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1,2,3-Triazoles have found widespread applications in biolog-
ical science," material science* and medicinal chemistry.> More
recently, they also have been utilized as ligands in transition-
metal coordination,® and this catalytic system provided an
efficient strategy for many challenging transformations.®
Because of the importance of this structural motif, many prac-
tical synthetic methods have been developed. Both thermal and
Cu(1)/Ru(u)-catalyzed condensations of alkynes and azides
provide an excellent approach to N-1/N-3-substituted triazoles,®
whereas the regioselective synthesis of N-2-substituted 1,2,3-
triazoles remains a challenging issue. Considerable recent
efforts have been made toward the preparation of N-2-aryl” and
N-2-allyl-1,2,3-triazoles® with high N-2-selectivity. Despite these
achievements, however, a general method for the preparation of
N-2-alkyl-1,2,3-triazols is lacking.

The current main approach to N-2-alkyl-1,2,3-triazoles by the
conversion of alkyl halides with bulky C-4- and C-5-disubstituted
NH-1,2,3-triazoles limits its broader utility by the substrate's
steric requirements (Scheme 1a).° Recently, Chen's group re-
ported a highly regioselective N-2 alkylation of NH-1,2,3-triazoles
through NIS-mediated iodofunctionalization with olefins
(Scheme 1b, eqn (1)).** Our interest in developing a new strategy
for the synthesis of N-2-alkyl-1,2,3-triazoles was initiated by the
recent success of TsSOH mediated addition of 1-sulfonyl-1,2,3-
trizole to olefins (Scheme 1b, eqn (2)).**® This new strategy
incorporated a labile N-1-substitutents and the mechanism was
based on a carbocation intermediate. Based on these results, we
want to expand this reaction to metal catalyzed transformation.

The activation of unsaturated C-C bonds by gold complexes
has led to a range of attractive and useful strategies for a variety
of organic transformations due to their low toxicity and
increased stability to moisture and air,'* whereas employing 1-
sulfonyl-1,2,3-triazoles as the nucleophiles in gold catalyzed
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An efficient new method was developed to synthesise N-2-alkyl-1,2,3-trizoles via gold catalyzed alkylation
of 1-sulfonyl-1,2,3-trizoles with vinyl ethers. Only N-2-isomers were obtained in these reactions. The
sulfonyl group in the 1-sulfonyl-1,2,3-trizoles acted as the leaving group, which was trapped by H,O in

olefins conversion has never been explored before. In the
previous studies, N-2-alkyl-substituted triazole derivatives
possess a broad spectrum of antiherpetic, antiarrhythmic and
antiviral activities.'> Therefore, efficient synthetic methods for
the synthesis of N-2-alkyl triazoles are highly desirable. In this
paper, we will report the first example of gold-catalyzed N-2
alkylation of 1-sulfonyl-1,2,3-trizoles with electronic-rich vinyl
ethers (Scheme 1c).

The initial experiments were performed with 4-phenyl-1-
sulfonyl-1,2,3-trizole 1a and vinyl ether 2a in the presence of
IPrAuCl (5 mol%) and AgOTf (5 mol%) in 1,2-dichloroethane
(DCE) at 80 °C. To our delight, the desired N-2-alkyl-1,2,3-trizole
3a was obtained in 53% yield and no N-1-coupling adduct was
detected (Table 1, entry 1). In order to optimize the reaction
condition, silver salts screening was first performed, in which,
IPrAuCl/AgNTf, was found to be the best silver combination
(Table 1, entry 2). The catalyst's ligands were then evaluated.
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Scheme 1 Strategy for selective N-2 alkylation.
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Table 1 Screening of the optimal conditions®
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Ph\["f\N . o Catalyst & Additve PN _N O
N @ Solvent, 80 °C \EN'NO
Ts

