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drug discovery:
chemoinformatics approaches for mining
structure–multiple activity relationships†
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and José L. Medina-Franco*a

In light of the high relevance of polypharmacology, multi-target screening is a major trend in drug

discovery. As such, the increasing amount of available structure–activity data requires the application of

chemoinformatic approaches to mine structure–multiple activity relationships. To this end, activity

landscape methods, initially developed to explore the structure–activity relationships for compounds

screened against one target, have been adapted to mine Structure–Multiple Activity Relationships

(SMARt). Herein, we survey advances in the chemoinformatic approaches to retrieve SMARt from

screening data sets. Case studies relevant to modern drug discovery are discussed. The methods

covered in this survey are general and can be implemented to explore the SMARt of other data sets

screened across multiple biologically endpoints.
Introduction

Analysis of structure–activity relationships (SAR) is a common
practice in many areas of chemistry. Most medicinal and
computational chemists working on drug discovery obtain SAR
of compound data sets on a routine basis. This is true not only
in academic settings but also in the pharmaceutical industry
and research institutes. In several current drug discovery
projects, compound data sets are screened across more than
one biological endpoint. Depending on the project, it is desir-
able to identify selective compounds or identify molecules with
activity across multiple endpoints. Moreover, in light of the
increasing awareness of polypharmacology1 and multi-target
drug discovery,2 screening small compound data sets or large
chemical libraries across more than one biological endpoint is
a fundamental task. Therefore, getting Structure–Multiple
Activity Relationships (SMARt) is a common need in drug
discovery.

Methods to get SMARt can be broadly classied into quali-
tative and quantitative. Qualitative approaches can be applied
without the need of computational tools and depend on the
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experience of the chemist analyzing the data. Thus, qualitative
methods are suitable to handle small-to-medium size data sets.
In contrast, large screening data sets, in particular those tested
across several endpoints, usually require the application of
computational procedures in addition to the experience of the
chemist.3 In these cases, in silicomethods can be performed for
either predictive or descriptive purposes. As discussed previ-
ously, understanding the SAR of compound data sets should be
performed before developing predictive models4 such as QSAR
and QSPR in order to predict novel, potent, and selective
compounds.5,6 In this regard, new computational models that
combine multi-target QSAR with machine learning such as
articial neural network algorithms have been developed with
the aim of predict the interactions of multiple molecules to
targets involved in many diseases and processes of
neuroprotection.5,7

Activity landscape modeling (ALM) is a chemoinformatic
strategy to mine the SAR of compound data sets and it is actively
used in academia, industry and other research settings. ALM
can be regarded as part of computer-aided drug design and it is
an important component in medicinal chemistry.8 For more
than ten years several groups have worked on the development
of ALM. These approaches relay on the quantitative comparison
of structure similarity with activity similarity (or potency
difference) for all pairs of compounds in a screening data set.
Over the years a large number of quantitative and visual
methods have been developed. Most of these methods started
with the main goal of identifying ‘activity cliffs’: pairs of
compounds with very similar structure but unexpected high
activity difference.9 Activity cliffs have a ‘dual face’ with a large
impact in medicinal and computational chemistry.10 It has been
This journal is © The Royal Society of Chemistry 2017

http://crossmark.crossref.org/dialog/?doi=10.1039/c6ra26230a&domain=pdf&date_stamp=2016-12-23
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6ra26230a
https://pubs.rsc.org/en/journals/journal/RA
https://pubs.rsc.org/en/journals/journal/RA?issueid=RA007002


Review RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
Ja

nu
ar

y 
20

17
. D

ow
nl

oa
de

d 
on

 1
1/

3/
20

25
 1

0:
34

:4
6 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
largely advised that aer identifying activity cliffs, molecular
modeling studies should be conducted that help to explain, at
the molecular level, the reason associated with the large change
in activity due to a small modication the chemical structure.
Such studies are highly valuable because add three-dimensional
information to the system. To this end, mechanistic studies
towards the structural interpretation of activity cliffs in three
dimensions have been published.11,12 Overall, the specic
reasons that are associated with the formation of the activity
cliffs depend on the system. An alternative approach to add
three-dimensional information to the system and consider
additional effects of functional groups, conformations and
congurations, molecular descriptors that take into account the
coordinates space of the compounds or even using several
different conformations of the molecules in the data set have
been reported.13,14

