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A free-standing porous silicon-type gel sponge
with superhydrophobicity and oleophobicityt

Xia Zhang,*®® Wenzhong Zhu® and Ivan P. Parkin*®

Porous and spongy superhydrophobic silicon-type gels monoliths have been fabricated by a facile method.
The gel can be turned oleophobic after modification with fluorosilane. The as-prepared free-standing
silicon-type gels demonstrate superhydrophobicity and oleophobicity not only on the upper surface but

Received 21st October 2016
Accepted 7th December 2016

also throughout the whole monolith. Importantly, the as-prepared amphiphobic silicon-type gels have

remarkable chemical stability even in corrosive solutions over a wide range of pH conditions. Moreover,

DOI: 10.1039/c6ra25636h

www.rsc.org/advances long-term storage in air.

1. Introduction

Recently, amphiphobic surfaces have drawn much attention
because of their applications in many areas, such as self-
cleaning,"® drug-reduction,® corrosion resistance,’ anti-
fouling,® and anti-icing.” However, the preparation of such
amphiphobic surfaces presents a greater challenge, since oil
liquids such as cooking oils have a lower surface tension
compared to that for water.® Furthermore, most amphiphobic
surfaces have poor durability.”** Chemical oxidation from
exposure to air, a particular chemical environment, strong
light, or physical rubbing could cause the surfaces to perma-
nently lose their water or oil repellency, which restricts their
prospects in industrial applications.”* Recently, Barthwal
et al.** generated a mechanically robust superamphiphobic
surface on an aluminum plate by employing a simple etching
process in an acidic solution followed by anodization and
fluorination. Similarly, Lee et al.*® fabricated copper oxide
nanowires on copper substrates by an oxidation-reduction
process and checked the mechanical stability of the surfaces.
However, these studies showed that the fragile nature of the
nanostructures were damaged or worn off by contact at higher
loads. It is imperative to improve the durability of amphi-
phobic surfaces for practical applications.'®'® The advantage
for elastic materials of improving the abrasion resistance of
amphiphobic surfaces is caused by their elasticity, since the
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the silicon-type gel monoliths also have stable amphiphobic properties even after UV irradiation and

surface can spring back after compression or scratch and
avoid the damage of the surface micro- and nano-
structures.'”* Moreover, if the amphiphobicity is sustained
throughout the whole monolith material volume, it can foster
formation of fresh re-entrant surface with amphiphobic
property after removed of the uppermost damaged layer.>*** In
our previous work, we fabricated superhydrophobic elastic
silicone rubber with excellent mechanical durability and
showed the superhydrophobicity when exposed to harsh
environments such as strong corrosion, extremely low
temperature, various external damages, especially high
mechanical stress.> In this work, we present a template-free
procedure for the fabrication of marshmallow-like silicon
monoliths with superhydrophobic and oleophobic properties.
No template and stabilizer were required during this process,
which is of low environmental impact, low cost, and simple to
make. The obtained silicon-type gels sustain their amphi-
phobicity not only on the outside surface but also throughout
the whole volume, thus when the outmost layer is removed,
the renewed layer retain the superhydrophobic and oleo-
phobic property making the amphiphobicity permanent. In
addition, the silicon-type gels own soft and porous structures
are surprisingly very stable to strong acid or alkali conditions.

2. Experimental

2.1. Fabrication of free-standing superhydrophobic silicon-
type gels

First, 0.80 g of hexadecyltrimethylammonium bromide, 5.0 g of
urea, and 15 mL of 5 mM aqueous acetic acid were mixed. Then
3.0 g of methyltrimethoxysilane and 2.0 g of dimethyldime-
thoxysilane were added at the same time under vigorous stirring
at ambient temperature until the solutions were homogeneous.
The obtained sol was transferred into a tightly sealed container,
which was placed in a forced convection oven at 80 °C for about
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10 h for complete gelation and aging. Note that stirring should
not be done during the whole aging process. After that, the
obtained silicon-type gels monoliths were carefully washed with
isopropyl alcohol by soaking/squeezing for several times to
remove the residual surfactant and other chemicals. The
washed samples were dried under ambient conditions to obtain
superhydrophobic and superoleophilic gels.

2.2. Fabrication of oleophobic silicon-type gels

The obtain silicon-type gels were immersed in a 0.5% n-hexane
solution of 2-(perfluorodec-1-yl)ethyltrichlorosilane [CF;(-
CF,)o(CH,),SiCl;, FDTS] for about 24 h at room temperature.
Then the samples were taken from the FDTS solution and dried
in an oven at 70 °C for 3 h.