1a 2a 3a
Entry Catalyst (mol%) Solv./additive (equiv.) Time (h) Yield” (%)
1 IPrAuCl/AgOTf (5) DCE 6.5 53
2 IPrAuCl/AgNTf, (5) DCE 6.5 61
3 IPrAuCl/AgSbF; (5) DCE 6.5 39
4 Ph;PAUCI/AgNTT, (5) DCE 6 32
5 JohnphosAuCl/AgNTT, (5) DCE 6 14
6 IPrAuCl/AgNTTf, (5) DCE/H,0 (2) 6 98
7 IPrAuCl/AgNTf, (5) THF/H,0 (2) 6.5 17
8 IPrAuCl/AgNTf, (5) CHCI,/H,0 (2) 6.5 45
9 IPrAuCl/AgNTTf, (5) Toluene/H,O (2) 24 NR
10 IPrAuCl/AgNTf, (5) DCM/H,0 (2) 10 56
11° IPrAuCl/AgNTf, (5) DCE/H,0 (2) 6 51
12 IPrAuCl/AgNTf, (2) DCE/H,0 (2) 8 47
134 IPrAuCl/AgNTf, (5) DCE 24 NR
14 IPrAucl (5) DCE/H,0 (2) 24 NR
15 AgNTT, (5) DCE/H,0 (2) 24 NR

“ Unless noted, all reactions were carried out at 0.5 mmol scale in 3 mL of solvent with the addition of 5 mol% catalyst at 80 °C (1a/2a) = 1/5.

b Isolated yields. ¢ 3 equiv. of compound 2a were added.

With Ph;PAuCI only half of the yield was obtained while John-
phosAuCl was not favored for this transformation, affording 3a
in only 14% yield after 6 h (Table 1, entries 4, 5). According to
the previous report of Chen's group,’” the trace amount of
water is auxiliary to capture the leaving Ts group. Therefore, 2
equiv. of water was added to the reaction and 3a's yield was
improved to 98% (Table 1, entry 6). Further solvent optimiza-
tion identified DCE to be the best reaction medium (Table 1,
entry 6). Variation of the number of equivalents of 2a from 5.0 to
3.0 lowed the conversion of 3a to 51% (Table 1, entry 11), which
indicates that the excess of vinyl ether probably is necessary due
to the high tendency of vinyl ethers to undergo cationic poly-
merization initiated by gold(r).”* Reducing the catalyst loading
to 2 mol% led to a reduced reaction yield to 47% after 8 hours
(Table 1, entry 12). Addition of 4 A molecular sieves to remove
the residual moisture inhibited this reaction which indicated
that H,O was necessary for this N-2 alkylation reaction (Table 1,
entry 13). The control experiments employing IPrAuCl and
AgNTf, separately gave no desired products (Table 1, entries 14,
15).

With the optimized reaction conditions in hand, we exam-
ined the scope of this transformation by synthesizing a series of
N-2-alkyl-1,2,3-triazoles. As shown in Table 2, various 4-aryl-
substituted 1-sulfonyl-1,2,3-triazoles were explored by using
vinyl ether 2a as the reactants. First, 4-phenyl-substituted 1-
sulfonyl-1,2,3-triazole 1a could afford the desired N-2-alkyl-
1,2,3-triazole 3a in 98% yield. 4-Alkyl and 4-methoxy phenyl
substituted 1-sulfonyl-1,2,3-trizoles gave 3b-e in 74-91% yield
(Table 2, entries 2-5). 4-Halogen phenyl substituted 1-sulfonyl-
1,2,3-trizoles were also well tolerated, although 4-bromo phenyl
substituted 1-sulfonyl-1,2,3-triazole 1g gave the corresponding

This journal is © The Royal Society of Chemistry 2017

9100 mg 4 A MS was added.

product 3g in 57% yield (Table 2, entries 6-8). 2-Fluoro and 3-
fluoro phenyl substituted 1-sulfonyl-1,2,3-triazoles were also
tested, giving 3i and 3j in 73% and 87% yield, respectively (Table
2, entries 9 and 10). The reaction of 2-thienyl and 3-thienyl
substituted 1-sulfonyl-1,2,3-triazoles 1k and 1l went smoothly,