ALM seeks not only to identify activity cliffs but other
signicant areas of the activity landscape such as ‘similarity
cliffs’ (which are related to scaffold hops)15 and other contin-
uous regions of the activity landscape. The broad applicability
of ALM in medicinal chemistry has been reviewed.16 Initially
developed to describe SARs, ALM has been tested for predictive
purposes.17,18 Similarly, ALM was originally applied to describe
the SAR of compound data sets screened for one biological
endpoint, for instance, for a single target. However, several
methods used in ALM have been adapted to mine SMARts.

The goal of this work is to survey the progress of ALM to get
SMARt in drug discovery. We put special emphasis on the
development and application of Structure–Activity Similarity
(SAS) maps which were one of the rst approaches used in
ALM.19 Four years ago the authors reviewed the development of
SAS maps to explore SARs.20 In contrast, this review covers the
most recent developments and applications aimed to explore
SMARts. As part of the recent developments the concept of ‘pro-
activity cliffs’ is introduced. The manuscript is organized in ve
main sections: aer this introduction a brief overview of the SAS
maps is presented with special emphasis on the development of
density SAS maps and activity landscape sweeping strategies.
The section aer that describes the adaptation of ALM from
single to multi-target activity analysis. This section is followed
by a discussion of future trends in SAR and SMARt analysis
using ALM. Concluding remarks are presented at the end.

Structure–activity similarity (SAS) maps

SAS maps were proposed in 2001.19 The basic idea of a SAS map
is to plot in two-dimensions (2D) the pairwise structure simi-
larity (usually plotted on the X-axis) and activity difference
(plotted on the Y-axis) for all pairs of compounds in a data set. A
general form of a SAS map is shown in Fig. 1A. To aid in the
interpretation, a SAS map can be roughly divided in four major
quadrants each one distinguishing pairs of compounds with
high/low activity difference and high/low structure similarity.
Activity cliffs are located in the quadrant that identies pairs of
molecules with high structure similarity and high activity
difference (region IV). Compound pairs with a smooth SAR have
high structure similarity and low activity difference (region II).
This journal is © The Royal Society of Chemistry 2017
Scaffold hops (or similarity cliffs) are located in the opposite
quadrant of the activity cliffs (region I). Noteworthy, even in the
absence of the thresholds with formally dened quadrants, SAS
maps are helpful to differentiate major regions in the
landscape.

One of the known limitations of the SAS maps is the quan-
titative criteria to dene the thresholds along the X- and Y-axis.
A number of approaches to address this issue are discussed
elsewhere.20 Briey, the thresholds that dene high/low activity
difference depend on the goal of the project. Usual cutoffs are
one, two or more potency units. The thresholds to dene high/
low structure similarity can be set up based on the distribution
of the similarity values of the data set. In some instances,
heuristic values of similarity are considered based on author's
experience.

Another limitation of the SAS maps is the large amount of
data points that could be generated. Therefore, for large data
sets it is challenging the visual interpretation of the SAS maps.
To address this issue several strategies have been proposed
which are discussed below.
Density SAS maps

