrium MD simulations for a time length of 2
ns. The normalized auto-correlation of the uctuations in EK(t)

can be computed as RðtÞ ¼ hdEKðtÞdEKð0Þi
hðdEKð0ÞÞ2i

where dEK(t) ¼ EK(t)

� hEK(t)i. The envelope of R(t) displays an exponential decay as
shown by the solid line in Fig. 3. The timescale of decay, which
indicates the energy relaxation time sph can be calculated as

sph ¼
ðN
0
dtj3RðtÞj, where 3R(t) is the envelope of R(t). In this case

sph, is estimated to be 5.24 ps. The sph, thus extracted from the
al strain for (a) in-planemodes along the x direction, (b) in-planemodes
dicate the order of the mode.
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Fig. 3 Decay of R(t) with time. The data points corresponding to R(t)
are shown by red circles. The solid line is the envelope of R(t) i.e. 3R(t).
3R(t) is obtained by joining the local peaks of the data points with
straight lines.
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equilibrium MD simulations, serves as direct input to our
dissipation model.

B. Scaling of dissipation

The frequency scaling of dissipation under axial mode of
deformation obtained fromMD is shown in Fig. 4a. In this case,
3a ¼ 0.02 and L0 ¼ 56.18 Å. The Lorentzian nature of the
dissipation curve follows directly from the functional form in
eqn (4). Using sph as 5.24 ps, a least-square tting of eqn (4) is
Fig. 4 (a) Scaling of dissipation of the single layer MoS2 with frequen
correspond to results fromMD simulation. The black solid line is the curve
at 10 GHz. The red circles with error bars correspond to the MD results. Th
of strain.

Fig. 5 (a) Variation of Az (left axis) and 3f (right axis) with transverse load
amplitude of flexural deformation of the single layer MoS2 at 10 GHz. The
line is the dissipation estimated using eqn (5) as a function of Az.

6408 | RSC Adv., 2017, 7, 6403–6410
performed with the dissipation response. The material param-
eters, thus evaluated, are |Dg0| ¼ 0.58 and |Dg1| ¼ 42.39. Note
that |Dg0| and |Dg1| here, denote the difference in constant and
strain-dependent part of the average PMGPs of out-of-plane
(‘hot’ phonon group) and in-plane (‘cold’ phonon group)
modes. Thereby, we have the complete set of parameters
required for our dissipation models.

We, now, try to validate our model for the axial case by
comparing the scaling of dissipation with strain amplitude. At
U ¼ 10 GHz, for 3a varying from 1.5% to 3.5%, dissipation ob-
tained using our model (eqn (4)) is in good agreement with the
MD results. The comparison is shown in Fig. 4b. The 2nd term in
eqn (4), which is 4th order in 3a is the nonlinear damping term.
At higher strain amplitudes (say 3a ¼ 3%), a signicant part of
the total dissipation (�55%) is due to nonlinear damping. From
eqn (4), it is evident that the relative importance of nonlinear
damping depends on |Dg13a|. For the cases where |Dg13a| [
|Dg0|, the dissipation will be essentially nonlinear.

We, now, look at exural deformation. Under transverse
loading, the deformation prole can be approximated by the
fundamental exural mode and is tted with Az sin(px/L0) for
Az, where L0 ¼ 54.56 Å. Az increases linearly with the forcing
magnitude as shown in Fig. 5a. In the exure case, Az ¼ 4.47 Å
for the maximum forcing considered, which corresponds to
a strain amplitude 3f ¼ 3.3% close to the edges (x ¼ 0). Taking
cy of axial deformation at 2% strain. The red circles with error bars
-fit using eqn (4). (b) Scaling of dissipation with amplitude of axial strain
e black solid line is the dissipation estimated using eqn (4) as a function

ing f0 as obtained from MD simulation. (b) Scaling of dissipation with
red circles with error bars correspond to the MD result. The black solid

This journal is © The Royal Society of Chemistry 2017
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pre-strain into account, the nal state of strain in the structure
at any instant is well below the maximum intrinsic strain limit
for MoS2.12 Using MD, net dissipation for the structure is ob-
tained for different forcing amplitude at 10 GHz. The plot of
dissipation versus Az is shown in Fig. 5b. Inserting the set of
previously evaluated parameters in our model for the exure
case (eqn (5)), the estimated dissipation compares well with
those obtained from the MD simulation. The lowest order
nonlinearity (1st term) in eqn (5) is solely due to the geometric
effect which arises from coupling of out-of-plane motion and in-
plane stretching. While the last two terms in eqn (5) has the
effect of both material and geometric nonlinearity. To get an
idea, for exural deformation with a transverse force which
corresponds to Az ¼ 4 Å, the percentage contributions of the 1st,
2nd and 3rd term to total dissipation are �29.5%, �47.6%,
�22.8% respectively. The closed form expression for the exure
case shows some interesting behavior. For example, for cases
when Dg0Dg1 < 0, the 2nd term in eqn (5) has a negative
contribution to the total dissipation. Thus, for those cases
where the 2nd term is relatively important and negative, it can
lead to decrease in dissipation with the increase in Az. It would
be useful to identify the cases where this holds true and use it
for designing high quality factor nonlinear resonator.

V. Conclusions

We have studied the microscopic mechanism behind intrinsic
dissipation of single layer MoS2. Based on the mechanism, we
proposed dissipation models to quantify dissipation under the
axial and exure mode of deformation. We have isolated two
factors that renders the dissipation nonlinear: (i) strain
dependence of phonon mode Grüneisen (PMGP) and (ii)
geometric effect. The later is manifested in the case of exure
deformation because of the coupling between out-of-plane
motion and in-plane stretching of MoS2. Our model, which
accounts for these factors, can quantify the net dissipation in
the exure case with good accuracy. The developed analytical
expressions can be used to engineer high quality factor nano-
resonators that operate in the nonlinear regime.
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