Table 2 Substrate scope of 1-sulfonyl-1,2,3-trizoles (1)¢

R
IPrAuCI/AgNTf2 RTN 0
o
O H,0, DCE, 80 °C =N
1 3a-l
Entry Substrate 1 R Product 3 Yield” (%)
1 la Phenyl 3a 98
2 1b 4-MeCgH, 3b 74
3 1c 4-PrC¢H, 3¢ 84
4 1d 4-"BuCg¢H, 3d 86
5 1le 4-MeOCgH,4 3e 91
6 1f 4-CIC4H, 3f 77
7 1g 4-BrC¢H, 3g 57
8 1h 4-FCH, 3h 99
9 1i 2-FC¢H, 3i 73
10 1j 3-FCH, 3j 87
11 1k 2-Thienyl 3k 63
12 11 3-Thienyl 31 70
13 1m "Bu 3m 0
14 in Cyclopentyl 3n 0
“ Reaction conditions: 1 (0.5 mmol), 2a (2.5 mmol) ,O (1 mmol),

IPrAuCl/AgNTf, (5 mol%), DCE (3 mL), 80 °C. Y1eld of isolated

product.
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Table 3 Substrate scope of vinyl ether (2)¢
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thN\ o PhTN‘ o\( PAN o~
N N \[ N
SN —< SN _< SN _<

4e, 64% yield 4f, 56% yield 4g, 75% yield

Ph
Ph \)\ PN o/ /N‘N o~
W T =
N SV
N
4h, 70% yield 4i, 79% yield 4j, 90% yield

Ph N \ 00
TaT
N
4k, 83% yield

% Reaction conditions: 1a (0.5 mmol), 2 (2.5 mmol), H,O (1 mmol),
IPrAuCl/AgNTf, (5 mol%), DCE (3 mL), 80 °C.

affording 3k and 31 in moderate yields (Table 2, entries 11 and
12). However, no conversion was observed for 4-alkyl-
substituted 1-sulfonyl-1,2,3-trizoles, probably owing to the
alkyl substituent can't stabilize the intermediate II in Scheme 3
(Table 2, entries 13 and 14). Then, N-2-alkyl reactions of 4-
phenyl-substituted 1-sulfonyl-1,2,3-trizole 1a with various vinyl
ether were explored. As shown in Table 3, cyclic vinyl ethers
worked very well. 2-Methoxy-3,4-dihydro-2H-pyran 2b gave 4b in
81% yield, while 2,3-dihydrofuran 2c afforded 4c¢ in 94% yield.
Next, we investigated the linear vinyl ether's reactions. We
found that mono-substituted and 1,2-disubstituted linear vinyl
ether could be employed in this reaction and gave the desired
products in moderate to good yields. Moreover, this reaction
was also efficient with alpha-angelica lactone, giving 4k in 83%
yield. The structure of 4k was determined according to the
literature of Chen.'® However, 1,1-disubstituted vinyl ether 21,
styrene 2m, 4-tert-butyl substituted styrene 2n did not work in
this transformation may be due to the larger steric effects and
lower complexation with gold(i).

To gain more insight into the mechanism of this reaction,
deuterium-labeling experiments were conducted. When H,O

Ph Ph 0

N
IPrAUCI/AGNTf, f N \
D,0, DCE, 80 °C N LD > 28%
H
J - 72%

4e-D, 58% yield

N\

T, o
RN
Ts

1a 2e

Scheme 2 Deuterium-labeling experiments.
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Scheme 3 Proposed reaction mechanism.

was replaced by 2.0 equiv. of D,O in the model reaction, the
N-2-alkyl-1,2,3-trizole product 4e-D was isolated in 58% yield.
The incorporation of deuterium at the a-position of 4e-D in
a 28% ratio suggested that H,O was necessary for this N-2
alkylation reaction (Scheme 2).'* The incorporation of
deuterium at the a-position of 4e-D was lowed in 5% yield
may be due to the trace amount of water in the reaction
system.