To aid in the visualization of the SAS and related maps three
major strategies have been developed: (1) categorical SAS
maps;13 (2) ltered SAS maps showing only the most relevant
data points (for instance, the ‘active pairs’ of compounds
dened as pair of molecules containing at least one active
compound in the pair) and, more recently (3) density SAS maps
that display the amount of data points using a continuous color
scale.21 Fig. 1 shows examples of ‘simplied’ SAS maps: cate-
gorical, ltered and density SAS map for a data set of 140
pyrimidine hydroxyl amide compounds tested with histone
deacetylase 1 (HDAC1). These compounds were synthesized and
tested as part of a program of optimization to nd potent and
selective inhibitors of HDAC6, enzyme required for the forma-
tion of the aggresome and survival of cancer cells.22 HDAC is
a major epigenetic target and the computational analysis of the
SAR can be regarded as part of the emerging research eld of
Epi-Informatics.23 SAR analysis of HDAC inhibitors is particu-
larly useful for the treatment of proliferative diseases and
disorders by protein deposition, likewise, it is useful for probing
biological pathways. A full discussion of the SAR of HDAC
inhibitors is out of the scope of this Short Review that is focused
on ALM. Fig. S1 in the ESI† shows additional examples of
simplied SAS maps for a data set of 91 compounds tested
against the parasite Giardia intestinalis. Note that density SAS
maps provide better information regarding the general distri-
bution of the data points, though sacricing the chance of
including information regarding the individual activity of any of
the compounds in the pair.

Several analyses have shown that the similarity cliff region is
one of the most populated for several data sets.13 Results of
Maggiora et al. further conrmed these observations analyzing
many data sets.15 This is also the case in the activity landscape
depicted in Fig. 1 and S1.† Density SAS maps have been
employed to analyze the ALM of 5a-alpha reductase inhibitors24
RSC Adv., 2017, 7, 632–641 | 633
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Fig. 1 (A) General form of the structure–activity similarity (SAS) maps showing four major regions. Regions I and II are associated with scaffold
hopping and smooth SAR, respectively. Region III does not provide relevant information and region IV indicates discontinuous SAR and activity
cliffs. Actual (B) and simplified SASmaps for a data set of 140 compounds tested with HDAC1. (C) Categorical map showing the distribution of the
data point in each of the four quadrants of the SAS map; (D) filtered map displaying the ‘active regions’ of the landscape i.e., pairs of compounds
that contain at least one active molecular in the pair; and (E) density map that shows the amount of data points in each region using a continuous
color scale from purple color (more data points) to grey color (less data points). The simplified SAS maps are designed to aid in the visual
representation and interpretation of the SAS maps.

634 | RSC Adv., 2017, 7, 632–641 This journal is © The Royal Society of Chemistry 2017
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and inhibitors of DNA metiltransferases (DNMTs), other major
epigenetic target.21
Activity landscape sweeping

Activity landscape sweeping is a strategy recently developed to
‘clean’ the SAR/SMARt of a data set by ltering rst the
compounds that are considered to analyze the landscape. An
approach is to classify the compounds by the types of molecular
scaffold25 or the relative position in chemical space, to name
two criteria. Then, the ALM would be centered on the local SAR
of the ltered molecules. In a broad sense, activity landscape
sweeping is an approach to analyze local models of SAR/
SMARts. Despite the fact that such models are not general,
activity landscape sweeping gives rise to focused analysis of the
most interpretable areas of the activity landscape.

In order to illustrate the ltering of compounds before ALM,
i.e., activity landscape sweeping, Fig. 2 shows a visual repre-
sentation of the chemical space of a series of 140 pyrimidine
hydroxyl amide compounds synthesized and evaluated as
HDAC6 inhibitors. Two main clusters (A: circles, B: triangles)
are readily distinguished: compounds of cluster A correspond to
formulas IV–VIII described by Van Duzer et al. while
compounds of cluster B correspond to formulas I–III described
in the same work.22 The main difference between these two
groups is the carbon attached to the nitrogen of 2-amino-N-
hydroxypyrimidine-5-carboxamide. In group A, this carbon is
tertiary, while in group B is primary or secondary. Representa-
tive chemical structures are shown in Fig. S2 of the ESI.†
Fig. 2 Example of an activity landscape sweeping. Visual representa-
tion of the chemical space of the 140 inhibitors of histone deacetylase
6 (HDAC6). The visualization was obtained by principal component
(PC) analysis of the similarity matrix computed with extended
connectivity fingerprint 4 (ECFP4). The percentage of variance
explained by each PC is indicated in the corresponding axis. Data
points are colored by the pIC50 values of HDAC6 in a continuous scale.