2.3. Characterization

The surface morphology of the sample was examined by field
emission scanning electron microscopy (FESEM, JSM-6701F).
The chemical composition of the as-prepared surface was
investigated using X-ray photoelectron spectroscopy (XPS),
which was conducted on a PHI-5702 electron spectrometer
using Mg Ko line as an excitation source with reference of C 1s
at 284.8 eV. Apparent CA and SA were measured with 5 droplets
of water and various organic liquids using a KRiSS DSA 100
apparatus. The average CA and SA values were obtained by
measuring the same sample in at least five different positions,
and images were captured with a digital camera (Sony Inc.,
Japan).

View Article Online
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3. Results and discussion

Hydrolytic condensation of organosilanes through a one-pot
sol-gel reaction can form a silicon-oxygen core frame-work
and finally leads to a free-standing bulk silicon-type gels
through the aging process.”® As shown in Fig. 1a-c, the free-
standing gels can be prepared in diverse shapes and water
droplets on the surface or cut inner surface of the bulk sample
with a water contact angle about 158 + 1° and a low sliding
angle 2 £ 0.5°. Once an oil droplet is dropped on the surface of
the superhydrophobic silicon-type gels before functionalization
with fluorosilane, the oil can immediately spread with the
contact angle about 0°, which demonstrates the superoleophilic
property. The superhydrophobic and superoleophilic silicon-
type gels monoliths can provide an extremely large volume for
the entrance and storage of liquids, and can be used as an
absorption media for the quick removal of unwanted organic
liquids. Herein, we report the outstanding capability of these
bulk materials for absorbing organic liquids and investigate the
oil-absorption capacity. According to previous reports,* the oil-
absorption capacity of the sponge was calculated as follows:

Weight gain (0/0) = (Mafter - Mbefore)/Mbefore x 100%

where Mperore Was the weight of the superhydrophobic silicon-
type gels before adsorption (mg) and Mg, was the weight of
the superhydrophobic silicon-type gels after adsorption (mg). As
shown in Fig. 1d and Video S1,f once a piece of the super-
hydrophobic sponge was placed on the surface of the oil-water
mixtures, the oils were quickly absorbed by the sponge in a few
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Fig.1 Optical images of the water droplets (4—8 mq) placed on the as-prepared bulk (a and b) or cut (c) silicon-type gels surface with a contact
angle of 159 + 1° and sliding angle of 1 & 0.5°. (d) Photograph of the absorption process of chloroform by using a superhydrophobic silicon
sponge. (e) Absorption efficiency of the superhydrophobic silicon-type gels for various organic liquids. (f) Hexane absorption/drying cycle.
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Fig. 2 Photograph of DMSO droplet on (a) the bulk silicon-type gels surface and (b) the cut inner surface. (c) Tetradecane droplet on the bulk
silicon-type gels surface. (d) Mirror-like phenomenon can be observed on the bulk material submerged in water (DMSO and tetradecane are

stained with oil red O).

seconds. The superhydrophobic sponge exhibits different
weight gains for the 6 kinds of oils/organic solvents and the
changes in absorption capacity could be as a result of the
difference in density of the oils/organic solvents (Fig. 1e). After
being rinsed thoroughly with alcohol and dried in an oven at
70 °C for half an hour, the sample recovered its original shape
and could be reused for oil/water separation for many cycles. As

illustrated in Fig. 1f, only minor changes in absorption capa-
bility of the superhydrophobic sponges could be observed after
absorption/drying cycles. This result is very important for the
silicon monolith as a recyclable absorbent material in oils/
organic solvents cleanup applications. However, after the
modification with fluorosilane (FDTS), the bulk sponge
demonstrates both superhydrophobic and oleophobic

Fig. 3 SEM images of silicon-type gels before (a and b) and after (c and d) functionalization with the FDTS.
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properties extending throughout its bulk. As shown in Fig. 2a
and c, dimethylsulfoxide (DMSO) and tetradecane droplets
exhibit typical spherical shapes with CA value about 152 + 1°
and 146 + 1°, respectively. Note that the cut bulk silicon-type
gels also retain oleophobicity, and that the DMSO droplet can
keep its typical spherical shape with CA value about that 150° &+
1° (Fig. 2b). Upon immersion in water, the bulk material surface
acts like a sliver mirror when viewed at a glancing angle
(Fig. 2d), due to the total reflectance of light at the air layer
trapped on the surface. This trapped air can effectively prevent
awetting on the fabric surface underwater.?” Interestingly, when
the amphiphobic sponge is immersed even in oil by an external
force, it would instantaneously float up after the force is
released, and keeps completely dry. The liquid repellency of the
bulk sponge is highlighted in Movie S2 (ESIf). Thus, the high
liquid repellency of the amphiphobicity can prevent the sponge
from liquid pollution.