On the basis of previous work' and our deuterium-
labeling experiments, a plausible® catalytic cycle is proposed
in Scheme 3. Complexation of the cationic gold catalyst with
vinyl ether 2a generated intermediate I, which is then attacked
by the internal nitrogen of the 1-sulfonyl-1,2,3-triazole
substrate 1a to give the intermediate II. Then the activated
sulfur-N bond is hydrolyzed to form the alkyl gold interme-
diate III, which subsequently undergoes protodeauration'® to
give the final N-2-alkyl-1,2,3-trizole 3a and regenerated the
cationic gold catalyst.

In summary, a highly efficient gold-catalyzed N-2-selective
alkylation was developed, giving the desired N-2-alkyl-1,2,3-
trizoles in good yields. The sulfonyl group in the 1-sulfonyl-
1,2,3-trizoles acted as the leaving group, which was trapped by
H,O0 in this reaction. Notably, only N-2-isomers were obtained
in these reactions. With the continuously growing interest in N-
2-substituted 1,2,3-trizoles, we are currently studying the N-2-
selective arylation, alkenylation, and allylation using this
strategy and the results will be reported in due course.

Acknowledgements

This work was financially supported by the Project of Education
Department of Sichuan Province (No. 16ZB0027) and the
Functional Polymer Innovation Team Project, Southwest
University for Nationalities (No. 14CXTD04).

Notes and references

1 (a) M. E. Hahn and T. W. Muir, Trends Biochem. Sci., 2005,
30, 26-34; (b) W. P. Heal, S. R. Wickramasinghe,
R. J. Leatherbarrow and E. W. Tate, Org. Biomol. Chem.,
2008, 6, 2308-2315; (¢) A. M. Phil, P. Schmieder, R. Kuhne
and J. Rademann, Angew. Chem., Int. Ed., 2009, 48, 5042-

This journal is © The Royal Society of Chemistry 2017


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6ra26521a

Open Access Article. Published on 04 January 2017. Downloaded on 2/20/2026 4:48:06 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

4

o

)]

5045; (d) G. Schneider, Nat. Rev. Drug Discovery, 2010, 9, 273—
276.

(@) H. M. Li, F. O. Cheng, A. M. Duft and A. Adronov, J. Am.
Chem. Soc., 2005, 127, 14518-14524; (b) D. 1. Rozkiewicz,
D. Janczewski, W. Verboom, B. J. Ravoo and
D. N. Reinhoudt, Angew. Chem., Int. Ed., 2006, 45, 5292-
5296; (c) M. Wyszogrodzka and R. Haag, Chem.-Eur. J.,
2008, 14, 9202-9214; (d) T. Gadzikwa, O. K. Farha,
C. D. Malliakas, M. G. Kanatzidis, J. T. Hupp and
S. T. Nguyen, J. Am. Chem. Soc., 2009, 131, 13613-13615; (e)
P. L. Golas and K. Matyjaszewski, Chem. Soc. Rev., 2010,
39, 1338-1354.

(@) Y. M. Chabre and R. Roy, Curr. Top. Med. Chem., 2008, 8,
1237-1285; (b) M. Colombo and 1. Peretto, Drug Discovery
Today, 2008, 13, 677-684; (c) R. Hanselmann, G. E. Job,
G. Johnson, R. L. Lou, J. G. Martynow and M. M. Reeve,
Org. Process Res. Dev., 2010, 14, 152-158; (d) R. Moumne,
V. Larue, B. Seijo, T. Lecourt, L. Micouin and C. Tisne, Org.
Biomol. Chem., 2010, 8, 1154-1159.