This journal is © The Royal Society of Chemistry 2017
Activity landscape sweeping has been recently applied to
DNMT inhibitors21 and 5a-reductase inhibitors.24 In both
instances activity landscape sweeping was used in conjunction
with SAS maps. This approach helped to ‘clean’ the landscape
and facilitated the visual analysis of the SAS maps. Activity
landscape sweeping has been used in conjunction with SAS
maps but could be implemented in combination with any other
ALM strategy such as Structure–Activity Landscape Index
(SALI)26 or other methods.
SAS maps and PLIFS

Protein–ligand interaction ngerprints (PLIFS) are convenient
representations to capture protein–ligands contacts in
a systematic manner. PLIFS are at the interface of chemo-
informatics and molecular modeling27 and have been designed
to ‘capture a 1D representation of the interactions between
ligand and protein either in complexes of known structure or in
docked poses’.28 Recently SAS maps have been adapted to
analyze structure–protein ligand interactions giving rise to the
protein–ligand interaction cliffs.27 These are dened as pairs of
compounds with high structure similarity, high protein–ligand
contact similarity but very different activity prole. That study
was conducted for a series of kinase inhibitors. In that work,
Méndez-Lucio et al. integrated PLIFS to a multi-target kinase
activity landscape analysis. Three data sets, containing the
crystallographic structure of the ligand bound to a kinase were
used. The authors employed three data sets, containing the
crystallographic structure of the ligand bound to a kinase.
Pairwise interaction similarity was assessed using PLIFs and the
Tanimoto coefficient, whereas twelve 2D and 3D molecular
descriptors were used to compute pairwise molecular similarity.
Pairwise structure-similarity analysis revealed no correlation
with interaction similarity in none of the data sets despite the
fact that the kinase ATP binding site is highly conserved. On
average, only 33% of the molecular pairs categorized as highly
similar showed similar interactions. This approach not only
provided structural information of activity cliffs but it also was
useful to identify hot spots in the target protein associated with
selectivity.27,29
Tuning ALM to get SMARt

In addition to SAS maps several other methods have been
developed for ALM analysis.16,20,26,30,31 For instance SALI, the rst
index developed to rapidly identify activity cliffs, is calculated
with the expression:26

SALIi;j ¼
��Ai � Aj

��
1� simði; jÞ

where Ai and Aj are the activities of the ith and jth molecules,
and sim(i,j) is the similarity coefficient between the two mole-
cules. Also, the research group of Bajorath has developed a large
number of approaches for ALM.16

Several of ALM methods have been adapted to handle
SMARt. For instance, a straightforward extension of SALI to
measure SMARt is replacing the numerator of the SALI with the
RSC Adv., 2017, 7, 632–641 | 635
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Table 1 Examples of case studies of SMARt studies conducted with SAS-like maps

Study Major outcome (method) Major outcome (interpretation) Ref.

SMART of >50 benzimidazoles
tested with T. vaginalis and G.
intestinalis

Dual activity difference maps with
ngerprint and sub-structure
representation

‘Activity switches’ are introduced:
pairs of compounds where one
small change in the structure is
associated with a different and
opposite change in the activity of
two biological endpoints

34 and 35

SMART of a series of purine analogs
screened against the cysteine
protease cathepsins

Triple activity difference maps The concept of structure–property–
activity (SPA) similarity in SAR
studies are introduced. SPA maps
are analyzed to determine the extent
to which property similarities could
be applied to characterize SARs

14

SMART of compounds in PubChem Structure multiple Activity
Similarity (SmAS) maps

Bioassay activity landscape is
introduced to study the relationship
between the structure and
bioactivity proles

37

ADMET analysis of 166 compounds
screened for kappa-opioid receptor
activity

ADMET property–activity pairwise
similarity maps with ADMET
descriptors and dimensional
‘violation bit vector’ representing

Study of the range of ADMET
property violations that arise from
structural changes, subtle and
signicant

41

SMART of 15 252 compounds
screened across 100 diverse
proteins reported by Clemons
et al.38

SPID measure (Structure–
Promiscuity Index Difference)