SEM was used to clarify the morphology of the spongy
silicon-type gels before and after functionalization with the
FDTS. As illustrated in Fig. 3a and b, the superhydrophobic and
superoleophilic silicon-type gels surfaces contain micrometer
spherical particles, and each particle is tightly bound together
at the neck, forming a rough and porous structure. Compared
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Fig. 5 Evolution of water droplet on amphiphobic silicon-type gels
surface.

with the sponge before modification, the amphiphobic sponge
has almost the same morphology (Fig. 3c and d). The variation
of chemical composition is the main cause of the different
wettability. XPS measurement was used to investigate the
surface chemical composition of the sample. For the super-
hydrophobic and superoleophilic sponge, only peaks corre-
sponding to Si, C and O were observed (Fig. 4a). After the
deposition process, new peaks appeared as shown in Fig. 4b,
which were attributed to Fys, and Fgpp. The C;5 peak can be
deconvoluted into four peaks at 284.8, 286.3, 292.4, and
293.3 eV, which are assigned to C-C/C-H, CH,-CF,, -CF,- and
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Fig.4 XPS spectra of silicon-type gels before (a) and after (b) functionalization with the FDTS; (c and d), C and F element profile from XPS of gels

functionalization with FDTS.
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Fig. 6 Contact angle on amphiphobic silicon-type gels in the condition of continuous contact with the corrosive water droplet. (a) Acidic (pH =

1) and (b) alkali (pH = 14).

—-CF; groups, respectively (Fig. 4c). The peak located at about
690.5 eV is ascribed to F in the PDTS (Fig. 4d). It is well-known
that the —-CF; group has the lowest surface energy (the theo-
retical surface energy is 6 mN m’l), and that of the -CF, is the
next lowest.”® The high surface concentration of -CF, and -CF;
groups results in a surface with the low surface energy needed to
achieve amphiphobicity.

The evolution of the contact angle in continuous contact
with aqueous media is of primary importance for revealing the
possible applications of such silicon-type gels surfaces. Herein,
the durability of superhydrophobic properties under contin-
uous contact with water was investigated. Fig. 5 shows the
contact angle evolution of an amphiphobic silicon-type gels
after continuous contact with a water droplet. It is clear that the
water droplet keeps its spherical shape with CA value about
158°. However, with increased time, the droplet size decreases
because of evaporation. After staying on the sponge surface for
about 30 min, the water droplet detaches from the surface
spontaneously and sticks to the hydrophilic needle, which
indicates that the superhydrophobic property is stable with low
adhesion of water of the surface.

As far as the acidic (pH = 1) and alkali (pH = 14) liquids are
concerned, the sponge can be not as resistant as it is towards
pure water but still demonstrates a significant degree of
stability. It may be concluded that increasing the contact time
with corrosive liquid droplets facilitates the degradation of
superhydrophobic properties. It is clear that the sponge keeps
its superhydrophobic property for about only 20 min after
dropping a strong acidic droplet (Fig. 6a). Meanwhile, a strong
alkali droplet can keep the CA value larger than 150° for 30 min
(Fig. 6b). These results indicate that the amphiphobic sponge
has a certain sustainable stability over a wide pH range, which is
very important for the application in a corrosive environment.

4. Conclusions

In conclusion, we have demonstrated a facile method for the
fabrication of flexible superhydrophobic and oleophobic
silicon-type gel surface. The evolution of water contact angle in

This journal is © The Royal Society of Chemistry 2017

time under the condition of continuous contact with corrosive
droplets shows that the amphiphobic silicon-type gels surface
has a high degree of chemical stability. The elastic silicon-type
gel surface also keeps its stable amphiphobic property under UV
irradiation and after long-term storage in air. This study is ex-
pected to provide new opportunities for the production of large-
scale superhydrophobic and oleophobic surfaces for many
industrial applications such as self-cleaning, corrosion resis-
tance and antifouling.
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