(a) A. L. Rheingold, L. M. Liable-Sands and S. Trofimenko,
Angew. Chem., Int. Ed., 2000, 39, 3321-3324; (b)
S. Trofimenko, A. L. Rheingold and C. D. Incarvito, Angew.
Chem., Int. Ed., 2003, 42, 3506-3509; (c) T. R. Chan,
R. Hilgraf, K. B. Sharpless and V. V. Fokin, Org. Lett., 2004,
6, 2853-2855; (d) D. Liu, W. Z. Gao, Q. Dai and
X. M. Zhang, Org. Lett., 2005, 7, 4907-4910; (e) H. F. Duan,
S. Sengupta, J. L. Petersen, N. G. Akhmedov and X. D. Shi,
J. Am. Chem. Soc., 2009, 131, 12100-12102; (f) H. F. Duan,
S. Sengupta, J. L. Petersen and X. D. Shi, Organometallics,
2009, 28, 2352-2355; (g) J. E. Hein, J. C. Tripp,
L. B. Krasnova, K. B. Sharpless and V. V. Fokin, Angew.
Chem., Int. Ed., 2009, 48, 8018-8021; (k) W. M. Yan,
X. H. Ye, N. G. Akhmedov, J. L. Petersen and X. D. Shi,
Org. Lett., 2012, 14, 2358-2361; (i) Y. C. Yang, A. Qin,
K. Y. Zhao, D. W. Wang and X. D. Shi, Adv. Synth. Catal.,
2016, 358, 1433-1439.

Selected examples on the applications of TA-Au, see: (a)
D. W. Wang, L. N. S. Gautam, C. Bollinger, A. Harris,
M. Y. Li and X. D. Shi, Org. Lett., 2011, 13, 2618-2621; (b)
D. W. Wang, Y. W. Zhang, R. Cai and X. D. Shi, Beilstein J.
Org. Chem., 2011, 7, 1014-1020; (¢) D. W. Wang,
Y. W. Zhang, A. Harris, L. N. S. Gautam, Y. F. Chen and
X. D. Shi, Adv. Synth. Catal., 2011, 353, 2584-2588; (d)
Q. Y. Wang, S. Aparaj, N. G. Akhmedov, J. L. Petersen and
X. D. Shi, Org. Lett, 2012, 14, 1334-1337; (e) R. Cai,
W. M. Yan, M. G. Bologna, K. de Silva, Z. Ma,
H. O. Finklea, J. L. Petersen, M. Y. Li and X. D. Shi, Org.
Chem. Front., 2015, 2, 141-144; (f) S. E. Motika, Q. Y. Wang,
X. H. Ye and X. D. Shi, Org. Lett., 2015, 17, 290-293; (g)
Y. C. Yang, Y. A. Shen, X. L. Wang, Y. Zhang, D. W. Wang
and X. D. Shi, Tetrahedron Lett., 2016, 57, 2280-2282.

(@) R. Huisgen, 1,3-Dipolar Cycloaddition Chemistry, ed. A.
Padwa, Wiley, New York, 1984; (b) H. C. Kolb, M. G. Finn
and K. B. Sharpless, Angew. Chem., Int. Ed., 2001, 40, 2004-
2021; (¢) V. V. Rostovtsev, L. G. Green, V. V. Fokin and
K. B. Sharpless, Angew. Chem., Int. Ed., 2002, 41, 2596-
2599; (d) P. Wu and V. V. Fokin, Aldrichimica Acta, 2007,

This journal is © The Royal Society of Chemistry 2017

View Article Online

RSC Advances

40, 7-17; (e) B. C. Boren, S. Narayan, L. K. Rasmussen,
L. Zhang, H. T. Zhao, Z. Y. Lin, G. C. Jia and V. V. Fokin, J.
Am. Chem. Soc., 2008, 130, 8923-8930; (f) C. W. Tornoe,
C. Christensen and M. Meldal, J. Org. Chem., 2002, 67,
3057-3064; (g) M. M. Majireck and S. M. Weinreb, J. Org.
Chem., 2006, 71, 8680-8683; (k) L. Zhang, X. G. Chen,
P. Xue, H. H. Y. Sun, I. D. Williams, K. B. Sharpless,
V. V. Fokin and G. C. Jia, J. Am. Chem. Soc., 2005, 127,
15998-15999.