Structure promiscuity index is
introduced to identify the pairs of
compounds with high structure–
similarity but large activity
difference

39
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biological prole similarity of the compound pair computed
with the Tanimoto coefficient (giving rise to a Structure–
Multiple Activity Landscape Index).32 Representative case
studies of the adaptation of ALM to get SMARt are summarized
in Table 1 and discussed in the next sections.
SMARt with few biological endpoints

One of the rst applications of SAS maps applied to analyze data
sets across more than one biological endpoint was the SMARt
exploration of more than 50 benzimidazole analogues tested for
their ability to inhibit the growth of the protozoa Trichomonas
vaginalis and Giardia intestinalis.33 A tool to analyze simulta-
neously the difference in activity data for both parasites was the
Dual Activity Difference (DAD) maps. DADmaps represent in 2D
changes in potency difference for two targets.34One of the major
outcomes of the DAD maps are ‘activity switches’ dened as
pairs of compounds where one small change in the structure is
associated with a very different but opposite change in the
activity for both biological endpoints. Activity switches have
been reviewed in detail.20 Triple-Activity Difference (TAD) maps
where developed later as a natural extension of the DADmaps to
analyze SMARts.14

More recently, DADmaps were used to analyze systematically
the activity landscape of a series of 91 benzimidazoles tested
with the parasites T. vaginalis and G. intestinalis.35 In that work
the chemical structure of the 91 benzimidazoles was encoded
using a fragment-based approach that indicated the presence or
absence of six substituents around a common benzimidazole
nucleus. Using DAD maps, single and dual substitutions
around the benzimidazole scaffold were identied that were
636 | RSC Adv., 2017, 7, 632–641
associated with large changes in potency for each of the two
parasites. Furthermore, single and dual substitutions associ-
ated with large and opposite changes in activity for the two
parasites were found.35

To illustrate a DAD map, Fig. 3 shows a plot of a data set of
140 molecules tested as HDAC1 and HDAC6 inhibitors.22 As
reference, Fig. 3 also shows the corresponding SAS maps for
HDAC1 and HDAC6. In general, the DAD map in Fig. 3 shows
that the larger amount of pairs of compounds are located in the
region Z5 of the plot (close to 68%), indicating that most of the
compounds show activity values very similar for both enzymes.
The pairs identied in the Z3 and Z4 regions (simple activity
cliffs) suggest that changes in the scaffold are more susceptible
to present changes in activity against HDAC1 compared with
HDAC6. The increased presence of pairs of compounds in the
Z1 region compared to Z2 region indicates that there is a greater
likelihood that the modications affect the activity of both
enzymes in the same magnitude and direction.
SMARt with many biological endpoints

ALM have also been applied to analyze the SMARt of screening
collections tested across a large number of biological
endpoints. Different ALM methods have been used including
SAS maps. For instance, SAS maps were employed to analyze the
SMARt obtained from Pubchem.32 In a proof-of-concept study,
Medina-Franco and Wadell analyzed the bioassay activity
landscape of 618 molecules tested across 244 conrmatory
bioassays. One of the particular challenges in that work was that
each bioassay in PubChem has its own specic denition of
active, inactive, or inconclusive. A second major challenge was
This journal is © The Royal Society of Chemistry 2017
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Fig. 3 Example of SAS and DAD maps of a data set of 140 compounds tested across two biological endpoints (HDAC1 and HDAC6). Each data
point represents a pairwise comparison. The table shows the interpretation and number and percentage of data points in each region of the map
for compound pairs.