For examples of N*-arylation: (a) K. S. Balachandran,
I. Hiryakkanavar and M. V. George, Tetrahedron, 1975, 31,
1171-1177; (b) M. Taillefer, N. Xia and A. Ouali, Angew.
Chem., Int. Ed., 2007, 46, 934-936; (c) Y. X. Liu, W. M. Yan,
Y. F. Chen, J. L. Petersen and X. D. Shi, Org. Lett., 2008,
10, 5389-5392; (d) X. J. Wang, L. Zhang, H. Lee,
N. Haddad, D. Krishnamurthy and C. H. Senanayake, Org.
Lett., 2009, 11, 5026-5028; (¢) S. Ueda, M. J. Su and
S. L. Buchwald, Angew. Chem., Int. Ed., 2011, 50, 8944-
8947; (f) . Wen, L. L. Zhu, Q. W. Bi, Z. Q. Shen, X. X. Li,
X. Li, Z. Wang and Z. L. Chen, Chem.-Eur. J., 2014, 20,
974-978; (g) A. B. Lopes, P. Wagner, R. de Souza,
N. L. Germain, J. Uziel, J. J. Bourguignon, M. Schmitt and
L. S. M. Miranda, J. Org. Chem., 2016, 81, 4540-4549.

For the synthesis of N*-allyl 1,2,3-triazole: (a) S. Kamijo,
T. N. Jin, Z. B. Huo and Y. Yamamoto, J. Am. Chem. Soc.,
2003, 125, 7786-7787; (b) S. Kamijo, T. Jin, Z. B. Huo and
Y. Yamamoto, J. Org. Chem., 2004, 69, 2386-2393; (c)
W. M. Yan, Q. Y. Wang, Y. F. Chen, J. L. Petersen and
X. D. Shi, Org. Lett., 2010, 12, 3308-3311; (d) K. Xu,
N. Thieme and B. Breit, Angew. Chem., Int. Ed., 2014, 53,
7268-7271.

(@) Y. F. Chen, Y. X. Liu, J. L. Petersen and X. D. Shi, Chem.
Commun., 2008, 3254-3256; (b) J. Kalisiak, K. B. Sharpless
and V. V. Fokin, Org. Lett., 2008, 10, 3171-3174; (c)
X. J. Wang, K. Sidhu, L. Zhang, S. Campbell, N. Haddad,
D. C. Reeves, D. Krishnamurthy and C. H. Senanayake, Org.
Lett., 2009, 11, 5490-5493; (d) X. J. Wang, L. Zhang,
D. Krishnamurthy, C. H. Senanayake and P. Wipf, Org.
Lett., 2010, 12, 4632-4635.

10 (@) L. L. Zhu, X. Q. Xu, ]J. W. Shi, B. L. Chen and Z. L. Chen,

J. Org. Chem., 2016, 81, 3568-3575; (b) J. W. Shi, L. L. Zhu,
J. Wen and Z. L. Chen, Chin. J. Catal., 2016, 37, 1222-1226.

11 For selected reviews on the activition of unsaturated C-C

bonds by gold complexes: (a) A. S. K. Hashmi, Chem. Rev.,
2007, 107, 3180-3211; (b) A. Corma, A. Leyva-Perez and
M. J. Sabater, Chem. Rev., 2011, 111, 1657-1712; (c)
H. Huang, Y. Zhou and H. Liu, Beilstein J. Org. Chem.,
2011, 7, 897-936; (d) F. Lopez and J. L. Mascarenas,
Beilstein J. Org. Chem., 2011, 7, 1075-1094; (e) H. Ohno, Isr.
J. Chem., 2013, 53, 869-882; (f) G. Abbiati, E. Rossi,
G. Abbiati and E. Rossi, Beilstein J. Org. Chem., 2014, 10,
481-513; (g) D. Qian and J. Zhang, Chem. Soc. Rev., 2015,
44, 677-698; (k) D. Pflasterer and A. S. K. Hashmi, Chem.
Soc. Rev., 2016, 45, 1331-1367; (i) A. M. Asiri and
A. S. K. Hashmi, Chem. Soc. Rev., 2016, 45, 4471-4503.