This journal is © The Royal Society of Chemistry 2017 RSC Adv., 2017, 7, 632–641 | 637
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that not all 618 compounds were tested in all 244 bioassays. A
distinctive feature of the SAS-like maps proposed to address
those two challenges was the calculation of a pairwise bioassay
activity prole similarity (bAPS): for each of the 618 compounds
tested in any of the 244 conrmatory assays the bioassay activity
prole was represented as a multiset ngerprint encoding of the
activity data as follows: ‘active’ was set to ‘2’; ‘inactive’ as ‘1’;
inconclusive or not tested as ‘0’; the pairwise bAPS was calcu-
lated using the Tanimoto coefficient:36

bAPSði; jÞ ¼

Xn

k¼1

min½mkðiÞ;mkðjÞ�
Xn

k¼1

max½mkðiÞ;mkðjÞ�

where bAPS(i,j) is the bioassay activity prole similarity of the
ith and jth molecules, mk(i) and mk(j) are the activity encodings
of the ith and jth molecules, respectively, and n is the total
number of assays that the molecules were screened across. This
encoding of the activity data enabled the systematic structure-
and bioprole activity similarity and identied bioassay activity
prole cliffs i.e., pairs of compounds with high structure simi-
larity but very different bioassay activity proles.37

In a separate work Yongye et al. analyzed the ALM of a che-
mogenomics data set released by Clemons et al. The data set
contained more than 15 000 compounds from different sources
(commercial compounds, natural products and synthetic mole-
cules) that where screened across 100 sequence-unrelated
proteins.38 SMARt analysis using SAS maps led to the identica-
tion of structural changes that differentiated highly specic from
promiscuous compounds. It was also concluded that, in general,
similar synthetic structures from academic groups showed
greater promiscuity differences than do commercial compounds
and natural products.39 A characteristic metric employed in that
work was the Structure-Promiscuity Index Difference (SPID); for
each pair of compounds, the relationship between structure
similarity and the different number of proteins to which each
compound in the pair binds was computed using the expression:

SPIDðXa;XbÞ ¼
��PXa

� PXb

��
1� TnðXa;XbÞ

where PXa
and PXb

are the number of proteins to which
compounds Xa and Xb are bound and Tn(Xa,Xb) is the pairwise
Tanimoto structure similarities of both compounds. The SPID
metric is reminiscent of SALI (see above). Noteworthy, SPID
focuses on the change in the number of proteins bound asso-
ciated with a change in the molecular structure but does not
account for the specic proteins involved, such as the metric
‘binding prole similarity’.40 In order to address the identity of
the proteins Yongye et al. also computed the pairwise binding
prole similarities employing the binary prole of each
compound as a 100-dimensional vector e.g., a pairwise Tani-
moto similarity. As such it was also analyzed the multiple–assay
prole SAR of the data set using the modied version of SALI:
Structure–Multiple Activity Landscape Index (vide supra).

Similar to activity landscape analysis with one biological
endpoint, the structural interpretation of SMARt with many
638 | RSC Adv., 2017, 7, 632–641
biological endpoints would require further molecular modeling
studies with the three dimensional structures of the targets, if
available. An alternative is to incorporate three dimensional
molecular descriptors to describe the chemical structures. It is
particularly interesting to provide a further rationale of the
source of selectivity or promiscuity of the compounds.
Future directions

In principle, methods employed in ALM can be implemented to
explore the SAR or SMART of any screening data evaluated
across multiple biological endpoints. Moreover, several
methods can be extended to mine biological ngerprints.
SMART studies can be further extended to analyze properties
such as toxicity. In this regard, Austin et al. introduced ADMET
property–activity pairwise similarity maps to analyze the rela-
tionships between activity, structure and ADMET violations/
compliance with particular emphasis on determining struc-
tural changes that have a large impact on the ADMET
compliance.41

In drug discovery, big data is typically obtained from high-
throughput screening (HTS). HTS usually is conducted in two
general steps: assays at a single dose followed by conrmatory
assays at multiple doses. Despite the fact that biological assays
at single-dose concentrations have not been considered for
activity landscape analysis,42 such assays do provide valuable
information that could be considered in preliminary activity
landscape studies. We propose that this is a relevant future
direction not only in ALM but in SMARt studies in general.
Pro-activity cliffs

Relevant regions in the activity landscape are analyzed using
high quality biological activity data that are obtained aer
multiple-dose inhibition assays. Due to its rigorous determi-
nation, it has been proposed that only those values can be used
within the realm of ALM methods in order to minimize
errors.42,43 While the latter remains as the ideal case, there are
several cases where only single-dose biological activity data for
a given target is available. Herein is proposed that this data can
be used for a preliminary activity landscape analysis in order to
identify potential areas of interest and guide the next steps
towards the acquisition of high quality information. Thus,
identication of potential activity cliffs i.e., pro-activity cliffs is
valuable, as they can be prioritized for additional experimental
evaluation.

To temporarily address both the lack of multiple-dose/high
quality data and the error involved in the biological activity
measurement, the percentage of inhibition frequently obtained
at single dose evaluations can be distributed in different cate-
gories; for instance, potentially very active, active, inactive and
potentially very inactive. Integer indices can be assigned to the
different classes: e.g., an integer index of 1 for the least active
compounds and 4 for the most active ones. The limits of the
inhibitory activity can be tted to the distribution of the data
set; e.g., those compounds with less than 25% of inhibition can
be regarded as potentially inactive (e.g., activity index of 1),
This journal is © The Royal Society of Chemistry 2017
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Fig. 4 Examples of pro-activity cliffs for a set of 106 compounds tested as inhibitors of DNMT3A.
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while those with more than 75% inhibition can be considered
as potentially active compounds (e.g., activity index of 4). Aer
classifying activity data and generating a categorical structure–
activity similarity map, four horizontal zones can be dened as
the result of comparing the activity index: 0 (as the result of
comparing members of the same group), 1 (by comparing
members of one unit of difference in the activity index), and so
on. Thus, pro-activity cliffs can be dened as pairs of
compounds with high structure similarity where one is highly
probable to be active and the other is highly probable to be
inactive. To illustrate this point, an actual set of single-dose
activity data is exemplied for a group of inhibitors of DNA
methyltransferase 3A (DNMT3A); for a large number of
compounds, only percentages of inhibition obtained at single
dose are available (10 mM). Fig. 4 shows a categorical SAS map
for 106 compounds tested as potential modulators of DNMT3A.
The SAS map in this gure has 5565 data points; the x-axis
represents the pair-wise structure similarity computed as the
mean of the Tanimoto similarity values computed with
This journal is © The Royal Society of Chemistry 2017
Extended Connectivity Fingerprints (radius 2) and MACCS keys
(166 bits). The y-axis represents the four regions dened by the
difference of the activity indices. The vertical dashed line is
marked in the 3rd quartile of the pair-wise mean similarity
values of the data set (mean similarity of 0.41). In Fig. 4 upper
right quadrant identies the pro-activity cliffs. The same gure
illustrates three specic examples of pro-activity cliffs. As shown
in Fig. 4, the three pairs of compounds show a remarkable
resemblance, and a high difference in their inhibition activities.
For instance, the only structural difference in pro-activity cliff
“III” is a hydroxyl group. Further multiple-dose testing would
conrm or not the status of the potential activity cliffs.

Concluding remarks

ALM is a quantitative approach to analyze systematically SAR of
compound data sets. In many drug discovery programs
compound data sets are screened against two, three or many
more biological endpoints. To rapidly mine the usually large
RSC Adv., 2017, 7, 632–641 | 639
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data generated, ALM have been adapted to analyze the associ-
ated SMARt. Among ALM approaches, SAS maps have evolved
rapidly to address the increasing need of analyzing SMARt. To
date, several successful applications have been reported
including the analysis of SAR, SMARt and protein–ligand
interaction cliffs. As part of the development of the SAS maps,
a number of metrics and visualization approaches have been
developed. Since SMARt analysis usually involves analysis of
large amount of data, getting smart in drug discovery may
require using information available in large screening
campaigns that include incomplete chemogenomics data sets
or activity data obtained at single concentrations. Bioactivity-
prole similarity, activity landscape sweeping and pro-activity
cliffs are examples of recently proposed concepts to advance
the SMARt analysis in drug discovery. One of the major
perspectives in the eld is to incorporate the principles of
quantum mechanics to rene the SMARt models and further
improve their applicability in drug discovery projects.
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