12 Examples of N-2-alkylated triazoles in biological application:

(@) O. S. Kanishchev, G. P. Gudz, Y. G. Shermolovich,

RSC Aadv., 2017, 7, 1062-1066 | 1065


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6ra26521a

RSC Advances

N. V. Nesterova, S. D. Zagorodnya and A. V. Golovan,
Nucleosides, Nucleotides Nucleic Acids, 2011, 30, 768-783; (b)
B. E. Blass, K. Coburn, W. Lee, N. Fairweather, A. Fluxe,
S. D. Wu, J. M. Janusz, M. Murawsky, G. M. Fadayel,
B. Fang, M. Hare, ]J. Ridgeway, R. White, C. Jackson,
L. Djandjighian, R. Hedges, F. C. Wireko and A. L. Ritter,
Bioorg. Med. Chem. Lett.,, 2006, 16, 4629-4632; (c)
M. Whiting, J. Muldoon, Y. C. Lin, S. M. Silverman,
W. Lindstrom, A. J. Olson, H. C. Kolb, M. G. Finn,
K. B. Sharpless, J. H. Elder and V. V. Fokin, Angew. Chem.,
Int. Ed., 2006, 45, 1435-14309; [d) C. D. Cox, M. ]J. Breslin,
D. B. Whitman, J. D. Schreier, G. B. McGaughey,
M. J. Bogusky, A. J. Roecker, S. P. Mercer, R. A. Bednar,

View Article Online

Paper

J. Med. Chem., 2010, 53, 5320-5332; (e) L. Zhang, Z. B. Li,
X. J. Wang, N. Yee and C. H. Senanayake, Synlett, 2012,
1052-1056, DOI: 10.1055/s-0031-1290770.

13 (a) J. Urbano, A. J. Hormigo, P. de Fremont, S. P. Nolan,

M. M. Diaz-Requejo and P. J. Perez, Chem. Commun., 2008,
759-761; (b) A. S. K. Hashmi, S. Schafer, V. Goker,
C. D. Eisenbach, K. Dirnberger, Z. Zhao-Karger and
P. Crewdson, Aust. J. Chem., 2014, 67, 500-506; (c)
F. Nzulu, S. Telitel, F. Stoffelbach, B. Graff, F. Morlet-
Savary, J. Lalevee, L. Fensterbank, J. P. Goddard and
C. Ollivier, Polym. Chem., 2015, 6, 4605-4611; (d) F. Nzulu,
A. Bontemps, J. Robert, M. Barbazanges, L. Fensterbank,
J. P. Goddard, M. Malacria, C. Ollivier, M. Petit, J. Rieger

W. Lemaire, J. G. Bruno, D. R. Reiss, C. M. Harrell,
K. L. Murphy, S. L. Garson, S. M. Doran,
T. Prueksaritanont, W. B. Anderson, C. Y. Tang, S. Roller,
T. D. Cabalu, D. H. Cui, G. D. Hartman, S. D. Young,
K. S. Koblan, C. J. Winrow, J. J. Renger and P. J. Coleman,

and F. Stoffelbach, Macromolecules, 2014, 47, 6652—6656.
14 The extent of deuterium incorporation was determined
using '"H NMR spectroscopy, see the ESLT
15 A. S. K. Hashmi, Angew. Chem., Int. Ed., 2010, 49, 5232-5241.
16 A. S. K. Hashmi, Catal. Today, 2007, 122, 211-214.

Open Access Article. Published on 04 January 2017. Downloaded on 2/20/2026 4:48:06 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

1066 | RSC Adv., 2017, 7, 1062-1066

This journal is © The Royal Society of Chemistry 2017


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6ra26521a

	N-2-Selective gold-catalyzed alkylation of 1-sulfonyl-1,2,3-trizolesElectronic supplementary information (ESI) available. See DOI: 10.1039/c6ra26521a
	N-2-Selective gold-catalyzed alkylation of 1-sulfonyl-1,2,3-trizolesElectronic supplementary information (ESI) available. See DOI: 10.1039/c6ra26521a


